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Let g : (0,+∞) → (0, +∞) be a continuous function such that

lim
x→+∞

g(x)
x1+α

= +∞ , (1)

for some α > 0. Let f : R→ (0, +∞) be a twice differentiable function. Assume that there
exists a > 0 and x0 ∈ R such that

f ′′(x) + f ′(x) > ag(f(x)), for all x ≥ x0 . (2)

Prove that lim
x→+∞ f(x) exists, is finite and compute its value.
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Solution. If x1 > x0 is a critical point of f then, by (2), f ′′(x1) > 0, so x1 is a relative
minimum point of f . This implies that f ′(x) does not change sign if x is sufficiently large.
Consequently, we can assume that f is monotone on (x0, +∞), hence ` := limx→+∞ f(x)
exists.

The difficult part of the proof is to show that ` is finite. This will be deduced after
applying in a decisive manner our superlinear growth assumption (1). Arguing by contra-
diction, let us assume that ` = +∞. In particular, it follows that f is monotone increasing
on (x0, +∞). Define the function

u(x) = ex/2f(x), x ≥ x0.

Then u is increasing and, for any x ≥ x0,

u′′(x) =
1
4
u(x) + ex/2

(
f ′′(x) + f ′(x)

)
>

1
4
u(x) + aex/2g(f(x)). (3)

Our hypothesis (1) and the assumption ` = +∞ yield some x1 > x0 such that

g(f(x)) ≥ f1+α(x), ∀x ≥ x1. (4)

So, by (3) and (4),

u′′(x) >
1
4
u(x) + Cu(x)fα(x) > Cu(x)fα(x), ∀x ≥ x1, (5)

for some C > 0. In particular, since ` = +∞, there exists x2 > x1 such that

u′′(x) > u(x), ∀x ≥ x2. (6)

We claim a little more, namely that there exists C0 > 0 such that

u′′(x) > C0u
1+α/2(x), ∀x ≥ x2. (7)

Indeed, let us first choose 0 < δ < min{e−x2u(x2), e−x2u′(x2)}. We prove that

u(x) > δex, ∀x ≥ x2. (8)
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For this purpose, consider the function v(x) = u(x) − δex. Arguing by contradiction and
using v(x2) > 0 and v′(x2) > 0, we deduce the existence of a relative maximum point
x3 > x2 of v. So, v(x3) > 0, v′(x3) = 0 and v′′(x3) ≤ 0. Hence δex3 = u′(x3) < u(x3). But,
by (6), u′′(x3) > u(x3), which yields v′′(x3) > 0, a contradiction. This concludes the proof
of (8).

Returning to (5) and using (8) we find

u′′(x) > Cu1+α/2(x)uα/2(x)e−αx/2 > C0u
1+α/2(x), ∀x > x2,

where C0 = Cδα/2. This proves our claim (7). So

u′(x)u′′(x) > C0u
1+α/2(x)u′(x), ∀x > x2.

Hence (
1
2
u′2(x)− C1u

2+β(x)
)′

> 0, ∀x > x2,

where C1 = 2C0/(4 + α) and β = α/2 > 0. Therefore

u′2(x) ≥ C2 + C3u
2+β(x), ∀x > x2,

for some positive constants C2 and C3. So, since u is unbounded, there exists x3 > x2 and
C4 > 0 such that

u′(x) ≥ C4u
1+γ(x), ∀x > x3,

where γ = β/2 > 0.
Applying the mean value theorem we find

u−γ(x3)− u−γ(x) = γ(x− x3)u−γ−1(ξx)u′(ξx) ≥ C4γ(x− x3), ∀x > x3,

where ξx ∈ (x3, x). Taking x → +∞ in the above inequality we obtain a contradiction
since the left hand-side converges to u−γ(x3) (because ` = +∞) while the right hand-side
diverges to +∞. This contradiction shows that ` = lim

x→+∞ f(x) must be finite.

We prove in what follows that ` = 0. Arguing by contradiction, let us assume that
` > 0. We first observe that relation (2) yields, by integration,

f ′(x)− f ′(x0) + f(x)− f(x0) ≥ a

∫ x

x0

g(f(t))dt. (9)

Since ` is finite, it follows by (9) that lim
x→+∞ f ′(x) = +∞. But this contradicts the fact that

lim
x→+∞ f(x) is finite.

Remark. The result stated in our problem does not remain true if g has a linear growth
at +∞, so if (1) fails. Indeed, it is enough to choose f(x) = ex and g the identity map.
We also remark that “` is finite” does not follow if the growth hypothesis (1) is replaced by
the weaker one limx→∞ g(x)/x = +∞. Indeed, if g(x) = x ln(1 + x) and f(x) = ex2

, then
` = +∞.
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