Problem No. 11024, The American Mathematical Monthly, No. 6 (June-July), 2003, p. 543

Let $g:(0,+\infty) \rightarrow(0,+\infty)$ be a continuous function such that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{g(x)}{x^{1+\alpha}}=+\infty \tag{1}
\end{equation*}
$$

for some $\alpha>0$. Let $f: \mathbb{R} \rightarrow(0,+\infty)$ be a twice differentiable function. Assume that there exists $a>0$ and $x_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
f^{\prime \prime}(x)+f^{\prime}(x)>a g(f(x)), \quad \text { for all } x \geq x_{0} \tag{2}
\end{equation*}
$$

Prove that $\lim _{x \rightarrow+\infty} f(x)$ exists, is finite and compute its value.
Vicenţiu Rădulescu, Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Solution. If $x_{1}>x_{0}$ is a critical point of f then, by $(2), f^{\prime \prime}\left(x_{1}\right)>0$, so x_{1} is a relative minimum point of f. This implies that $f^{\prime}(x)$ does not change sign if x is sufficiently large. Consequently, we can assume that f is monotone on $\left(x_{0},+\infty\right)$, hence $\ell:=\lim _{x \rightarrow+\infty} f(x)$ exists.

The difficult part of the proof is to show that ℓ is finite. This will be deduced after applying in a decisive manner our superlinear growth assumption (1). Arguing by contradiction, let us assume that $\ell=+\infty$. In particular, it follows that f is monotone increasing on $\left(x_{0},+\infty\right)$. Define the function

$$
u(x)=e^{x / 2} f(x), \quad x \geq x_{0}
$$

Then u is increasing and, for any $x \geq x_{0}$,

$$
\begin{equation*}
u^{\prime \prime}(x)=\frac{1}{4} u(x)+e^{x / 2}\left(f^{\prime \prime}(x)+f^{\prime}(x)\right)>\frac{1}{4} u(x)+a e^{x / 2} g(f(x)) \tag{3}
\end{equation*}
$$

Our hypothesis (1) and the assumption $\ell=+\infty$ yield some $x_{1}>x_{0}$ such that

$$
\begin{equation*}
g(f(x)) \geq f^{1+\alpha}(x), \quad \forall x \geq x_{1} \tag{4}
\end{equation*}
$$

So, by (3) and (4),

$$
\begin{equation*}
u^{\prime \prime}(x)>\frac{1}{4} u(x)+C u(x) f^{\alpha}(x)>C u(x) f^{\alpha}(x), \quad \forall x \geq x_{1} \tag{5}
\end{equation*}
$$

for some $C>0$. In particular, since $\ell=+\infty$, there exists $x_{2}>x_{1}$ such that

$$
\begin{equation*}
u^{\prime \prime}(x)>u(x), \quad \forall x \geq x_{2} \tag{6}
\end{equation*}
$$

We claim a little more, namely that there exists $C_{0}>0$ such that

$$
\begin{equation*}
u^{\prime \prime}(x)>C_{0} u^{1+\alpha / 2}(x), \quad \forall x \geq x_{2} \tag{7}
\end{equation*}
$$

Indeed, let us first choose $0<\delta<\min \left\{e^{-x_{2}} u\left(x_{2}\right), e^{-x_{2}} u^{\prime}\left(x_{2}\right)\right\}$. We prove that

$$
\begin{equation*}
u(x)>\delta e^{x}, \quad \forall x \geq x_{2} \tag{8}
\end{equation*}
$$

For this purpose, consider the function $v(x)=u(x)-\delta e^{x}$. Arguing by contradiction and using $v\left(x_{2}\right)>0$ and $v^{\prime}\left(x_{2}\right)>0$, we deduce the existence of a relative maximum point $x_{3}>x_{2}$ of v. So, $v\left(x_{3}\right)>0, v^{\prime}\left(x_{3}\right)=0$ and $v^{\prime \prime}\left(x_{3}\right) \leq 0$. Hence $\delta e^{x_{3}}=u^{\prime}\left(x_{3}\right)<u\left(x_{3}\right)$. But, by (6), $u^{\prime \prime}\left(x_{3}\right)>u\left(x_{3}\right)$, which yields $v^{\prime \prime}\left(x_{3}\right)>0$, a contradiction. This concludes the proof of (8).

Returning to (5) and using (8) we find

$$
u^{\prime \prime}(x)>C u^{1+\alpha / 2}(x) u^{\alpha / 2}(x) e^{-\alpha x / 2}>C_{0} u^{1+\alpha / 2}(x), \quad \forall x>x_{2},
$$

where $C_{0}=C \delta^{\alpha / 2}$. This proves our claim (7). So

$$
u^{\prime}(x) u^{\prime \prime}(x)>C_{0} u^{1+\alpha / 2}(x) u^{\prime}(x), \quad \forall x>x_{2} .
$$

Hence

$$
\left(\frac{1}{2} u^{\prime 2}(x)-C_{1} u^{2+\beta}(x)\right)^{\prime}>0, \quad \forall x>x_{2}
$$

where $C_{1}=2 C_{0} /(4+\alpha)$ and $\beta=\alpha / 2>0$. Therefore

$$
u^{\prime 2}(x) \geq C_{2}+C_{3} u^{2+\beta}(x), \quad \forall x>x_{2}
$$

for some positive constants C_{2} and C_{3}. So, since u is unbounded, there exists $x_{3}>x_{2}$ and $C_{4}>0$ such that

$$
u^{\prime}(x) \geq C_{4} u^{1+\gamma}(x), \quad \forall x>x_{3}
$$

where $\gamma=\beta / 2>0$.
Applying the mean value theorem we find

$$
u^{-\gamma}\left(x_{3}\right)-u^{-\gamma}(x)=\gamma\left(x-x_{3}\right) u^{-\gamma-1}\left(\xi_{x}\right) u^{\prime}\left(\xi_{x}\right) \geq C_{4} \gamma\left(x-x_{3}\right), \quad \forall x>x_{3}
$$

where $\xi_{x} \in\left(x_{3}, x\right)$. Taking $x \rightarrow+\infty$ in the above inequality we obtain a contradiction since the left hand-side converges to $u^{-\gamma}\left(x_{3}\right)$ (because $\ell=+\infty$) while the right hand-side diverges to $+\infty$. This contradiction shows that $\ell=\lim _{x \rightarrow+\infty} f(x)$ must be finite.

We prove in what follows that $\ell=0$. Arguing by contradiction, let us assume that $\ell>0$. We first observe that relation (2) yields, by integration,

$$
\begin{equation*}
f^{\prime}(x)-f^{\prime}\left(x_{0}\right)+f(x)-f\left(x_{0}\right) \geq a \int_{x_{0}}^{x} g(f(t)) d t \tag{9}
\end{equation*}
$$

Since ℓ is finite, it follows by (9) that $\lim _{x \rightarrow+\infty} f^{\prime}(x)=+\infty$. But this contradicts the fact that $\lim _{x \rightarrow+\infty} f(x)$ is finite.

Remark. The result stated in our problem does not remain true if g has a linear growth at $+\infty$, so if (1) fails. Indeed, it is enough to choose $f(x)=e^{x}$ and g the identity map. We also remark that " ℓ is finite" does not follow if the growth hypothesis (1) is replaced by the weaker one $\lim _{x \rightarrow \infty} g(x) / x=+\infty$. Indeed, if $g(x)=x \ln (1+x)$ and $f(x)=e^{x^{2}}$, then $\ell=+\infty$.

