
Software development 
Life cycle

Profesor PhD. Daniela DĂNCIULESCU





What does Software Development Life Cycle (SDLC) mean?

• SDC is a framework defining tasks performed at each step in the software 
development process.

• SDLC is a structure followed by a development team within the software 
organization.

• It consists of a detailed plan describing how to develop, maintain and replace 
specific software.

• The life cycle defines a methodology for improving the quality of software and the 
overall development process.

• The software development life cycle is also known as the software development 
process.



ACTIVITIES

u Requirement gathering and 
analysis

u Design

u Implementation or coding

u Testing

u Deployment

u Maintenance



1. Requirement 
Gathering and 
Analysis

u During this phase, all the relevant information is collected from the 
customer to develop a product as per their expectation. 

u Any ambiguities must be resolved in this phase only.

u It is conducted by the senior team members with inputs from all the 
stakeholders and domain experts in the industry.

u This stage need teams to get detailed and precise requirements. This helps 
companies to finalize the necessary timeline to finish the work of that 
system.

uFor Example: A customer wants to have an application which involves money 
transactions. 

u In this case, the requirement has to be clear like 

u what kind of transactions will be done

u how it will be done

u in which currency it will be done

u Once the requirement gathering is done, an analysis is done to check the 
feasibility of the development of a product. 

u In case of any ambiguity, a call is set up for further discussion.

u Once the requirement is clearly understood, the SRS (Software Requirement 
Specification) document is created. 

u This document should be thoroughly understood by the developers and also 
should be reviewed by the customer for future reference.



2. Design

u In this phase, the requirement gathered in the SRS document is used as an 
input and software architecture that is used for implementing system 
development is derived.

u This design phase serves as input for the next phase of the model.

u There are two kinds of design documents developed in this phase:

u High-Level Design (HLD)

u Brief description and name of each module

u An outline about the functionality of every module

u Interface relationship and dependencies between modules

u Database tables identified along with their key elements

u Complete architecture diagrams along with technology details

u Low-Level Design(LLD)

u Functional logic of the modules

u Database tables, which include type and size

u Complete detail of the interface

u Addresses all types of dependency issues

u Listing of error messages

u Complete input and outputs for every module



3. 
Implementation 
or Coding

u Implementation/Coding starts once the developer gets 
the Design document. 

u The Software design is translated into source code. 

u All the components of the software are implemented in 
this phase.

u Developers start build the entire system by writing code 
using the chosen programming language. 

u Developer needs to follow certain predefined coding 
guidelines. They also need to use programming tools like 
compiler, interpreters, debugger to generate and 
implement the code

u In the coding phase, tasks are divided into units or 
modules and assigned to the various developers. 

u It is the longest phase of the Software Development Life 
Cycle process.



4. Testing
u Testing starts once the coding is complete and the 

modules are released for testing. 

u During this phase, QA and testing team may find some 
bugs/defects which they communicate to developers.

u Retesting, regression testing is done until the point at 
which the software is as per the customer’s expectation. 

u Testers refer SRS document to make sure that the 
software is as per the customer’s standard.



5. Deployment u Once the product is tested, it is deployed in the 
production environment or first UAT (User Acceptance 
testing) is done depending on the customer expectation.

u In the case of UAT, a replica of the production 
environment is created and the customer along with the 
developers does the testing. 

u If the customer finds the application as expected, then 
sign off is provided by the customer to go live.

https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/


6. Maintenance
u Once the system is deployed, and customers start using 

the developed system, following 3 activities occur:

u Bug fixing - bugs are reported because of some 
scenarios which are not tested at all

u Upgrade - Upgrading the application to the newer 
versions of the Software

u Enhancement - Adding some new features into the 
existing software

u The main focus of this phase is to ensure that needs 
continue to be met and that the system continues to 
perform as per the specification mentioned in the first 
phase.



SOFTWARE 
DEVELOPMENT 
MODELS

u Waterfall Model 

u V-Shaped Model

u Prototype Model

u Spiral Model

u Big Bang Model

u Agile Model



1. WATERFALL MODEL

u Is the very first model that is used in SDLC. 

u It is also known as the linear sequential model

u Involves finishing each phase completely before commencing the 
next one.

uAdvantages:

u Waterfall model is the simple model which can be easily 
understood and is the one in which all the phases are done 
step by step.

u Deliverables of each phase are well defined, and this leads 
to no complexity and makes the project easily manageable.

uDisadvantages:

u Waterfall model is time-consuming 

u Cannot be used in the short duration projects

u Cannot be used for the projects which have uncertain 
requirement



2. V-SHAPED MODEL
u Is also known as Verification and Validation 

Model.

u In this model Verification & Validation goes 
hand in hand i.e. development and testing goes 
parallel. 

u V model and waterfall model are the same 
except that the test planning and testing start 
at an early stage in V-Model.

uAdvantages:

u It is a simple and easily understandable 
model.

u V –model approach is good for smaller 
projects wherein the requirement is 
defined and it freezes in the early stage.

u It is a systematic and disciplined model 
which results in a high-quality product.

uDisadvantages:

u V-shaped model is not good for ongoing 
projects.

u Requirement change at the later stage 
would cost too high.



3. PROTOTYPE MODEL
u Is a model in which the prototype is developed prior to the 

actual software.

u Have limited functional capabilities and inefficient 
performance when compared to the actual software. 

u This is a valuable mechanism for understanding the 
customers’ needs.

uAdvantages:

u Reduces the cost and time of development as the 
defects are found much earlier.

u Missing feature or functionality or a change in 
requirement can be identified in the evaluation 
phase and can be implemented in the refined 
prototype.

u Involvement of a customer from the initial stage 
reduces any confusion in the requirement or 
understanding of any functionality.

uDisadvantages:

u Since the customer is involved in every phase, the 
customer can change the requirement of the end 
product which increases the complexity of the scope 
and may increase the delivery time of the product.



4. SPIRAL MODEL
u Includes iterative and prototype approach.

u Spiral model phases are followed in the iterations.

u The loops in the model represent the phase of the SDLC 
process.

u Spiral Model has four phases:

u Planning

u Risk Analysis

u Engineering

u Evaluation

uAdvantages:

u Risk Analysis is done extensively using the prototype 
models.

u Any enhancement or change in the functionality can 
be done in the next iteration.

uDisadvantages:

u The spiral model is best suited for large projects 
only.

u The cost can be high as it might take a large number 
of iterations which can lead to high time to reach the 
final product.



5. BIG BANG MODEL u Does not have any defined process. 

u Money and efforts are put together as the input and 
output come as a developed product which might be or 
might not be the same as what the customer needs.

u Does not require much planning and scheduling. 

u The developer does the requirement analysis & coding 
and develops the product as per his understanding. 

u This model is used for small projects only. 

u There is no testing team and no formal testing is done, 
and this could be a cause for the failure of the project.

uAdvantages:

u It’s a very simple Model.

u Less Planning and scheduling is required.

u The developer has the flexibility to build the 
software of their own.

uDisadvantages:

u Big Bang models cannot be used for large, ongoing & 
complex projects.

u High risk and uncertainty.



5. INCREMENTAL MODEL u Focuses more on flexibility while developing a 
product rather than on the requirement.

u This life cycle model involves multiple 
development cycles. 

u The cycles are divided up into smaller 
iterations. 

u It is not developed as a complete product in 
one go.

u In agile iterations are termed as sprints. Each 
sprint lasts for2-4 weeks. 

u At the end of each sprint, the product owner 
verifies the product and after his approval, it 
is delivered to the customer.

u Customer feedback is taken for improvement 
and his suggestions and enhancement are 
worked on in the next sprint. 

u Testing is done in each sprint to minimize the 
risk of any failures.



6. 
INCREMENTAL 
MODEL

uAdvantages:

u It allows more flexibility to adapt to the changes.

u The new feature can be added easily.

u Customer satisfaction as the feedback and 
suggestions are taken at every stage.

uDisadvantages:

u Lack of documentation.

u Agile needs experienced and highly skilled 
resources.

u If a customer is not clear about how exactly they 
want the product to be, then the project would 
fail.



Let’s talk!


