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Separation axioms on topological effect algebras
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Abstract. In this paper, by considering the notions of (para, semi)topological effect alge-

bras, separation axioms on these topologies are investigated. Some conditions which under
them, a (para, semi)topological effect algebra be a Ti -space (i = 1, 2, 3, 4) are found. Then

compact Hausdorff (para, semi)topological algebras are studied. Finally, topological structure

on quotient effect algebras are defined and separation axioms of it are investigated.
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1. Introduction

Topology and algebra, the two fundamental domains of mathematics, play comple-
mentary roles. Topology studies continuity and convergence and provides a general
framework to study the concept of a limit. Algebra considers all kinds of operations
and provides a basis for algorithms and calculations. Many of the most important
objects of mathematics represent a blend of algebraic and topological structures. For
example, in applications, in higher level domains of mathematics, such as functional
analysis, dynamical systems, representation theory, and among others, topology and
algebra come in contact most naturally.

When an algebraic structure and a topology come naturally together, the rules
that describe the relationship between topology and algebraic operation are almost
always transparent, and natural-the operation has to be continuous or semicontinuous.
Topological function spaces and linear topological spaces in general, topological groups
and topological field, transformation groups, and topological lattices are objects of this
kind. In recent decades, there has been much research on the structures associated
with logical systems. For instance, BCK-algebras were introduced by Y. Imai and
K. Iséki [11] as an algebraic formulation of Meredith’s BCK-implicational calculus,
and BL-algebras have been defined by Hájek [10] to investigate many-valued logic by
algebraic means.

Furthermore, several mathematicians have endowed a number of algebraic struc-
tures associated with logical systems with a topology and have found some of their
properties. For example, R.A. Borzooei et al. [2, 3, 4, 18, 21] who defined semi-
topological and topological BL- algebras, Roudabri and Torkzadeh [22] used the left
(right) stabilizers of a BCK- algebra and produced two bases for two different topolo-
gies, and M. Haveshki et al. [15] introduced the topology induced by uniformity on
BL-algebras.
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Effect algebras have been introduced by D.J. Foulis and M.K. Bennet in 1994 for
modelling unsharp measurement in a quantum mechanical system. In the last few
years, the theory of effect algebras has enjoyed a rapid development. As an important
tool of studying, the topological structures of effect algebras not only can help us to
describe the convergence properties, but also can help us to characterize some algebra
properties of effect algebras.

Now, in this paper we study the separation axioms on (para, semi)topological effect
algebras and on quotient effect algebras.

2. Preliminary

In this section, we collect the relevant definitions and results from topology and
effect algebra theory to make this paper self-contained and easy to read.

A set A with a family T of its subsets is called a topological space, denoted by
(A, T ), if A, ∅ ∈ T , the intersection of any finite number of the members of T is in T ,
and the arbitrary union of members of T is in T . The members of T are called open
sets of A, and the complement of an open set U , A\U , is a closed set. If B is a subset
of A, then B, the smallest closed set containing B, is called the closure of B and B◦

the biggest open set contained in B, is named the interior of B. A subfamily {Uα} of
T is named a base of T if for each x ∈ U ∈ T , there is an α ∈ I such that x ∈ Uα ⊆ U ,
or equivalently, each U in T is the union of members of {Uα}. A subfamily {Uβ} of
T is a subbase for T if the family of finite intersections of members of {Uβ} forms a
basis of T . A subset P of A is a neighborhood of x ∈ A, if there exists an open set U
such that x ∈ U ⊆ P. Let Tx denote the all neighborhoods of x in A, then a subfamily
Vx of Tx is a fundamental system of neighborhoods of x, if for each Ux in Tx, there
exists a Vx in Vx such that Vx ⊆ Ux. Let (A, T ) and (B,V) be two topological spaces,
a mapping f of A into B is continuous if f−1(U) ∈ T for any U ∈ V. The mapping
f is called homeomorphism if f is bijective, and f and f−1 are continuous, or equiv-
alently, if f is bijective, continuous and open (closed). A topological space (A, T ) is
compact if each open covering of A is reducible to a finite open covering and locally
compact if for each x ∈ A there exists an open neighborhood U of x and a compact
subset K such that x ∈ U ⊆ K. Let (A, T ) be a topological space. Then (A, T ) is a:
(i) T0-space if, for each x, y ∈ A and x 6= y, there is at least one in an open neighbor-
hood excluding the other.
(ii) T1-space if, for each x, y ∈ A and x 6= y, each has an open neighborhood not
containing the other.
(iii) T2-space if, for each x, y ∈ A and x 6= y, both have disjoint open neighborhoods
U, V such that x ∈ U and y ∈ V. A T2-space is also known as a Hausdorff space.
(iv) regular space if, for any closed subset C of (A, T ) and x ∈ A such that x 6∈ C,
there exist disjoint open sets U and V such that x ∈ U and C ⊆ V.
(v) normal space if, C and D are two disjoint closed subsets of A, then there exist
two disjoint open subsets U and V such that C ⊆ U and D ⊆ V.
(v) T3-space if it is T1 and regular space.
(vi) T4-space if it is T1 and normal space (See, [5]).

Proposition 2.1. (i) A topological space (A, T ) is a T3-space if and only if for each
x ∈ U ∈ T , there exists an open set H such that x ∈ H ⊆ H ⊆ U.
(ii) A topological space (A, T ) is a T4-space if and only if for each closed set S and
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each open set U contains S, there exists an open set H such that S ⊆ H ⊆ H ⊆ U
(See, [20]).

An effect algebra is algebraic structure (E,⊕, 0, 1) where 0,1 are distinct elements
of E and ⊕ is a partial binary operation on E that satisfies the following conditions,
for any a, b, c ∈ E:
(E1)(Commutative law) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(E2)(Associative law) If a⊕ b and (a⊕ b)⊕ c are defined, then b⊕ c and a⊕ (b⊕ c)
are defined and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3)(Orthosupplementation law) For each a ∈ E there exist a unique b ∈ E such that
a⊕ b is defined and a⊕ b = 1.
(E4)(Zero-Unit law) If a⊕ 1 is defined, then a = 0.

For each a ∈ E, we denote the unique b in condition (E3) by a
′

and call it the ortho-

supplement of a. The sense is that if a presents a proposition, then a
′

corresponds
to the negation. The binary relation ≤ which is define by a ≤ b, if and only if there
exists c ∈ E such that a ⊕ c = b is a totally relation. Such an element c is unique,
and therefore we can introduce a dual operation 	 in E by a 	 b = c if and only if
a = c ⊕ b. Let A and B be subsets of a effect algebra E. Then A ⊕ B denotes the
set {a⊕ b : a ∈ A, b ∈ B}, and A

′
denotes the set {a′

: a ∈ A}, and for a ∈ E, a⊕ A
denotes the set {a ⊕ b : b ∈ A}. If a ⊕ b is defined, then we say that a and b are
orthogonal and write a⊥b (See, [8, 9, 12]).

Proposition 2.2. [12] The following properties hold for any effect algebra, for any
a, b ∈ E :
(i) a

′′
= a,

(ii) 1
′

= 0 and 0
′

= 1,
(iii) 0 ≤ a ≤ 1,
(iv) a⊕ 0 = a,
(v) a⊕ b = 0⇒ a = b = 0,
(vi) a ≤ a⊕ b,
(vii) a ≤ b⇒ b

′ ≤ a′
,

(viii) b	 a = (a⊕ b′)′
,

(ix) a⊕ b′ = (b	 a)
′
,

(x) a = a	 0,
(xi) a	 a = 0,

(xii) a
′

= 1	 a and a = 1	 a′
.

Let (E,⊕, 0, 1) be an effect algebra. A nonempty subset I of E is said to be an
ideal of E, if for all a, b ∈ E, a ∈ I and b ≤ a implies b ∈ I and a 	 b ∈ I and b ∈ I
implies a ∈ I. Equivalently, if a⊕ b is defined, then a⊕ b ∈ I ⇔ a, b ∈ I (See, [19]).

A binary relation ∼ on effect algebra E is called a congruence relation if:
(C1) ∼ is an equivalence relation,
(C2) a ∼ a1, b ∼ b1, a⊥b and a1⊥b1 then a⊕ b ∼ a1 ⊕ b1.
(C3) if a ∼ b and b⊥c, then there exists d ∈ E such that d ∼ c and a⊥d.

Note: Condition (C3) is equivalent to the conditions:

(C4) If a ∼ b and a⊕ a1 ∼ b⊕ b1, then a1 ∼ b1.
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(C5) If a ∼ b⊕ c, then there are a1, a2 such that a = a1 ⊕ a2 and a1 ∼ b, a2 ∼ c.
Condition C(4) is equivalent to condition

(C6) if a ∼ b, then a
′ ∼ b

′
(See, [14]).

If ∼ is a congruence relation, then quotient E/ ∼ is an effect algebra (See, [9]). If I
is an ideal of E, we define a binary relation ∼I on E by a ∼I b if and only if there
are i, j ∈ I, such that i ≤ a, j ≤ b and a	 i = b	 j. Equivalently, a ∼I b if and only
if there is k ∈ E, such that k ≤ a, b, and a	 k, b	 k ∈ I.

Let (E,⊕, 0, 1) be an effect algebra and I be an ideal of E. We say that I is a
Riesz ideal of E if for any i ∈ I and a, b ∈ E if a⊥b and i ≤ a ⊕ b, then there exist
a1, b1 ∈ I such that a1 ≤ a, b1 ≤ b and i ≤ a1 ⊕ b1 (See, [9]).

Theorem 2.3. [13] Let I be an ideal in effect algebra E. Then ∼I is a congruence
relation on E if and only if I is a Riesz ideal of E.

Note: From now one, in this paper we let (E,⊕, 0, 1) or E is an effect algebra.

Definition 2.1. [21] Let T be a topology on effect algebra E. Then (E, T ) is called:
(i) semitopological effect algebra if ⊕ is semicontinuous, or equivalently, if for any
a, x ∈ E and any neighborhood U of a ⊕ x, there exists an open neighborhood V of
x such that a⊕ V ⊆ U ,
(ii) paratopological effect algebra if the operation ⊕ is continuous, or equivalently, if
for any x, y in E and any open set W of x⊕ y there exist two open neighborhoods U
and V of x and y, respectively, such that U ⊕ V ⊆W,
(iii) topological effect algebra, if the operations ⊕ and ′ are continuous.

Example 2.1. [21] (i) Let E = [0, 1] be effect algebra with the interval topology T
of R. Then E is topological effect algebra.
(ii) C4 = {0, 1/4, 2/4, 3/4, 1} with topology T = {∅, {0}, {0, 1/4}, C4} is a paratopo-
logical effect algebra.

Notation: [21] For a ∈ E, we define the maps Ta, La, Ra, ′ : E → E as follows:

Ta(x) = a⊕ x , La(x) = a	 x , Ra(x) = x	 a , ′(x) = x
′
.

Theorem 2.4. [21] Let (E, T ) be a topological effect algebra. Then the operation 	
is continuous.

3. Separation axioms on effect algebras

In this section, we get some conditions on (semi, para)topological effect algebras
which causes it becomes a Ti-space. Recall that a topological space (X, T ) is called
discrete if every element admits a neighborhood consisting of that element only.

Proposition 3.1. If {0} is an open set in a topological effect algebra E, then E is
discrete.

Proof. Since E ia an effect algebra, by Proposition 2.2(xi), x 	 x = 0 ∈ {0}, for all
x ∈ E. Because {0} is open, by continuity of 	 in E, there exist two neighborhoods
U and V of x, such that U 	V = {0}. Let W = U ∩V . Then W 	W ⊆ U 	V = {0}
and so W 	W = {0}. It follows from x ∈W , that W = {x}, which means that E is
discrete. �
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Theorem 3.2. Suppose that T is a topology on effect algebra E.
(i) If for any a ∈ E, Ta is an open map and there exists U ∈ T containing 0, then
(E, T ) is a T0-space.
(ii) If for any a ∈ E, Ra(La) is an open map and there exists U ∈ T containing 1,
then (E, T ) is a T0-space.

Proof. (i) Let for any a ∈ E, Ta be an open map and x, y ∈ E such that x 6= y.
Suppose U be an open set containing 0. Then U ⊕ x and U ⊕ y are open sets
containing x and y, respectively. We claim that x 6∈ U⊕y or y 6∈ U⊕x. Let x ∈ U⊕y
and y ∈ U ⊕ x. Then, for some a ∈ U , x = a⊕ y. By definition of order relation ≤ in
E, we get that y ≤ x. Similarly, y ∈ U ⊕ x, follows that x ≤ y. Hence, x = y, which
is a contradiction.
(ii) Let for any a ∈ E, Ra(La) be an open map and x, y ∈ E such that x 6= y. Let U

be an open set containing 1. By Proposition 2.2(xii), 1	x′
= x and 1	y′

= y. Hence,

Rx′ (U) = U 	x′
and Ry′ (U) = U 	 y′

are open sets containing x and y, respectively.

We claim that y 6∈ U 	 x′
or x 6∈ U 	 y′

. Let y ∈ U 	 x′
and x ∈ U 	 y′

. Then, for
some a ∈ U, y = a	 x′

and so by Proposition 2.2(viii) y
′

= (a	 x′
)
′

= x
′ ⊕ a′

. Thus

x
′ ≤ y′

and so by Proposition 2.2(vii), y ≤ x. Similarly, for x ∈ U 	 y′
, we get x ≤ y.

Hence x = y, that is a contradiction. Therefore, (E, T ) is a T0-space. �

Theorem 3.3. Let effect algebra E has a proper ideal I (that is, distinct from E and
{0}). Then,
(i) there is a nontrivial topology T on E such that (E, T ) is a paratopological effect
algebra and T0-space.
(ii) I is a closed and open set.

Proof. (i) Let I be a proper ideal in E and T = {U ⊆ E : ∀x ∈ U, I ⊕ x ⊆ U}. It is
easy to prove that T is a topology on E. We show that for any a ∈ E, a⊕ I ∈ T . Let
a ∈ E and y ∈ a⊕ I. Then

I ⊕ y ⊆ I ⊕ (I ⊕ a) = (I ⊕ I)⊕ a ⊆ I ⊕ a.

Hence, T is a nontrivial topology on E. If x, y ∈ E and x ⊕ y ∈ U ∈ T , then
(I ⊕ x)⊕ y ⊆ U . On the other hand x⊕ I and y ⊕ I are two open neighborhoods of
x and y, respectively, such that

(x⊕ I)⊕ (y ⊕ I) = x⊕ y ⊕ I ⊕ I ⊆ x⊕ y ⊕ I ⊆ U.

Hence, (E, T ) is a paratopological effect algebra and so Ta is a continuous map.
Now, we prove that for any a ∈ E, Ta is an open map. Let a ∈ E and U ∈ T . If
y ∈ a ⊕ U, then there exists x ∈ U such that y = a ⊕ x. Thus, by (E1) and (E2)
I ⊕ y = I ⊕ (a ⊕ x) = a ⊕ (I ⊕ x) ⊆ a ⊕ U. Hence, a ⊕ U is an open set in E. This
proves that Ta is an open map. Therefore, Theorem 3.2(i), (E, T ) is a T0-space.
(ii) For x ∈ I, x ⊕ I ⊆ I. Then I ∈ T . If x ∈ I, then (I ⊕ x) ∩ I 6= ∅. Hence, there
exists a ∈ I such that a ⊕ x ∈ I. Now since by Proposition 2.2(vi), x ≤ x ⊕ a and I
is an ideal, we get x ∈ I. Then, I is a closed set. �
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Example 3.1. Let E = {0, a, b, 1}, be a poset where 0 < a, b < 1. Consider the
following tables :

⊕ 0 a b 1
0 0 a b 1
a a a 1 -
b b 1 b -
1 1 - - -

′ 0 a b 1
1 b a 0

Then, (E,⊕, 0, 1) is an effect algebra. Since {0, a} is an ideal of E, by Theorem 3.3,

T ={U ⊆ E : ∀x ∈ U, I ⊕ x ⊆ U}
={∅, E, {0, a}, {1, b}, {a}, {1}, {a, b, 1}, {0, a, 1}, {a, 1}}

is a topology on E such that (E, T ) is a paratopological effect algebra and T0-space.

Theorem 3.4. Let T be a topology on effect algebra E such that for any a ∈ E, La
be an open map. Then (E, T ) is a T0-space if and only if for any 0 6= x ∈ E, there
exists an open neighborhood U of 0 such that x 6∈ U.

Proof. Let for any 0 6= x ∈ E, there exists an open neighborhood U of 0 such that
x 6∈ U. We prove that (E, T ) is a T0-space. Let x 6= y. By definition of 	, x 	 y
or y 	 x is defined. W.O.L.G, suppose that x 	 y is defined and x 	 y 6= 0. Then
there is an open neighborhood U of 0 such that x 	 y 6∈ U . We claim y 6∈ x 	 U or
x 6∈ y	U. Let y ∈ x	U and x ∈ y	U. If y ∈ x	U, then for some a ∈ U, y = x	 a
or x = y⊕ a and so ≤, y ≤ x. Similarly, x ∈ y	U follows x ≤ y and so x = y, which
is a contradiction. Therefore, (E, T ) is a T0-space. �

Theorem 3.5. Let (E, T ) be a topological effect algebra. If for any x ∈ E \ {0} there
exists an open set U containing x such that 0 6∈ U, then (E, T ) is a T1-space.

Proof. Suppose x 6= y. By definition of 	, x 	 y or y 	 x is defined. W.O.L.G let
x	 y is defined and x	 y 6= 0. Then, there exists an open neighborhood U of x	 y
such that 0 6∈ U. On the other hand, since (E, T ) is a topological effect algebra, there
exist open neighborhoods V and W of x and y, respectively, such that V 	 y ⊆ U
and x 	W ⊆ U. We claim that x 6∈ W and y 6∈ V. Because if x ∈ W or y ∈ V , then
by Proposition 2.2(xi), x	x = 0 or y	 y = 0 and so 0 ∈ U , which is a contrudiction.
Therefore, (E, T ) is a T1-space. �

Example 3.2. Let E = [0, 1] be topological effect algebra as Example 2.1(i). For
any x ∈ E \ {0} and x < 1, we consider δ = min{x− 0, 1− x}. Then x ∈ Nδ(x) and
0 /∈ Nδ(x). Hence by Proposition 3.5 (E, T ) is a T1 space.

Theorem 3.6. Let (E, T ) be a semitopological effect algebra and ′ be a continuous
map. Then, (E, T ) is a T1-space if and only if for any x 6= 1 there are open neigh-
borhoods U and V of x and 1, respectively, such that 1 6∈ U and x 6∈ V.

Proof. If (E, T ) is a T1-space, then the proof is clear. Conversely, let for any x 6= 1,
there are open neighborhoods U and V of x and 1, respectively, such that 1 6∈ U and
x 6∈ V. We show that (E, T ) is a T1-space. Let x, y ∈ E and x 6= y. Hence x⊕ y′ 6= 1

(if x⊕ y′
= 1, by (E3) y

′
= x

′
and so x

′′
= y

′′
and by Proposition 2.2(i) x = y, which

is contradiction). Let U be an open neighborhood of x ⊕ y′
such that 1 6∈ U. Since

(E, T ) is a semitopological effect algebra, there are two open neighborhoods V and
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W of x and y
′
, respectively, such that V ⊕ y′ ⊆ U and x ⊕W ⊆ U. We claim that

x 6∈W ′
and y 6∈ V. If x ∈W ′

or y ∈ V , then by (E3), 1 ∈ U, which is a contradiction.

Moreover it is easily check that the map ′ : E −→ E is homomorphism. Hence, W
′

is
an open set and so (E, T ) is a T1-space. �

Theorem 3.7. Let (E, T ) be a topological effect algebra. Then (E, T ) is a T0-space
if and only if (E, T ) is a T1-space.

Proof. Let (E, T ) be a T0-space and x 6= y for x, y ∈ E. Then x	y or y	x is defined.
W.O.L.G, suppose x	 y is defined and x	 y 6= 0. Since E is a T0-space, there exists
an open set U such that 0 ∈ U and x 	 y 6∈ U or 0 6∈ U and x 	 y ∈ U. First, we
suppose 0 ∈ U and x	 y 6∈ U. Since (E, T ) is a topological effect algebra, there exist
open neighborhoods W and V of x and y, respectively, such that V 	 y ⊆ U and
x 	W ⊆ U . We claim that x 6∈ V and y 6∈ W. If x ∈ V or y ∈ W , then x 	 y ∈ U,
which is a contradiction.

Now, suppose 0 6∈ U and x 	 y ∈ U . Since 	 is continuous, there exist open
neighbourhoods V andW of x and y, respectively, such that V 	y ⊆ U and x	W ⊆ U .
We claim that y 6∈ V and x 6∈ W . If y ∈ V or x ∈ W, then by Proposition 2.2(xi),
y 	 y = x	 x = 0 ∈ U , which is a contradiction. The proof of convers, ia clear. �

Theorem 3.8. Let (E, T ) be a topological effect algebra. Then (E, T ) is a T2-space
if and only if (E, T ) is a T0-space.

Proof. Let (E, T ) be a T0-space. Since E is a topological effect algebra, by Theorem
3.7, (E, T ) is a T1-space. Let x 6= y, for x, y ∈ E. Then, x 	 y or y 	 x is defined
and x 	 y 6= 0 or y 	 x 6= 0. W.O.L.G, suppose x 	 y 6= 0. Since (E, T ) is a T1-
space, there exists an open set U such that x 	 y ∈ U and 0 6∈ U . By continuity
of operation 	, there exist open sets W and V of x and y, respectively, such that
W 	 V ⊆ U. We claim that W ∩ V = ∅. If z ∈ W ∩ V , then by Proposition 2.2(xi),
0 = z 	 z ∈ W 	 V ⊆ U, which is a contradiction. Hence, (E, T ) is a T2-space. The
converse is clear. �

Theorem 3.9. Let (E, T ) be a topological effect algebra. Then {0} is closed in E if
and only if E is Hausdorff space.

Proof. Assume that {0} is closed in E and x, y ∈ E with x 6= y. Then x 	 y or
y 	 x is defined. W.L.O.G, suppose x	 y is defined and x	 y 6= 0. Since E \ {0} is
open and operation 	 is continuous, there exist neighborhood U and V of x and y,
respectively such that U 	 V ⊆ E \ {0}. We claim U ∩ V = ∅. If z ∈ U ∩ V then,
0 = z 	 z ∈ U 	 V ⊆ E \ {0}, which is contradiction. Therefore (E, T ) is Hausdorff.
Conversely, let (E, T ) be Hausdorff. We claim that E \ {0} is open. If x ∈ E \ {0},
then x 6= 0 and so there exist distinct neighborhoods U and V of x and 0, respectively.
Hence 0 6∈ U and so U ⊆ E \ {0}, which implies that E \ {0} is open. Therefore, {0}
is closed. �

Corollary 3.10. Let (E, T ) be a topological effect algebra. Then {0} is closed in E
if and only if E is a T0(T1)-space.

Proof. By Theorems 3.7, 3.8 and 3.9, the proof is clear. �

Proposition 3.11. Let {0} be a closed set in topological effect algebra (E, T ) and
N0 be a fundamental system of open neighborhoods of 0. Then

⋂
N0 = {0}.
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Proof. Let {0} be a closed set. By Theorem 3.9, (E, T ) is a Hausdorff space. Since
(E, T ) is a Hausdorff space, for 0 6= x ∈ E, there exists an open neighborhood U of 0
such that x 6∈ U . Hence x 6∈

⋂
N0. �

Proposition 3.12. Let I be an ideal of topological effect algebra E. If 0 is an interior
point of I, then I is open.

Proof. Let x ∈ I. Since x 	 x = 0 ∈ I and 0 is an interior point of I, there exists a
neighborhood U of 0 such that U ⊆ I. By continuity of 	, there exist neighborhoods
U and H of x such that G 	 H ⊆ U ⊆ I. On the other hand, for every y ∈ G,
y 	 x ∈ G 	 H ⊆ I. Now, since I is an ideal and x ∈ I, we get y ∈ I and so
x ∈ G ⊆ I. Hence I is open. �

Theorem 3.13. Let E be an effect algebra and Λ = {Ii}∞i=1 be a family of ideals in
E such that for any i, j ∈ N

i ≤ j ⇔ Ij ⊆ Ii
Now, let:

TΛ = {U ⊆ E : ∀x ∈ U,∃Ij ∈ Λ s.t. x⊕ Ij ⊆ U}
Then TΛ is a topology on E. Moreover if ∩Λ = {0}, then (E, TΛ) is Hausdorff space.

Proof. It is clear that TΛ is a topology on E. Now, let ∩Λ = {0} and x, y ∈ E such
that x 6= y. Then x 	 y 6= {0} and so x 	 y /∈ ∩Λ. Hence there exists Ii ∈ Λ such
that x 	 y /∈ Ii. On the other hand x ∈ x ⊕ Ii and y ∈ y ⊕ Ii. We claim that
(x ⊕ Ii) ∩ (y ⊕ Ii) = ∅. Let z ∈ x ⊕ Ii and z ∈ y ⊕ Ii. Hence there exist t1, t2 ∈ Ii
such that z = x⊕ t1 and z = y ⊕ t2. Then x⊕ t1 = y ⊕ t2 and so x	 y ∈ Ii which, is
a contradiction. Therefore, (E, TΛ) is a Hausdorff space. �

Recall that a topological space (X, T ) is an Uryshon space if for each x 6= y ∈ X,
there exist two open neighborhoods U and V of x and y, respectively, such that
U ∩ V = ∅. An Uryshon space is also known as a T5/2 space.

Proposition 3.14. Let (E, T ) be a topological effect algebra. Then (E, T ) is an
Uryshon space if and only if for each x 6= 0, there exist two open neighborhoods U and
V of x and 0, respectively, such that U ∩ V = ∅.

Proof. If (E, T ) is an Uryshon space, then the proof is clear. Conversely, let for each
x 6= 0, there exist two open neighborhoods U and V of x and 0, respectively, such that
U ∩ V = ∅. Let x 6= y, then x	 y or y 	 x is defined. W.O.L.G, let x	 y is defined,
x 	 y 6= 0 and U and V be two open neighborhoods of x 	 y and 0, respectively,
such that U ∩ V = ∅. Since (E, T ) is a topological effect algebra, by Theorem 2.4,
	 is continuous and so there are two open neighborhoods W1 and W2 of x and y,
respectively, such that W1 	W2 ⊆ U. We prove that W 1 and W 2 are disjoint. Let
z ∈W 1 ∩W 2. Since the operation 	 is continuous, we get

	(W1,W2) ⊆ 	(W1,W2)

Hence, 0 ∈W1	W2 ⊆W1 	W2 ⊆ U, which is a contradiction. Therefore, (E, TΛ) is
an Uryshon space. �

Example 3.3. E = [0, 1] be effect algebra as Example 2.1. We claim that (E, T ) is
an Uryshon space. Let x = a and a 6= 1. Then U = (a− ε, a+ ε) and V = [0, a− 2ε)
are two open neighborhoods of a and 0, respectively, such that U ∩ V = ∅. Now, let
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x = 1. Then W = [0, 1/4) and K = (1/2, 1] are two open neighborhoods of 0 and
1, respectively, such that W ∩ K = ∅. Therefore, by Proposition 3.14, (E, T ) is an
Uryshon space.

Theorem 3.15. Let effect algebra E has a proper ideal I. Then:
(i) (E, T ) is a T3-space if and only if for each x ∈ U ∈ T , the set I ⊕ x is a closed
set,

(ii) (E, T ) is a T4-space if and only if for each closed set S, the set
⋃
x∈S

I ⊕ x is a

closed set.

Proof. (i) Let (E, T ) be a T3-space and x ∈ U ∈ T . Since I ⊕ x is an open neighbor-
hood of x, by Proposition 2.1(i), there exists an open set H such that x ∈ H ⊆ H ⊆
I⊕x. As x ∈ H and H is an open set, I⊕x contained in H. Hence, I⊕x = H, which
implies that I ⊕ x is closed. Conversely, let x ∈ U ∈ T . Since I ⊕ x is a closed set,
x ∈ I ⊕ x = I ⊕ x ⊆ U. By Proposition 2.1(i), (E, T ) is a T3-space.

(ii) Let (E, T ) be a T4- space and S be a closed set in E. Since
⋃
x∈S

I ⊕ x is an

open set contains S, by Proposition 2.1(ii), there exists an open set H such that

S ⊆ H ⊆ H ⊆
⋃
x∈S

I ⊕ x. As S ⊆ H, and H is an open set, the set
⋃
x∈S

I ⊕ x is

contained in H. Hence,
⋃
x∈S

I ⊕ x = H. Conversely, let S be a closed set in E and

U be an open set contains S. Then,
⋃
x∈S

I ⊕ x is a closed and open set such that

S ⊆
⋃
x∈S

I ⊕ x =
⋃
x∈S

I ⊕ x ⊆ U. Therefore, (E, T ) is a T4-space. �

4. Compact Hausdorff effect algebras

In this section, we study the locally compact (para)topological Hausdorff effect
algebras. We are going to get some conditions under which a (para)topological effect
algebra becomes a T4-spaces. Also we bring some conditions that imply an effect
algebra becomes a paratopological effect algebra. Recall that, a topological space X
is called a locally compact space if for every x ∈ X, there exists a neighbourhood U
of the point x such that U is a compact subspace of X. Since the compact space U
is a T1-space, the set {x} is closed in U and this implies {x} is closed in X, i.e., that
every locally compact space is a T1-space.

Proposition 4.1. Let (E, T ) be a locally compact paratopological Hausdorff effect
algebra and C be a compact subset of open set U. If for any a ∈ E, Ta is an open
map, then there exists an open neighborhood V of 0 such that C ⊕ V is compact and
contained in U.

Proof. Let U ∈ T and C be a compact subset of U. Suppose that x ∈ C. Since ⊕ is
continuous, there are two open neighborhoods Vx and Wx of 0 such that x⊕ Vx ⊆ U
and Wx ⊕ Wx ⊆ Vx. As for any a ∈ A, Ta is an open map, {x ⊕ Wx, x ∈ C} is
an open cover of C. Since C is compact, this cover have a finite subcover such that
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{xi ⊕Wxi
: xi ∈ C, i = 1, 2, ..., n}. Put W =

n⋂
i=1

Wxi
, then we have

C⊕W ⊆ C⊕Wxi
⊆ (

n⋃
i=1

(xi⊕Wxi
))⊕Wxi

⊆
n⋃
i=1

(xi⊕Wxi
)⊕Wxi

⊆
n⋃
i=1

xi⊕Vxi
⊆ U.

Since (E, T ) is a locally compact space, there exists an open set V by closure compact
containing 0 such that V ⊆W. Because of continuity ⊕, the mapping Ta is continuous.
Therefore, C ⊕ V is a compact subset of E. As (E, T ) is a Hausdorff space, C ⊕ V is

a closed subset of E. Then, C ⊕ V ⊆ C ⊕ V = C ⊕ V . On the other hand

C ⊕ V =
⋃
x∈C

Tx(V ) ⊆
⋃
x∈C

Tx(V ) = C ⊕ V .

Hence, C ⊕ V is a compact subset contained in U. �

Theorem 4.2. Let (E, T ) be a locally compact Hausdorff paratopological effect algebra
and for any a ∈ E, Ta be an open map. Then, (E, T ) is a T4-space.

Proof. Let F be a closed set and V ∈ T containing F. By Proposition 4.1, there exists
an open neighborhood U of 0 such that F ⊆ U ⊕ F ⊆ U ⊕ F ⊆ V. By Proposition,
2.1 it is clear that (E, T ) is a T4-space. �

Proposition 4.3. Let (E, T ) be a semitopological effect algebra and locally compact
Hausdorff space such that for each b ∈ E, Tb is an open map and the operation ⊕ is
continuous at (0, b). Then, for any x, y ∈ E, there exist open neighborhoods U and V
of x and y, respectively, such that U ⊕ V is compact.

Proof. Let x, y ∈ E. Since E is a locally compact Hausdorff space, there exists
open neighborhood W of y such that W is compact. As by Proposition 2.2(iv),
0 ⊕ y = y ∈ W, there exist open neighborhoods U0 and V of 0 and y, respectively,
such that U0 ⊕ V ⊆W. Put U = x⊕ U0. Then x ∈ U ∈ T and so by (E2),

U ⊕ V = (x⊕ U0)⊕ V = x⊕ (U0 ⊕ V ) ⊆ x⊕W.

Since x⊕W is compact, then x⊕W ⊆ x⊕W = x⊕W. On the other hand

x⊕W = Tx(W ) ⊆ Tx(W ) = x⊕W.

Then x⊕W = x⊕W. Therefore, U ⊕ V is compact. �

Theorem 4.4. Let E be an effect algebra and T be a topology on E and
(i) for any x, y ∈ E, there are two open sets U and V of x and y, respectively, such
that U ⊕ V is compact,
(ii) for any x, y ∈ E and any open set W of x⊕ y, if z ∈ E \W, there exist open sets
U and V of x and y, respectively, such that z 6∈ U ⊕ V .
Then (E, T ) is a paratopological effect algebra.

Proof. Let x, y ∈ E and W be an open neighbourhood of x⊕y. By (i) we can consider
open sets Ux and Vy in E such that x ∈ Ux, y ∈ Vy and Ux ⊕ Vy is compact. Let Bx
be the family of all open neighbourhoods of x contained in Ux and By be the family
of all open neighbourhoods of y contained in Vy. For subsets U ∈ Bx and V ∈ By
of E, we put FU,V = (E \W ) ∩ U ⊕ V . Clearly, FU,V is closed. Now, suppose that
η = {FU,V : U ∈ Bx, V ∈ By}. Obviously, each P ∈ η is compact. We show that
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at least one element of η is empty. Assume that all elements of η are non-empty.
Since the elements of η are closed compact sets, by finite intersection property, there
is z ∈ ∩η. On the other hand, by (ii) there are U ∈ Bx and V ∈ By such that

z 6∈ U ⊕ V . Then z 6∈ FU,V ∈ η, which is a contradiction. Hence, for some FU,V ∈ η,
U ⊕ V ⊆W . �

Lemma 4.5. [1] Let X and Y be two locally compact Hausdorff spaces, f be a sep-
arately continuous mapping of X × Y to a regular space Z and (x, y) ∈ X × Y. Let
W be an open set of f(x, y) and U be an open set of x. Then there exist non-empty
open sets U1 in X and V in Y such that U1 ⊆ U, y ∈ V and f(U1 × V ) ⊆W.

Theorem 4.6. Let (E, T ) be a locally compact T3-space. If for any a ∈ E, Ta is an
open map and ⊕ is continuous at (0, a), then (E, T ) is a paratopological effect algebra.

Proof. First, we prove that (E, T ) is a semitopological effect algebra. Let x ⊕ y ∈
U ∈ T . Since ⊕ is continuous at (0, x ⊕ y), there is an open neighborhood V of 0
such that V ⊕ x ⊕ y ⊆ U. Assuming W = V ⊕ x is an open neighborhood of x and
W ⊕y ⊆ U. This shows that E is a semitopological effect algebra. Now, we prove that
(E, T ) satisfies in conditions (i) and (ii) of Theorem 4.4. By Proposition 4.3, (E, T )
satisfies condition (i). Let x⊕ y ∈W ∈ T and z ∈ E�W. Since E is locally compact,
we can assume that z 6∈W. As 0⊕ z = z ∈ E�W and ⊕ is continuous at (0, z), there
is an open neighborhood G of 0 such that (G ⊕ z) ∩W = ∅. Since G ⊕ x is an open
neighborhood of x, Then,by Lemma 4.6, there are two non-empty open sets U0 and
V such that y ∈ V, U0 ⊆ G⊕ x and U0 ⊕ V ⊆W. Since, ∅ 6= U0 ⊆ G⊕ x, there exists
g ∈ G such that g ⊕ x ∈ U0. By continuity Ta, there exists U ∈ T containing 0 such
that g ⊕ U ⊆ U0. Hence (g ⊕ U)⊕ V ⊆ U0 ⊕ V ⊆W and so

g ⊕ (U ⊕ V ) = Tg(U ⊕ V ) ⊆ g ⊕ (U ⊕ V ) ⊆W.

We claim that z 6∈ U ⊕ V . Let z ∈ U ⊕ V , then g ⊕ z ∈ g ⊕ (U ⊕ V ) implies that
g ⊕ z ∈W ∩ (G⊕ z), which is a contradiction. Hence (ii) holds. Therefore, (E, T ) is
a paratopological effect algebra. �

5. Separation axioms on quotient effect algebras

In this section, we first introduce the concept of topological quotient effect algebra
by ideals of an effect algebra. Then, we study the relationship between separation
axioms and topological quotient effect algebras. We are going to get some conditions
under which a quotient topological effect algebra becomes a T1-space or Hausdorff or
regular.

Let E be an effect algebra, I be an ideal of E and E/I = {[x] : x ∈ E}, where
[x] = {y : x ∼I y}. If I is Riesz ideal of E, then E/I is an effect algebra which is
called a quotient effect algebra and map πI : E → E/I is defined by x 7→ [x]. Let
(E, T ) be a topological effect algebra, then

T̃ = {U ⊆ E/I : π−1
I (U) ∈ T }

is a topology on E/I. In the other words, subset U of E/I is open if and only if
π−1
I (U) is an open subset of E (See, [9]).
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Proposition 5.1. Let I be an ideal of effect algebra E. Then for any F ⊆ E,

(π−1
I ◦ πI)(F ) =

⋃
x∈F

[x]

Proof. Let F ⊆ E and z ∈ (π−1
I ◦ πI)(F ). Then, there exists x ∈ F such that

πI(z) = πI(x). Since πI(x) = [x], thus πI(z) = [x] and this means that z ∈ [x].

Hence (π−1
I ◦ πI)(F ) ⊆

⋃
x∈F

[x].

Conversely, let z ∈
⋃
x∈F

[x]. Then there exists x0 ∈ F such that z ∈ [x0] and so

πI(z) = πI(x). Thus z ∈ (π−1
I ◦ πI)(F ) and so (π−1

I ◦ πI)(F ) =
⋃
x∈F

[x]. �

Proposition 5.2. Let I be a Riesz ideal of effect algebra E. Then
for any x, y ∈ E, [x⊕ y] = [x]⊕̃[y] and [x]

′
= [x

′
].

Proof. Let I be a Riesz ideal of E and x, y ∈ E. If z ∈ [x⊕ y], then z ∼I x⊕ y. Since
I is a Riesz ideal, there exist z1, z2 ∈ E such that z = z1 ⊕ z2 and z1 ∼I x, z2 ∼I y.
Hence z1 ∈ [x], z2 ∈ [y] and z1⊕z2 ∈ [x]⊕̃[y]. Thus z ∈ [x]⊕̃[y] and so [x⊕y] ⊆ [x]⊕̃[y].

Similarly, we have [x]⊕̃[y] ⊆ [x⊕y] and so proof is completed. Now let a ∈ [x
′
]. Then

a ∼I x
′

and so a
′ ∼I x. Hence a

′ ∈ [x] and so a ∈ [x]
′

and this implies that [x
′
] ⊆ [x]

′
.

By vice versa relations above, we have [x]
′ ⊆ [x

′
]. Then [x]

′
= [x

′
].

�

Definition 5.1. [7] An equivalence relation ∼ on E is called open if for any open set
U ⊆ E, [U ] = {y : y ∼ u, u ∈ U} is open set in E, too.

Lemma 5.3. Let E be an effect algebra and I be an ideal of E. Then ∼I is an open
relation.

Proof. Let U ⊆ E be an open set. Then

[U ] = {y : y ∼I u;u ∈ U} = {y : ∃i, j ∈ I; y	i = u	j} = {y : y = (u	j)⊕i} = (U	j)⊕i
Since operations 	 and ⊕ are continuous, (U 	 j) and (U 	 j)⊕ i are open and this
means that [U ] is open in E. Hence ∼I is an open relation. �

Lemma 5.4. Let I be a Riesz ideal of effect algebra E and x, y ∈ E. If [x]I ≤ [y]I ,
then for any b ∈ [y]I , there exists a ∈ [x]I such that a ≤ b.

Proof. Let I be a Riesz ideal of E and [x]I ≤ [y]I . Then there exists [z]I ∈ E/I such
that [x]I⊕̃[z]I = [y]I or [x⊕ z]I = [y]I . Now let b ∈ [y]I . Then b ∈ [x⊕ z]I and this
means that b ∼I x ⊕ z. By (C5), there exist b1, b2 ∈ E such that b = b1 ⊕ b2 and
b1 ∼I x, b2 ∼I z. Hence b1 ∈ [x]I and b1 ≤ b. We consider b1 = a and the proof is
completed. �

Lemma 5.5. [7] Let X be a topological space and ∼ is an equivalence relation on X.
Then the map π : X → X/ ∼ is open if and only if for any open set U ⊆ X, [U ] is
open.

Theorem 5.6. Let (E, T ) be a topological effect algebra, I be a Riesz ideal of E and
x, y ∈ E. Then
(i) If x ≤ y, then [x] ≤ [y], for any x, y ∈ E.

(ii) (E/I, T̃ ) is a topological effect algebra.
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Proof. (i) Let x ≤ y for x, y ∈ E. Then there exists, z ∈ E such that x ⊕ z = y.
Hence [x⊕ z] = [y]. Since I is a Riesz ideal, [x]⊕̃[z] = [y] and so [x] ≤ [y].
(ii) Suppose that ⊕̃ : E/I × E/I → E/I is defined by ([x], [y]) 7→ [x]⊕̃[y] and

′̃ : E/I → E/I is defined by [x]→ [x
′
]. It is enough to show ⊕̃ and ′̃ are continuous.

Let U be an open set in E/I. Then π−1(U) is open in E, thus there is an open
set V ⊆ E such that V ⊕ V ⊆ π−1(U). Hence (π × π)(V × V ) = π(V ) × π(V ) is
open in E/I × E/I and this means that ⊕̃(π(V ) × π(V )) = π ◦ (⊕(V × V )) ⊆ U .
We have shown that there exist an open set π(V ) × π(V ) ⊆ E/I × E/I such that
⊕̃(π(V ) × π(V )) ⊆ U ⊆ E/I and this means that ⊕̃ is continuous. Now, we show

that ′̃ : E/I → E/I which is defined by [x] → [x
′
] is continuous. Let U be an open

set in E/I. Then π−1(U) is open in E. Hence (′)−1(π−1(U)) is an open set in E
and so π((′)−1(π−1(U))) is open in E/I. On the other hand, (̃′)−1 = π ◦ (′)−1 ◦ π−1.

Thus (̃′)−1(U) is an open relation. Therefore ′̃, is continuous and so (E/I, T̃ ) is a
topological effect algebra. �

Recall that, a net in a topological space X is an arbitrary function from a non-
empty directed set to the space X. Nets will be denoted by the symbol S = {xσ :
σ ∈ Σ}, where xσ is the point of X assigned to the element σ of the directed set Σ.
A point x is called a limit of a net S = {xσ : σ ∈ Σ} if for every neighbourhood U of
x there exists σ0 ∈ Σ such that xσ ∈ U for every σ ≥ σ0. In this case, we say then
the net S is converges to x.(See, [7])

Proposition 5.7. Let I be a Riesz ideal of effect algebra E. If πI(0) be an open
subset of E/I, then πI is closed.

Proof. Let K ⊆ E and [y] ∈ πI(K). Then there exists a net {xσ}σ∈Σ such that {[xσ] :
σ ∈ Σ} converges to [y]. Since (E, T ) is an effect algebra, the net {[y 	 xσ] : σ ∈ Σ}
or [xσ 	 y] : σ ∈ Σ} is defined and by Theorem 5.6, it converges to [0]. W.O.L.G,
suppose [y 	 xσ]σ∈Σ converges to [0]. Because πI(0) is closed subset of E/I, there
exists σ ∈ Σ such that [y 	 xσ] ∈ πI(0) and [y 	 xσ]I = [0]. Hence [xσ] = [y] and so

[y] ∈ πI(K). Thus πI(K) ⊆ πI(K) ⊆ πI(K). Therefore, πI is closed. �

Proposition 5.8. Let E be a topological effect algebra and I be an ideal of E. Then
I is open on E if and only if (E/I, T̃ ) is discrete.

Proof. Let I be an open set on E. Then for any x ∈ E, [x] is an open set on E. On
the other hand for any U ∈ T , π−1

I ◦ πI(U) = ∪x∈U [x] is an open set on E/I. Hence

for any x ∈ E, πI(x) = [x] is an open set on E/I and this means that (E/I, T̃ ) is
discrete. The proof of converse is clear. �

Proposition 5.9. Let (E, T ) be a topological effect algebra and I be an ideal of E.

Then I is closed in E if and only if (E/I, T̃ ) is T1-space.

Proof. Let I be a closed subset of E. Then for any x ∈ E, π−1
I ◦ πI(x) is a closed

subset of I. Hence πI(x) = {[x]} is closed in E/I and this means that (E/I, T̃ ) is T1-

space. Conversely, let (E/I, T̃ ) be a T1-space. Then π−1
I ([I]) = I is closed in E. �

Corollary 5.10. Let (E, T ) be an effect algebra and I be an ideal of E. If I is an

open neighborhood of 0, then (E/I, T̃ ) is a T1-space.
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Proof. Let x ∈ Ī and {xσ : σ ∈ Σ} be a net in I that converges to x. Since (E, T )
is a topological effect algebra, hence {x 	 xσ : σ ∈ Σ} converges to 0. On the other
hand, I is an open neighborhood of 0. Then there exist σ ∈ Σ such that x	 xσ ∈ I.
Since I is an ideal and xσ ∈ I, thus x ∈ I. Therefore, I is closed and by Proposition
5.9, (E/I, T̃ ) is a T1-space. �

Theorem 5.11. Let (E, T ) be a topological effect algebra and I be a Riesz ideal of

E. Then (E/I, T̃ ) is a Hausdorff topological effect algebra if and only if I is closed
in E.

Proof. Let E/I be Hausdorff. Then {I} ⊆ E/I is closed. On the other hand π is
continuous and so I = π−1({I}) is closed. Conversely, let I be closed (See, [16]). Since
∼I is an open relation, it is enough to prove that M = {(x, y) : x ∼I y} ⊆ E × E is
closed. Because I is an ideal of E, thus

M = {(x, y) : x ∼I y} = {(x, y) : x	 k, y 	 k ∈ I for some k ∈ E}

= {(x, y) : x ∈ k ⊕ I, y ∈ k ⊕ I for some k ∈ E}

= {(k ⊕ I, k ⊕ I) : k ∈ E}

= (k ⊕ I)× (k ⊕ I)

Then I, k⊕ I and cartesian product (k⊕ I)× (k⊕ I) are closed and this means that
M is closed. �

Theorem 5.12. Let I be an ideal of effect algebra E. If I is an open neighborhood
of 0 and T̃ is closed under finite intersection, then (E/I, T̃ ) is regular and T1-space.

Proof. By Theorem 5.6(i) and Proposition 5.9, (E/I, T̃ ) is a topological effect algebra
and a T1-space. Let S be a closed subset of E/I and [x]I /∈ S. If [y]I ∈ S, then

[x]I 	 [y]I 6= [0]I or [y]I 	 [x]I 6= [0]I . Let [x]I 	 [y]I 6= [0]I . Since (E/I, T̃ ) is a

T1-space, there exists U ∈ T̃ such that [0]I /∈ U and [x]I 	 [y]I ∈ U . On the other

hand, (E/I, T̃ ) is a topological space and so 	 is continuous. Hence there exist Vy
and Wy ∈ T̃ such that Vy 	 Wy ⊆ U , [x]I ∈ Vy and [y]I ∈ Wy. We claim that
Vy ∩Wy = ∅. If Vy ∩Wy 6= ∅, there exist [z]I ∈ Vy ∩Wy, such that

[0]I = [z]I 	 [z]I ∈ Vy 	Wy ⊆ U

which is a contradiction. If V =
⋂

[y]I∈S Vy and W =
⋃

[y]I∈SWy, then [x]I ∈ V ∈
T̃ , S ⊆W ∈ T̃ and V ∩W = ∅. Therefore, (E/I, T̃ ) is a regular space. �

6. Conclusion

In this paper, separation axioms on topological effect algebras were investigated and
the conditions that is a Ti-space, were obtained. Also, these conditions were perused
in the case of locally compact (para)topological Hausdorff effect algebra. Finally,
quotient topological effect algebras were introduced and existence of separation axioms
was expressed and proved. Next researches can study many of other concepts of
topology on effect algebras.
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