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The two barriers ruin problem via a Wiener Hopf
decomposition approach
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Abstract. Consider an insurance company whose capital U evolves as a risk processes with
phase–type inter-arrivals and claims. In this note we study the probability and severity of ruin
before the capital U reaches an upper barrier K > 0. The main tools we use are Asmussen
and Kella’s embedding [5, 6] and Wiener-Hopf factorization of generator matrices.
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1. Introduction

Consider an insurance company whose capital is modeled by a positive drift added
to a pure jump process with negative jumps. The drift, say p, models the premium
income stream and the jumps stand for the claims the company receives. One is
interested in the time and severity of ruin. The transform analytic approach to this
problems, going back to Cramèr [12] and Sparre Andersen [1], consists in formulating
integro-differential equations or renewal equations for the functions of interest and
solving them via a double Laplace - Stieltjes transform (to be inverted numerically).

For example, if the jump process is a compound Poisson process with arrival rate
λ and density of the jump-distribution b(z), the single Laplace transform in time
Ψ(u) = Eu[e−δτ ] of the time of ruin τ satisfies the integro-differential equation

pΨ′(u) + λ

(∫ ∞

0

Ψ(u− z)b(z)dz −Ψ(u)
)
− δΨ(u) = 0 u > 0.

In general, solving integro-differential equations would require a second Laplace
transform in u (compounding therefore the numerical errors of inverting). At the
minor expense however of assuming phase–type distributions, it was noticed by As-
mussen [5] that it is possible to embed the non-Markovian renewal model into a
piecewise deterministic Markov modulated model with a finite order Markovian en-
vironment (also called fluid model), which, as explained below, replaces the integro-
differential equation by a first order differential system. In the case the parameters
are constant, this system is solvable explicitly via matrix spectral or Wiener-Hopf
decompositions, removing the need for the second Laplace transform in u. In this
note we illustrate this fluid embedding/ODE approach by stating (Section 2) and
solving (Section 3) the two barrier ruin problem with phase type distributions for the
interarrival times and the jumps. To our knowledge the obtained result is new in
the literature (see though Proposition 1.6, Chapter XI in [5] for the more restrictive
perpetual skipfree case).
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2. Model and problem

Before introducing the model for the reserves process U , we first review some
properties of phase type distributions.

2.1. Phase-type distributions. A distribution F on (0,∞) is phase-type if it is
the distribution of the absorbtion time ζ in a finite continuous time Markov process
J = {Jt}t≥0 with one state ∆ absorbing and the remaining ones 1, . . . , m transient.
That is, F (t) = P(ζ ≤ t) where ζ = inf{s > 0 : Js = ∆}. The parameters are m, the
restriction of T of the full intensity matrix to the m transient states and the initial
probability (row) vector α = (α1 . . . αm) where αi = P(J0 = i). For any i = 1, . . . ,m,
let ti be the intensity of a transition i → ∆ and write t = (t1 . . . tm)′ for the (column)
vector of such intensities. Further, let 1m denote a m × 1 column vector of ones. It
follows that the cumulative distribution function F is given by F (x) = 1−αeT x1m.

Phase-type distributions include and generalize exponential distributions in series
and/or parallel and form a dense class in the set of all distributions on (0,∞). Much of
the applicability of the class comes from the probabilistic interpretation, in particular
the fact that that the overshoot distributions F (x + y)/(1− F (x)) belong to a finite
vector space (in fact, the overshoot distribution is again phase–type with the same
m and T but αi replaced by P(Jx = i|ζ > x)). This provides matrix analogues of
many formulas for the exponential distribution (m = 1) based upon the memoryless
property. See for example [4, 5] for surveys on phase type distributions.

2.2. Renewal risk model. We model the reserves process U of an insurance com-
pany by a process of the form

Ut = u−
Nt∑

k=1

Zk + p t (1)

where u > 0 is the intial capital, p > 0 is the premium rate, the claims Z1, Z2, . . .
are i.i.d. random variables with common distribution B(z) and Nt is an independent
renewal process with inter-arrival distribution A(z) and mean inter-arrival time de-
noted by λ−1, and the distributions A(z), B(z) are concentrated on (0,∞) and of
phase-type (m,α, A), and (n,β, B), respectively.

From now on we will assume that p = 1. Results for the original case with p 6= 1
can then be obtained by replacing (u, A) by p−1(u, A).

For the process U we will solve the ruin problem with an upper barrier K. Let

τ(K) = inf{t > 0 : Ut /∈ [0,K)}
be the first time the reserves process U reaches the level K or downcrosses zero. The
problem we will solve is to find expressions for the time Laplace transform of the
probability that U reaches K before time t and before it has droped below zero

Ψ+
δ (u, K) = Eu[e−δτ(K);Uτ(K) = K] (2)

and viceversa

Ψ−δ (u,K) = Eu[e−δτ(K);Uτ(K) ≤ 0],

where we write Eu for the expectation conditioned on {U0 = u} and Eu[e−δτ ;A] to
denote Eu[e−δτ1A] with 1A the indicator of the event A. Below we will find as well
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the time Laplace transform of the joint probabilities of ruin with upper-barrier before
t and severity of ruin larger than y:

Ψ−δ (u,K, y) = Eu[e−δτ(K);Uτ(K) ≤ −y]. (3)

In the next section we will find explicit expressions for these quantities.

3. Solution

3.1. The semi-Markov embedding. We now replace the original model with
jumps U by an equivalent continuous Markov process (J, U ′). Denote by E+ and
E− the phases of the interarrival distribution A and of the downward jumps B. In-
formally, we can get the process (J, U ′) from U by levelling out the negative jumps
to sample path segments with slope −1, and setting J equal to the current phase of
the underlying Markov process of the interarrival time or jump (see Section 2.1).

To be more precise, in the Markov embedding (J, U ′), J is a finite state Markov
process with state space E = E+ ∪ E− and generator

G =
(

A a⊗ β
b⊗α B

)

Let p : E → {−1, 1} take the value ±1 on E±. Then the additive functional U ′ is
defined by

U ′
t = u +

∫ t

0

p(Js)ds.

In the literature (e.g. [14]) this model for (J, U ′) is called a fluid model. Setting
P ≡ diag(p(i)), we observe that the generator of (J, U ′) is given by

Gf + Pf ′

for functions f ∈ C1(RE). Note that in the vector f(u) the coordinate indicates the
state of J at time u.

3.2. The ODE system for the embedded process. Denote by τ ′ the first time
that U ′ exits [0,K). By sample path comparison we see that τ(K) = T (τ ′) where

T (t) =
∫ t

0

I(Js ∈ E+)ds

indicates the time up to time t that J has spent in an upcrossing phase. Let
M(u) denote the |E| × |E| matrix, which has as ijth element (i, j ∈ E) M(u)ij =
Ei,u[e−δT (τ ′); Jτ ′ = j], where Ei,u denotes expectation conditioned on U ′

0 = u and
J0 = i ∈ E. Without loss of generality we assume that the first |E+| rows and
columns of M(u) correspond to states in E+; we write M1(u) (M2(u)) for the
first |E+| (last |E−|) rows of M(u). Note that finding the matrix M1(u) yields
the probabilities (2)–(3). Indeed, breaking M1(u) = (Ψ+(u),Ψ−(u)) into the states
corresponding to E+ and E− respectively (corresponding to “upper barrier first”
and “ruin first” probabilities, respectively), we have Ψ+

δ (u,K) = αΨ+(u)1m and
Ψ−δ (u,K) = αΨ−(u)1n.

Let Iδ denote the |E| × |E| diagonal matrix with the ith element on the diagonal
given by δ if i ∈ E+ and 0 otherwise and write δij for the Kronecker delta (which is
1 if i = j, 0 else).
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Lemma 3.1. The matrix M(u) is the unique solution of the Feynman-Kac equation:

PM ′(u) + GM(u)− IδM(u) = O u ∈ (0, K) (4)

M(K)ij = δij for i ∈ E+, j ∈ E M(0)ij = δij for i ∈ E−, j ∈ E (5)

Proof. Let u 7→ F (u) be any |E| × |E| matrix with C1 components which solves (4)
and (5). Then, by Itô’s lemma, for each j ∈ E

exp(−δT (t))F (Ut)Jt,j is a martingale

which is bounded on [0, τ ′]. The optional stopping theorem then implies that

F (u)ij = Ei,u[e−δT (τ ′)F (U ′
τ ′)J ′τ ,j ].

Using the boundary conditions (5) and noting that Jτ ′ ∈ E+ if and only if U ′
τ ′ = K,

we deduce that F (u) = M(u) for u ∈ [0,K]. QED
Now we can rewrite (4) as the first order system

M ′(u) = KδM(u) with Kδ = −P−1(G− Iδ) (6)

for which we may obtain the matrix exponential solution in terms of the initial value
M(0)

M(u) = exp(Kδ u)M(0) (7)

We could proceed now to work with the matrix exponential solution in terms of the
initial values (7) using the spectral decomposition of the matrix Kδ but an alternative
approach more profitable here is to use the Wiener-Hopf factorization of Kδ.

3.3. Wiener-Hopf factorization. In a sequence of papers [11, 13, 16], Barlow,
London, Rogers, Williams and McKean investigated Wiener-Hopf factorization of
generator matrices. By their results applied to the matrix Kδ – see for example
Theorem 1 and formula (2.7(i)) in Rogers [16]– there exist |E±| × |E±|-generator
matrices Q± (nonnegative off-diagonal elements, non-positive row-sums) and |E∓| ×
|E±|-matrices η± such that

Kδ

(
I η−

η+ I

)
=

(
I η−

η+ I

)( −Q+ 0
0 Q−

)
(8)

and if G− Iδ is transient (which is certainly the case if δ > 0) the matrices Q± are
the unique generator matrices satifying (8).

Remarks. (i) If G−Iδ is transient, the matrices Q± are the generators of the time-
changed Markov processes J̃± where J̃±(t) = J(τ±t ) where τ±t = inf{s ≥ 0 : ±U ′

s > t}
is the time-change (note that J̃± takes values in E± since U ′ reaches a new supremum
(infimum) in an increasing (decreasing) state).

(ii) The matrices η± give the phase probabilities at the first return at the current
level. More precisely, they are the initial distribution of J̃±: η±(i, j) is the probability
that J̃±(0), conditioned on J0 = i ∈ E∓, is in state j ∈ E± at the first time that ±U ′

reaches a new supremum.
(iii) It is clear probabilistically that the generators Q± are given by

Q+ = A− δI + (a⊗ β)η+ Q− = B + (b⊗α)η− (9)

where a = −A1, b = −B1 (cf. Asmussen [3] or Rogers [16]). This also directly follows
from the foregoing. Indeed, write Φ−(u) for the columns of M2(u) corresponding to
E−. Then we note from (i) and (ii) that, with K = ∞, Ψ−(u) = η− exp(Q−u) and
Φ−(u) = exp(Q−u). Following the line of reasoning in the proof of Lemma 3.1 one
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shows that the columns of (Ψ−,Φ−)′ satisfy equation (4), which yields the equation
for Q− in (9) and the equation

η−Q− + (A− δI)η− + a⊗ β = O.

The matrices (η+, Q+) satisfy a similar equation and the first equation of (9). From
(iii) we see then that the matrix η− satisfies the Ricatti equation

η−B + η−(b⊗α)η− + (A− δI)η− + a⊗ β = O (10)

with a similar one for η+ (obtained from (10) by interchanging A− δI with with B
and b⊗α with a⊗β). In fact, Rogers [16] showed that with δ > 0, η− is the unique
sub-stochastic solutions of (10).

3.4. Solving the ODE-system. The Wiener-Hopf factorization (8) combined
with equation (7) yields then that

(
M1(u)
M2(u)

)
=

(
e−Q+ u η−eQ−u

η+e−Q+u eQ−u

) (
z1

z2

)
(11)

where z1, z2 satisfy:
(

I η−
η+ I

)(
z1

z2

)
=

(
M1(0)
M2(0)

)
.

Choosing now a new variable z′1 = exp(−Q+K) z1, we find from (5) the following
system for the boundary conditions

(
I Z−

Z+ I

)(
z′1
z2

)
=

(
M1(K)
M2(0)

)
, (12)

where Z± = η± exp(Q±K). Since η± are substochastic and Q± are negative definite,
we see that the matrices (I −Z+Z−) and (I −Z−Z+) are invertible. In particular,
we see that the inverse (I −Z−Z+)−1 can be expanded as a converging power series∑∞

k=0(Z−Z+)k and
(

I Z−
Z+ I

)−1

=
(

(I −Z−Z+)−1 −Z−(I −Z+Z−)−1

−Z+(I −Z−Z+)−1 (I −Z+Z−)−1

)
.

Substituting the boundary conditions (5) in (11) and (12), we find that

Ψ+(u) =
(
exp(Q+ (K − u))− η− exp(Q−u)Z+

) ∞∑

k=0

(Z−Z+)k. (13)

Analogously, we find

Ψ−(u) =
(
η− exp(Q− u)− exp(Q+(K − u))Z−

) ∞∑

k=0

(Z+ Z−)k (14)

Now we translate back the results for the fluid model (J, U ′) to our original model
(1) for U . Note that the initial phase distribution of the interarrival times is given by
the vector α. Thus, we have the following result expressing the probabilities Ψ±δ in
terms of the Wiener-Hopf factorization (η±, Q±) of the matrix Kδ given in (6).

Theorem 3.1. Under the model (1) the probabilities Ψ±δ are given by

Ψ+
δ (u,K) = αΨ+(u)1m Ψ−δ (u,K, y) = αΨ−(u) exp(By)1n

where Ψ± are given in (13) and (14) with Z± = η± exp(Q±K).
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Remarks. (i) For K → ∞ we see that Ψ+
δ (u,K) tends to zero (as Q± are

negative definite) and that Ψ−δ (u,K, y) tends to Ψ−δ (u,∞, y) given by

Eu[e−δτ ; Uτ ≤ −y] = αη− exp
(
(B + bαη−)u + By

)
1,

where τ = inf{t ≥ 0 : Ut < 0} is the time of ruin. This expression is well known in
the literature (e.g. [3], [9]).

(ii) In our model throughout, we assumed the discounting δ to be positive. Results
for δ = 0 can be obtained by approximation, that is, Ψ+

0 (u,K) is equal to the limit
as δ tends to zero of Ψ+

δ (u,K). The same holds for Ψ−0 (u,K, y).
(iii) The formulae can be probabilistically interpreted as follows. Multiplying out

the summations in (13) and (14) one can write Ψ+
δ and Ψ−δ as a series terms of which

the sign alternates. Using the probabilistic interpretation of the Wiener-Hopf factors,
one can give an inclusion-exclusion argument for the formulae. For example, for
Ψ+

δ (u,K), conditioned U0 = u, the first three terms are respectively the probability
that U crosses the level K, that U downcrosses 0 and then crosses K and that U
crosses K, then downcrosses 0 and finally upcrosses K again.

(iv) The approach followed here can be used to solve associated exit problems, as
for example the passage problem for U reflected at its infimum. Furthermore, upward
jumps or Erlangian killing (to approximate the finite time ruin probabilities as in [7])
can be incoporated. See the forthcoming paper [10].
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