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An existence result for quasilinear elliptic equations with
variable exponents

Iulia Dorotheea St̂ırcu

Abstract. We study the following elliptic equation involving weight and variable exponents

−div(φ(x, |∇u|)∇u) + |u|p(x)−2u = λ|u|r(x)−2u− h(x)|u|s(x)−2u

in Ω ⊂ RN (N ≥ 3), with Dirichlet boundary condition, where φ(x, t) is of type |t|p(x)−2

with continuous function p : Ω → (1,∞). Under appropriate conditions on φ, by means of

variational methods and a variant of the mountain pass theorem, we show that for λ large

enough there exist at least two nontrivial weak solutions for our problem. For this purpose
we work on a generalized variable exponent Lebesgue-Sobolev space.
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1. Introduction

Equations involving variable exponent growth conditions constitued a real inter-
est in the study of the partial differential equations in the last few decades (see
[6, 7, 14, 16, 17]). This kind of problems can serve as models in the theory of elec-
trorheological fluids or image restoration. In 1949 there was the first major discovery
on the electrorheological fluids, konwn as the Winslow effect, and it describes the
behavior of certain fluids that becomes solids or quasi-solids when subjected to an
electric field. Electrorheological fluids (or smart fluids) have been used in robotics and
space technology. The experimental research has been mainly in the United States, for
instance in NASA laboratoires. In [19] more details about properties, modelling and
applications of variable exponent spaces to these fluids was studied by V. Rădulescu
and D. Repovs̆.

Let Ω ⊂ RN (N ≥ 3) a bounded domain with smooth boundary. Let λ be a positive
real parametre, p, r, s continuous functions on Ω which satisfy the condition

2 ≤ p(x) < r(x) < s(x) < p∗(x), (1)

where p∗(x) = Np(x)
N−p(x) and p(x) < N for all x ∈ Ω.

In this paper we study a nonlinear elliptic equations of p(x)-Laplace type{
−div(φ(x, |∇u|)∇u) + |u|p(x)−2u = λ|u|r(x)−2u− h(x)|u|s(x)−2u in Ω,
u = 0 on ∂Ω,

(2)
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where φ(x, t) is of type |t|p(x)−2 with continuous function p : Ω→ (1,∞) and h : Ω→
[0,∞) is a continuous function which satisfies the following hypotheses:(

λs(x)

h(x)r(x)

) 1
s(x)−r(x)

∈ L1(Ω), (3)

(
λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

∈ L
s(·)

s(·)−2 (Ω). (4)

Related to our problem, in [12] I. H. Kim and V. H. Kim studied the general case

−div(φ(x, |∇u|)∇u) = λf(x, u) in Ω,

where f : Ω × R → R is a Carathéodory function. The authors have established
the existence of a nontrivial solution for the above problem and, under sufficient
conditions on φ and f , they have proved the positivity of the infimum eigenvalue for
this problem.

When φ(x, t) = |t|p(x)−2, the operator implicated in (2) is the p(x)-Laplace op-

erator, defined by ∆p(x)u = div(|∇u|p(x)−2∇u). For the general case, problem 2
was studied by I. Stăncuţ in [21]. Problems involving the p(x)-Laplacian have been
extensively studied in the last decades (see [1, 6, 7, 8, 11, 18]).

When p(x) is a constant function we obtain the p-Laplacian (see [1, 5, 10]) which
is less complicated then p(x)-Laplacian equation, because the p(x)-Laplace operator
is nonhomogeneous.

Our purpose in this paper is to establish, under suitable conditions on φ, that for
λ large enough there exist at least two nontrivial weak solutions. In order to prove
this result, we use a special version of the mountain pass theorem (see [2] and [24,
Theorem 1.15]) and a corresponding variational method.

Considering the presence of the p(x)-Laplace operator we introduce a variable
exponent Lebesgue-Sobolev space setting for problems of type (2). Due to the presence
of the continuous function h(x) in the right side of our problem, we seek weak solution
for (2) in a more generalized variable exponent Lebesgue-Sobolev space, namely in
the weighted variable exponent Sobolev space.

This paper is organized as follows. In the next section we establish some basic
properties of the variable exponent Lebesgue-Sobolev spaces, as otherwise a necessary
conditions of φ. In section 3 we introduce the energy functional and we state the main
result of this paper. Finally, the proof of the main result are developed in section 4.

2. Preliminaries

We start this section with some definitions and properties of the variable exponent
Lebesgue-Sobolev spaces.

Let Ω be a bounded domain in RN . We define

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
and for any (Lebesgue) continuous function p : Ω→ (1,∞), denote

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).
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For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : Ω→ R a measurable function :

∫
Ω

|u|p(x)dx <∞
}
.

Equipped with the Luxemburg norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣ dx ≤ 1

}
,

Lp(x)(Ω) becomes a Banach space.
If p(x) = p ≡ constant for every x ∈ Ω, then the Lp(x)(Ω) space is reduced to the

classic Lebesgue space Lp(Ω) and the Luxemburg norm becomes the standard norm

in Lp(Ω), ‖u‖Lp =
(∫

Ω
|u(x)|pdx

)1/p
.

For 1 < p− ≤ p+ <∞, Lp(x)(Ω) is a reflexive uniformly convex Banach space, and
for any measurable bounded exponent p, the Lp(x)(Ω) space is separable.

If p1 and p2 are two variable exponents such that p1(x) ≤ p2(x) almost everywhere
in Ω, with |Ω| <∞, then there exists a continuous embedding

Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

whose norm does not exceed |Ω|+ 1.

We define the conjugate variable exponent p′ : Ω → (1,∞), satisfying
1

p(x)
+

1

p′(x)
= 1, for every x ∈ Ω.

We denote by Lp
′(x)(Ω) the conjugate space of the Lp(x)(Ω).

If u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) then the Hölder type inequality holds:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p+
+

1

p−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (5)

The modular of the Lp(x)(Ω) space, defined by the mapping ρp(x) : Lp(x)(Ω)→ R,

ρp(x) =

∫
Ω

|u(x)|p(x)dx,

has an important role in manipulating the generalized Lebesgue spaces.
If p(x) = p ≡ constant for every x ∈ Ω, then the modular ρp(x)(u) becomes ‖u‖pLp .

If p(x) 6≡ constant in Ω and u, un ∈ Lp(x)(Ω) then the following relations hold true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (6)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (7)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (8)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (9)

For more details about these variable exponent Lebesgue spaces see into [13].
Let r : Ω→ (1,∞) and h : Ω→ [0,∞) be continuous functions, with r+ <∞. We

define the weighted Lebesgue space

L
r(·)
h (Ω) =

{
u : Ω→ R a measurable function ;

∫
Ω

h(x)|u|r(x)dx <∞
}
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endowed with the norm

|u|h,r(·) = inf

{
µ > 0;

∫
Ω

h(x)

∣∣∣∣u(x)

µ

∣∣∣∣r(x)

dx ≤ 1

}
.

In the particular case that h(x) is constant on Ω, we note that we obtain the
Luxemburg norm | · |r(·).

We define now the variable exponent Sobolev space as

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
equipped with the norm

‖u‖p(·) = |u|p(·) + |∇u|p(·)

which is equivalent with the norm

‖u‖ = inf

{
µ > 0;

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
,

where |∇u|p(·) is the Luxemburg norm of |∇u|.
We define W

1,p(·)
0 (Ω) = C∞0 (Ω)

‖·‖p(·) and we note that W
1,p(·)
0 (Ω) is a separable

and reflexive Banach space.

For the density of C∞0 (Ω) in W
1,p(·)
0 (Ω) we consider p ∈ C+(Ω) to be logarithmic

Hölder continuous, that means, there exists M > 0 such that

|p(x)− p(y)| ≤ −M
log(|x− y|)

, ∀x, y ∈ Ω,

with |x− y| ≤ 1
2 .

As well, we remark that if s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω, then

W
1,p(·)
0 (Ω) is compactly embedded in Ls(·)(Ω), where p∗(x) = Np(x)

N−p(x) and p(x) < N .

At last, we define the modular of the W
1,p(·)
0 (Ω) space by the mapping

%p(·) : W
1,p(·)
0 (Ω)→ R,

%p(·)(u) =

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx.

If (un), u ∈W 1,p(·)
0 (Ω), then we have the following relations:

‖u‖ > 1⇒ ‖u‖p
−
≤ %p(·)(u) ≤ ‖u‖p

+

, (10)

‖u‖ < 1⇒ ‖u‖p
+

≤ %p(·)(u) ≤ ‖u‖p
−
, (11)

‖un − u‖ → 0⇔ %p(·)(un − u)→ 0. (12)

For more details about these spaces we refer [4, 13, 15, 19, 20, 22].
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3. Existence results

In order to prove our main result, we state some necessary conditions on φ. We
assume that

(h1) φ : Ω× [0,∞)→ [0,∞) satisfies the following hypotheses: φ(·, ω) is a measur-
able function on Ω for all ω > 0 and φ(x, ·) is locally absolutely continuous on [0,∞)
for almost all x ∈ Ω;

(h2) Let a ∈ Lp
′
(x)(Ω) be a function and b a nonnegative constant such that

|φ(x, |v|)v| ≤ a(x) + b|v|p(x)−1,∀x ∈ Ω,∀v ∈ RN ;

(h3) There exists c > 0 a constant such that, for almost x ∈ Ω, the following
condition hold:

φ(x, ω) ≥ cωp(x)−2, for almost all ω > 0.

Throughout this paper, we seek weak solutions for problem (2) in a subspace of

W
1,p(·)
0 (Ω), more exactly in the weighted variable exponent Sobolev space defined by

X =

{
u ∈W 1,p(·)

0 (Ω);

∫
Ω

h(x)|u|s(x)dx <∞
}

endowed with the norm

‖u‖X = |u|p(·) + |∇u|p(·) + |u|h,s(·).

Definition 3.1. We call weak solution for problem (2) a function u ∈ X which
satisfies∫

Ω

(
φ(x, |∇u|)∇u∇ϕ+ |u|p(x)−2uϕ

)
dx = λ

∫
Ω

|u|r(x)−2uϕdx−
∫

Ω

h(x)|u|s(x)−2uϕdx,

for any ϕ ∈ X.

We define the energy functional I : X → R by

I(u) =

∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx− λ

∫
Ω

1

q(x)
|u|r(x)dx+

∫
Ω

h(x)

r(x)
|u|s(x)dx,

where

Φ(x, t) =

∫ t

0

φ(x, ω)ωdω.

Lemma 3.2. Suppose that hypotheses (H1) and (H2) are satisfied. Then I ∈
C1(X,R) and its Fréchet derivative is given by〈

I
′
(u), ϕ

〉
=

∫
Ω

(
φ(x, |∇u|)∇u∇ϕ+ |u|p(x)−2uϕ

)
dx

−λ
∫

Ω

|u|r(x)−2uϕdx+

∫
Ω

h(x)|u|s(x)−2uϕdx.

The proof of Lemma (3.2) is based on standard arguments (see [12, Lemma 3.2]
and [21]).

We note that the weak solutions of problem (2) are exactly the critical points of I.
Finnaly, we state our main result.

Theorem 3.3. There exists λ∗ > 0 such that for λ > λ∗ problem (2) has at least
two nontrivial weak solutions.
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4. Proof of Theorem (3.3)

We divide the proof in two parts. In the first one we focus our attention on proving
the existence of a nontrivial solution for problem (2), remaining as in the second part
to find, for λ large enough, a second nontrivial weak solution for problem (2).

First part. We start by proving the following two results.

Lemma 4.1. The functional I is coercive on X.

Proof. Considering k = r(x), l = s(x), a =
λ

r(x)
and b =

h(x)

2s(x)
in the following

inequality

a|t|k − b|t|l ≤ ca
(a
b

) k
l−k

, (13)

for any t ∈ R, a, b > 0 and 0 < k < l, where c = c(k, l) is a positive constant, we
obtain that

λ

r(x)
|u|r(x) − h(x)

2s(x)
|u|s(x) ≤ c

(
1

r(x)

) s(x)
s(x)−r(x)

(2s(x))
r(x)

s(x)−r(x)

(
λs(x)

h(x)r(x)

) 1
s(x)−r(x)

.

Since

(
1

r(x)

) s(x)
s(x)−r(x)

(2s(x))
r(x)

s(x)−r(x) is a bounded expression, we find that for k1

a positive constant we have

λ

r(x)
|u|r(x) − h(x)

2s(x)
|u|s(x) ≤ k1

(
λs(x)

h(x)r(x)

) 1
s(x)−r(x)

.

By (3) we obtain that∫
Ω

(
λ

r(x)
|u|r(x) − h(x)

2s(x)
|u|s(x)

)
dx ≤ k2,

where k2 is a positive constant.
Therefore, by (h3), choosing |u|p(·) < 1, |∇u|p(·) < 1 and by (6) we obtain

I(u) ≥
∫

Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx+

1

2

∫
Ω

h(x)

s(x)
|u|s(x) − k2

≥ c

p+
|∇u|p

+

p(·) +
1

p+

∫
Ω

|u|p(x)dx+
1

2s+

∫
Ω

h(x)|u|s(x)dx− k2

≥ 1

p+

(
|∇u|p

+

p(·) + |u|p
+

p(·)

)
+

1

2s+

∫
Ω

h(x)|u|s(x)dx− k2

≥ k3

(
|∇u|p

+

p(·) + |u|p
+

p(·) +

∫
Ω

h(x)|u|s(x)dx

)
− k2, (14)

where k3 =
1

2s+
.

Considering v ∈ Ls(·), s ∈ C+(Ω) and |v|s(·) < 1 and taking into account (6) we
obtain ∫

Ω

|v|s(x)dx ≥ |v|s
+

s(·).
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We choose v(x) = h(x)

1

s(x)u(x), so we have∫
Ω

h(x)|u|s(x)dx ≥ |v|s
+

s(·).

Let u ∈ X be such that ‖u‖ > 1, we have

I(u) ≥ k3

(
|∇u|p

+

p(·) + |u|p
+

p(·) + |u|s
+

h,s(·)

)
− k2

≥
(
|∇u|p(·) + |u|p(·) + |u|h,s(·)

)
− k2

≥ k4 ‖u‖X − k2,

where k4 is a positive constant. We conclude that I(u) → +∞ as ‖u‖X → +∞,
namely I is coercive on X.

2

Lemma 4.2. Suppose that (un) is a sequence in X such that I(un) is bounded. Then
there exists a subsequence of (un), noted again (un), such that

un ⇀ u0 in X,

for some u0 ∈ X and

I(u0) ≤ lim inf
n→∞

I(un).

Proof. Considering vn ∈ Ls(·)(Ω), s ∈ C+(Ω), such that |vn|s(·) < 1 and by (6) we
have ∫

Ω

|vn|s(x)dx ≤ |vn|s
−

s(·).

Choosing vn(x) = h(x)

1

s(x)un(x) we find the inequality∫
Ω

h(x)|un|s(x)dx ≤ |un|s
−

h,s(·) < 1.

Analogously, for |vn|s(·) > 1, taking into account relation (7) we obtain

1 < |un|s
−

h,s(·) ≤
∫

Ω

h(x)|un|s(x)dx.

Now, seeing that

∫
Ω

h(x)|un|s(x)dx is bounded, we conclude that |un|h,s(·) is bounded

too.
However, by (14) we deduce that

I(un) ≥ k3

(∫
Ω

φ(x, |∇un|)∇undx+

∫
Ω

|un|p(x)dx+

∫
Ω

h(x)|un|s(x)dx

)
− k2,

where k2, k3 > 0 are two constants. We know that I(un) is bounded, therefore the

above inequality yields to the boundedness of

∫
Ω

φ(x, |∇un|)∇undx and

∫
Ω

h(x)|un|s(x)dx.

Making use of the fact that

∫
Ω

(
φ(x, |∇u|)∇u+ |u|p(x)

)
dx is bounded and using

relations (10) and (11), we obtain that ‖un‖ is bounded. So, it follows that ‖un‖X is
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bounded, that is, we have the existence of a subsequence of (un), labeled again (un),
which converges weakly in X to some u0 ∈ X.

Actually, there exists u0 in X such that

un ⇀ u0 in W
1,p(·)
0 (Ω),

and

un → u0 in L
r(·)
h (Ω).

Now, we define

G(x, u) =
λ

r(x)
|u|r(x) − h(x)

s(x)
|u|s(x),

g(x, u) = Gu(x, u) = λ|u|r(x)−2u− h(x)|u|s(x)−2u

and we note that

gu(x, u) = λ(r(x)− 1)|u|r(x)−2 − h(x)(s(x)− 1)|u|s(x)−2.

We choose a = λ(r(x)− 1), b = h(x)(s(x)− 1), k = r(x)− 2 and l = s(x)− 2 and
by (13) it follows that

gu(x, u) ≤ C
(
r(x)− 1

s(x)− 1

) r(x)−2
s(x)−r(x)

(r(x)− 1)

(
λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

.

It is easy to see that

(
r(x)− 1

s(x)− 1

) r(x)−2
s(x)−r(x)

(r(x)− 1) is a bounded expression, then

the following inequality holds

gu(x, u) ≤ c1
(

λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

, (15)

where c1 > 0 is a constant.
By the definitions of I and G, we have

I(u0)− I(un) =

∫
Ω

[Φ(x, |∇u0|)− Φ(x, |∇un|)]dx+

∫
Ω

1

p(x)

(
|u0|p(x) − |un|p(x)

)
dx

+

∫
Ω

[G(x, un)−G(x, u0)]dx. (16)

Integrating over [0, 1] the following inequalities∫ ν

0

gu(x, u0 + t(un − u0))dt =
g(x, u0 + ν(un − u0))− g(x, u0)

un − u0

=
Gu(x, u0 + ν(un − u0))−Gu(x, u0)

un − u0
,

we obtain

∫ 1

0

∫ ν

0

gu(x, u0 + t(un − u0))dtdν =

∫ 1

0

[Gu(x, u0 + ν(un − u0))−Gu(x, u0)]dν

un − u0

=
G(x, un)−G(x, u0)

(un − u0)2
− g(x, u0)

un − u0
.
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So, we deduce that

G(x, un)−G(x, u0) = (un−u0)2

∫ 1

0

∫ ν

0

gu(x, u0 + t(un − u0))dtdν+(un−u0)g(x, u0).

(17)
Taking into account relations (15), (16) and (17) we find that

I(u0)− I(un) =

∫
Ω

[Φ(x, |∇u0|)− Φ(x, |∇un|)]dx+

∫
Ω

1

p(x)

(
|u0|p(x) − |un|p(x)

)
dx

+

∫
Ω

(un − u0)2

∫ 1

0

∫ ν

0

gu(x, u0 + t(un − u0))dtdνdx+

∫
Ω

(un − u0)g(x, u0)dx

≤
∫

Ω

[Φ(x, |∇u0|)− Φ(x, |∇un|)]dx+

∫
Ω

1

p(x)

(
|u0|p(x) − |un|p(x)

)
dx

+ c2

∫
Ω

(un − u0)2

(
λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

dx+

∫
Ω

(un − u0)g(x, u0)dx,

(18)

where c2 > 0 is a constant.
Now, our purpose is to prove that the last two integrals by the above inequality

converge to 0 as n→∞.
Let define J : X → RN ,

J(v) =

∫
Ω

g(x, u0)vdx.

It is obvious that J is a linear functional. It remains to prove that J is also
continuous.

|J(v)| ≤
∫

Ω

|g(x, u0)v|dx =

∫
Ω

∣∣∣λ|u0|r(x)−2u0 − h(x)|u0|s(x)−2u0

∣∣∣ · |v|dx
≤ λ

∫
Ω

|u0|r(x)−1|v|dx+

∫
Ω

h(x)|u0|s(x)−1|v|dx. (19)

We apply the Hölder-type inequality (5) and we obtain∫
Ω

|u0|r(x)−1|v|dx ≤ 2
∣∣∣|u0|r(x)−1

∣∣∣
r(x)

r(x)−1

|v|.

By the continuous embedding W
1,p(·)
0 (Ω) ↪→ Lr(·)(Ω) we have that there exists C0

a positive constant such that

|v|r(·) ≤ C0 ‖v‖ ,

for all v ∈W 1,p(·)
0 (Ω). But, we have

‖v‖ ≤ ‖v‖X .

Considering the last three inequalities we obtain∫
Ω

|u0|r(x)−1|v|dx ≤ C1 ‖v‖X , (20)
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with C1 > 0 a constant. Again by (5) we find that∫
Ω

h(x)|u0|s(x)−1|v|dx =

∫
Ω

(
h(x)

s(x)−1
s(x) |u0|s(x)−1

)(
h(x)

1
s(x) |v|

)
dx

≤ 2
∣∣∣h(x)

s(x)−1
s(x) |u0|s(x)−1

∣∣∣
s(·)

s(·)−1

∣∣∣h(x)
1

s(x) |v|
∣∣∣
s(·)

≤ C2|v|h,s(·) ≤ ‖v‖X , (21)

where C2 is a positive constant.
Hence, by (19)–(21) we have

|J(v)| ≤ C3 ‖v‖X ,
for all v ∈ X and C3 a positive constant, that is, J is continuous. Taking into accont
that (un) converges weakly to u0 in X and by the fact that J is liniar and continuous
we get to

J(un)→ J(u0),

namely,

lim
n→∞

∫
Ω

g(x, u0)(un − u0)dx = 0. (22)

We know that un ⇀ u0 in W
1,p(·)
0 (Ω) . Whereas we have s ∈ C+(Ω) and s(x) <

p∗(x), we obtain that W
1,p(·)
0 (Ω) is compactly embedded in Ls(·). Both results lead

us to the strongly convergence un → u0 in Ls(·), that is∫
Ω

|un − u0|s(x)dx converges strongly to 0,

or ∫
Ω

(|un − u0|2)
s(x)
2 dx converges strongly to 0.

Therefore, we obtain that

(un − u0)2 ∈ L
s(·)
2 (Ω). (23)

By relations (4), (5) and (23) we obtain∫
Ω

(un − u0)2

(
λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

dx ≤ 2

∣∣∣∣∣
(

λs(x)−2

h(x)r(x−2

) 1
s(x)−r(x)

∣∣∣∣∣
s(·)

s(·)−2

∣∣(un − u0)2
∣∣
s(·)
2

.

But, combining

ρ s(·)
2

(
(un − u0)2

)
=

∫
Ω

(|un − u0|2)
s(x)
2 dx =

∫
Ω

|un − u0|s(x)dx→ 0

with relation (9) we obtain ∣∣(un − u0)2
∣∣
s(·)
2

→ 0.

Thus, we have

lim
n→∞

∫
Ω

(un − u0)2

(
λs(x)−2

h(x)r(x)−2

) 1
s(x)−r(x)

dx = 0. (24)

Let now define I1 : W
1,p(·)
0 (Ω)→ R,

I1(u) =

∫
Ω

Φ(x, |∇u|)dx
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and I2 : W
1,p(·)
0 (Ω)→ R,

I2(u) =

∫
Ω

1

p(x)
|u|p(x)dx.

By sample computation, taking into account [12] and [21] it is easy to prove that
I1 and I2 are convex functionals. Hence, it is obvious that I1 + I2 is also convex on

W
1,p(·)
0 (Ω).
Now, our purpose is to prove that I1 + I2 is weakly lower semicontinuous on

W
1,p(·)
0 (Ω) (see Corollary III.8 in [3]).

Let be u ∈ W
1,p(·)
0 (Ω) and ε > 0 fixed. Let v ∈ W

1,p(·)
0 (Ω) be arbitrary. By

relations (5), (h3) and the fact that I1 + I2 is convex, we obtain

I1(v) + I2(v) = I1(u) + I2(u) +
〈
I
′

1(u) + I
′

2(u), v − u
〉

= I1(u) + I2(u) +

∫
Ω

Φ(x, |∇u|)∇u∇(v − u)dx+

∫
Ω

|u|p(x)−2u(v − u)dx

≥ I1(u) + I2(u)− c
∫

Ω

|∇u|p(x)−1∇(v − u)dx−
∫

Ω

|u|p(x)−1(v − u)dx

≥ I1(u) + I2(u)

− c1
(∣∣∣|∇u|p(x)−1

∣∣∣
p(·)

p(·)−1

|∇(v − u)|p(·) +
∣∣∣|u|p(x)−1

∣∣∣
p(·)

p(·)−1

|v − u|p(·)
)

≥ I1(u) + I2(u)

− c1
(∣∣∣|∇u|p(x)−1

∣∣∣
p(·)

p(·)−1

+
∣∣∣|u|p(x)−1

∣∣∣
p(·)

p(·)−1

)
·
(
|∇(v − u)|p(·) + |v − u|p(·)

)
≥ I1(u) + I2(u)− c2 ‖v − u‖
≥ I1(u) + I2(u)− ε,

for all v ∈ W 1,p(·)
0 (Ω) with ‖v − u‖ < ε/c2, where c, c1 and c2 are positive constants.

It follows that I1 + I2 is lower semicontinuous on W
1,p(·)
0 (Ω), hence I1 + I2 is weakly

lower semicontinuous, that means

lim inf
n→∞

(I1 + I2)(un) ≥ (I1 + I2)(u0)

or, ∫
Ω

(
Φ(x, |∇un|) +

1

p(x)
|un|p(x)

)
dx ≥

∫
Ω

(
Φ(x, |∇u0|) +

1

p(x)
|u0|p(x)

)
dx.

Taking into account the above inequality, relations (22), (24) and passing to the
limit in (18) we obtain that

lim inf
n→∞

I(un) ≥ I(u0),

so, I is weakly lower semicontinuous on X and this completes our proof.
2

Now, using [23, Theorem 1.2], 4.1 and 4.2 we conclude that there exists u ∈ X a
global minimizer of I, therefore

I(u) = inf
v∈X

I(v).
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It is clear that u is a weak solution for problem (2), it remains to prove that u 6≡ 0
in X. It is sufficient to show that infX I < 0 as long as λ is large enough.

We set

λ̃ = inf

{
r+

(∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx+

∫
Ω

h(x)

s(x)
|u|s(x)dx

)
;

u ∈ X,
∫

Ω

|u|r(x)dx = 1

}
.

By Hölder inequality (5) we obtain

λ =

∫
Ω

λ

h(x)
r(x)
s(x)

h(x)
r(x)
s(x) |u|r(x)dx

≤ 2

∣∣∣∣∣ λ

h(x)
r(x)
s(x)

∣∣∣∣∣
s(·)

s(·)−r(·)

∣∣∣h(x)
r(x)
s(x) |u|r(x)

∣∣∣
s(·)
r(·)

, (25)

for any u ∈ X with

∫
Ω

|u|r(x)dx = 1.

By (6), (7), (25) and considering the case when u ∈ X and∣∣∣h(x)
r(x)
s(x) |u|r(x)

∣∣∣
s(·)
r(·)

> 1,

we find that

λ ≤ 2

[∫
Ω

(
λs(x)

h(x)r(x)

) 1
s(x)−r(x)

dx

] 1

( s
s−r )

+ (∫
Ω

h(x)|u|s(x)dx

) 1

( s
r )
−

.

Therefore, we arrive at

∫
Ω

h(x)|u|s(x)dx ≥
(
λ

2

)( s
r )
− [∫

Ω

(
λs(x)

h(x)r(x)

) 1
s(x)−r(x)

dx

] −( s
r )
−

( s
s−r )

±

and so

λ̃ ≥ r+

∫
Ω

h(x)

s(x)
|u|s(x)dx ≥ r+

s+

(
λ

2

)( s
r )
− [∫

Ω

(
λs(x)

h(x)r(x)

) 1
s(x)−r(x)

dx

] −( s
r )
−

( s
s−r )

±

.

Then, we find that λ̃ > 0. Let λ > λ̃. Consequently, there exists ū ∈ X with∫
Ω

|ū|r(x)dx = 1 such that the following inequality holds

λ

∫
Ω

|ū|r(x)dx = λ > r+

∫
Ω

Φ(x, |∇ū|)dx+ r+

∫
Ω

1

p(x)
|ū|p(x)dx+ r+

∫
Ω

h(x)

s(x)
|ū|s(x)dx.

Hence, we obtain

λ

∫
Ω

1

r(x)
|ū|r(x)dx ≥ λ

r+

∫
Ω

|ū|r(x)dx

>

∫
Ω

Φ(x, |∇ū|)dx+

∫
Ω

1

p(x)
|ū|p(x)dx+

∫
Ω

h(x)

s(x)
|ū|s(x)dx.
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Now, it is obvious that

I(ū) =

∫
Ω

Φ(x, |∇ū|)dx+

∫
Ω

1

p(x)
|ū|p(x)dx− λ

∫
Ω

1

r(x)
|ū|r(x)dx+

∫
Ω

h(x)

s(x)
|ū|s(x)dx < 0

and finally we obtain that infX I < 0. Now, we can establish that there exists λ0 = λ̃
such that, for any λ > λ0, (2) has a nontrivial weak solution ū ∈ X, which satisfies
I(ū) < 0. Whereas I(ū) = I(|ū|), we can suppose that ū ≥ 0 almost everywhere in
Ω, that is, ū 6≡ 0.

Second part. The goal of this section of our proof is to find a second nontrivial
weak solution for problem (2). For this purpose, we fix λ ≥ 0 and define

f(x, t) =


0, if t < 0,
λtr(x)−1 − h(x)ts(x)−1, if 0 ≤ t ≤ ū(x),
λū(x)r(x)−1 − h(x)ū(x)s(x)−1, if t > ū(x),

and

F (x, t) =

∫ t

0

f(x, ν)dν.

Let be J : X → R a functional defined by

J(u) =

∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx−

∫
Ω

F (x, u)dx.

It is easy to show, by standard arguments, that J ∈ C1(X,R), with the Frèchet
derivative given by〈

J
′
(u), v

〉
=

∫
Ω

(
φ(x, |∇u|)∇u∇v + |u|p(x)−2uv

)
dx−

∫
Ω

f(x, u)vdx,

for any u, v ∈ X. Obviously, if u is a critical point of J then u ≥ 0 almost everywhere
in Ω.

Our main tool to find a critical point ũ ∈ X of J such that J(ũ) > 0 is the mountain
pass theorem. In the following, we intend to prove two lemmas.

Lemma 4.3. There exists δ ∈ (0, ‖ū‖) and α > 0 such that J(u) ≥ α, for any u ∈ X
which satisfies ‖u‖ = δ.

Proof. Since W
1,p(·)
0 (Ω) is continuously embedded in Lr(·)(Ω), there exists a constant

N > 1 such that

|u|r(·) ≤ N · ‖u‖ , for all u ∈W 1,p(·)
0 (Ω). (26)

We fix δ ∈ (0, 1) such that δ <
1

N
. By the above inequality (26) we have

|u|r(·) < 1, for any u ∈W 1,p(·)
0 (Ω) which satisfies ‖u‖ = δ.

By (6) and (26) we obtain that

λ

∫
Ω

|u|r(x)dx ≤ N1 ‖u‖r
−
, (27)

with N1 = λNr− .



312 I.D. STÎRCU

By (h3), considering |∇u|p(·) < 1, |u|p(·) < 1, we have

J(u) =

∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx−

∫
[u>ū]

F (x, u)dx−
∫

[u≤ū]

F (x, u)dx

=

∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx− λ

∫
[u>ū]

ūr(x)−1udx+

∫
[u>ū]

h(x)ūs(x)−1udx

− λ
∫

[u≤ū]

1

r(x)
ur(x)dx+

∫
[u≤ū]

h(x)

s(x)
ur(x)dx

>
c

p+

∫
Ω

|∇u|p(x)dx+
1

p+

∫
Ω

|u|p(x)dx− λ
∫

[u>ū]

ur(x)dx− λ

r−

∫
[u≤ū]

ur(x)dx

>
c

p+

∫
Ω

|∇u|p(x)dx+
1

p+

∫
Ω

|u|p(x)dx− λ
∫

Ω

ur(x)dx

>
1

p+

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx− λ

∫
Ω

ur(x)dx,

(28)

for any u ∈ X.
Combining relations (11), (26) and (27) we get to

J(u) >
1

p+
‖u‖p

+

−N1 ‖u‖r
−

= ‖u‖p
+
(

1

p+
−N1 ‖u‖r

−−p+
)
,

for all u ∈ X satisfying ‖u‖ = δ.
Let be ψ : [0, 1]→ R a function defined by

ψ(t) =
1

p+
−N1t

r−−p+ .

We can observe that ψ is a positive function in a neighborhood of the origin such

that δ ∈ (0, 1) is small enough and α = δp
+

ψ(δ) > 0. Then, this completes our proof.
2

Lemma 4.4. The functional J is coercive on X.

Proof. For all u ∈ X, taking into account hypotheses (h3), we have

J(u) =

∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx− λ

∫
[u>ū]

ūr(x)−1udx+

∫
[u>ū]

h(x)ūs(x)−1udx

− λ
∫

[u≤ū]

1

r(x)
ur(x)dx+

∫
[u≤ū]

h(x)

s(x)
ur(x)dx

>
c

p+

∫
Ω

|∇u|p(x)dx+
1

p+

∫
Ω

|u|p(x)dx− λ
∫

[u>ū]

ūr(x)dx− λ

r−

∫
[u≤ū]

ūr(x)dx

>
1

p+

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx− λ

∫
Ω

ūr(x)dx

=
1

p+

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx−N2,

(29)
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where N2 is a positive constant.
For u ∈ X such that ‖u‖ > 1, by (10) and (29) we obtain that

J(u) >
1

p+
‖u‖p

−
−N2.

Therefore, J is coercive on X.
2

By means of 4.3 and the mountain pass theorem [24, Theorem 1.15] we can see
that there is a sequence (un) ∈ X such that

J(un)→ c̃ > 0 and J
′
(un)→ 0, (30)

with

c̃ = inf
q∈Q

max
t∈[0,1]

J(q(t))

and

Q = {q ∈ C([0, 1], X); q(0) = 0, q(1) = ū} .

By 4.4 and relation (30) we obtain that (un) is a bounded sequence, so there is
ũ ∈ X such that, up to a subsequence, (un) is weakly convergent to ũ in X.

By standard arguments, which involve Sobolev embeddings, we can easily prove
that

lim
n→∞

〈
J
′
(un), v

〉
=
〈
J
′
(ũ), v

〉
,

for all v ∈ C∞0 (Ω). This together with the continuous embedding of X in W
1,p(·)
0 (Ω)

and the density of C∞0 (Ω) in W
1,p(·)
0 (Ω) follows us to J

′
(ũ) = 0, which means that ũ

is a critical point of J .
Consequently, our aim is to show that ũ is also a critical point for I. For this

purpose, we first prove that ũ ≤ ū.
By [9, Theorem 7.6] we have that if v ∈ X then v+ ∈ X, where v+(x) =

max {v(x), 0}. Thus, making use of hypotheses (h3), we have

0 =
〈
J
′
(ũ), (ũ− ū)+

〉
−
〈
I
′
(ū), (ũ− ū)+

〉
=

∫
Ω

φ(x, |∇ũ|)∇ũ∇(ũ− ū)dx+

∫
Ω

|ũ|p(x)−2ũ(ũ− ū)dx−
∫

Ω

f(x, ũ)(ũ− ū)dx

−
∫

Ω

φ(x, |∇ū|)∇ū∇(ũ− ū)dx−
∫

Ω

|ū|p(x)−2ū(ũ− ū)dx

+λ

∫
Ω

|ū|r(x)−2ū(ũ− ū)dx−
∫

Ω

h(x)|ū|s(x)−2ū(ũ− ū)dx

=

∫
Ω

(φ(x, |∇ũ|)∇ũ− φ(x, |∇ū|)∇ū)∇(ũ− ū)+dx

+

∫
Ω

(
|ũ|p(x)−2ũ− |ū|p(x)−2ū

)
(ũ− ū)+dx

−
∫

Ω

(
f(x, ũ)− λ|ū|r(x)−2ū+ h(x)|ū|s(x)−2ū

)
(ũ− ū)+dx
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=

∫
[ũ>ū]

(φ(x, |∇ũ|)∇ũ− φ(x, |∇ū|)∇ū) (∇ũ−∇ū)dx

+

∫
[ũ>ū]

(
|ũ|p(x)−2ũ− |ū|p(x)−2ū

)
(ũ− ū)dx

≥ c
∫

[ũ>ū]

(
|∇ũ|p(x)−1 − |∇ū|p(x)−1

)
(|∇ũ| − |∇ū|)dx

+

∫
[ũ>ū]

(
|ũ|p(x)−1 − |ū|p(x)−1

)
(|ũ| − |ū|)dx ≥ 0.

Hence, we find that 0 ≤ ũ ≤ ū in Ω. It follows that

f(x, ũ) = λũr(x)−1 − h(x)ũs(x)−1

and

F (x, ũ) =
λ

r(x)
ũr(x) − h(x)

s(x)
ũs(x).

Therefore,

J(ũ) = I(ũ)

and

J
′
(ũ) = I

′
(ũ).

Consequently, we have that

I(ũ) = J(ũ) > 0 = I(0) > I(ũ)

and

0 = J
′
(ũ) = I

′
(ũ).

This means that ũ is a weak solution for problem (2) so that 0 ≤ ũ ≤ ū, with
ū 6= 0 and ũ 6= ū. Thus, we conclude that problem (2) has at least two nontrivial
weak solutions.
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[10] Y.-H. Kim, M. Väth, Global solution branches for equations involving nonhomogeneous opera-

tors of p-Laplace type, Nonlinear Anal. 74 (2011), 1878–1891.
[11] Y.-H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations

with variable exponents, J. Math. Anal. Appl. 371 (2010), 624–637.



AN EXISTENCE RESULT FOR QUASILINEAR ELLIPTIC EQUATIONS ... 315

[12] I.H. Kim, Y.-H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for

quasilinear elliptic equations with variable exponents, Manuscripta Math. 147 (2015), 169–191.
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[19] V. Rădulescu, D. Repovs̆, Partial Differential Equations with Variable Exponents, CRC Press,

Taylor and Francis Group, Boca Raton FL, 2015.
[20] D. Repovs̆, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl.

(Singap.) 13 (2015), no. 6, 645–661.
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