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Stability analysis for a class of implicit fractional differential
equations with instantaneous impulses and Riemann—Liouville
boundary conditions
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ABSTRACT. In this article some conditions are established for the existence and uniqueness
regarding our proposed model, Implicit fractional differential equation with instantaneous
impulses and Riemann-Liouville fractional integral boundary condition in view of Schafer’s
fixed point theorem. The paper also discusses different types of Ulam’s stability, i.e. Ulam—
Hyers—stability, generalized Ulam—-Hyers—stability, Ulam—Hyers—Rassias stability and general-
ized Ulam—Hyers—Rassias stability for the proposed model. An example is given to illustrate
our main result.
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1. Introduction

Fractional differential equations are the generalization of integer order differential
equations. Fractional differential equations can describe many practical phenomena
in various fields of applied science and engineering such as economics, medicine, as-
trophysics, chemical engineering, statistical physics, optics etc. For detail study see
the monographs [1, 6, 7, 18, 21]. The aforementioned equations involving the Rie-
mannLiouville and Caputo fractional derivative have been paid more attention. They
were studied by many mathematicians from different aspects, using various techniques
[2, 3, 8,9, 19]. On the other hand, the theory of impulsive differential equations arises
normally from a wide assortment of utilization for example air ship control, inspec-
tion prepare in operations research, drug organization and trash hold hypothesis in
biology. The impulsive differential is an adequate apparatus for mathematical simula-
tion of numerous real processes and phenomena studied under the umbrella of theory
of optimal control, economics, physics, chemistry, biology, engineering, population
growth, medicine such as can be seen in [22]. Due to its significant applications, this
theory received great repute and remarkable attention from the researchers.

Wang et. al [23] studied the existence and uniqueness of solutions to a class of
nonlocal Cauchy problem of the form

‘Dgu(t) =g(tut), te[0,T] t#tm,
Au(t) = Ly (u(t), m=1,2,...,k, (1.1)
u(0) = up.

Received December 1, 2018. Accepted March 15, 2020.

88



STABILITY ANALYSIS FOR A CLASS OF IMPLICIT FRACTIONAL DIFF. EQ. 89

The notation CD]O”t is used for Caputo fractional derivative of order p € (0,1), the
function g : J x ® — R is continuous and ugy € R.

In many applications such as numerical analysis, mathematical biology, business
mathematics, economics etc, we come across the situation where finding the exact
solution is quite difficult task. In such a case Ulam—type stability concept is very
beneficial and effective. This concept has been introduced in the mid of 19" century
and now it is a well explored area for further research [12, 14, 15, 16, 17]. For recent
advances in the area we recommend [4, 5, 10, 11, 24, 25, 26].

In this article the existence, uniqueness and Ulam’s type stability are investi-
gated for the implicit fractional differential equation with instantaneous impulses
and Riemann-Liouville fractional integral boundary conditions having the following
form

Dy u(t) = y(t,u(t), DPu(t)), t#tmel, 0<B<I,
Au(ty) = In(u(ty)), m=1,2,...,q—1,

mu(0) + & 1%u(t) |i=o= v1,

nou(T) + fg[ﬁu(t) lt=r= va.

(1.2)

where CDg’t is a generalization of classical Caputo derivative of order § with lower
bound at 0, u : I xR xR — R is a continuous function and I = [0,T], Iy = [0,t1],[; =
(t1,t2], I = (tg—1,t,), Iq = (tg, T]. Furthermore, I,,, : ® — R is a nonlinear mapping
and u(t)) and u(t;}) represent the right-sided and left-sided limits respectively at
t=t, form=1,2,...,q—1.

2. Background materials and preliminaries

This section recalled some preliminaries which are used throughout this paper.

Definition 2.1. [18] The Caputo fractional derivative of order 5 € R, for a function
¢:[0,T] — R is defined as

(DO = oy | =" s, m= (41

(n—
where [] denotes the integer part of the real number .
Definition 2.2. [18] An arbitrary order fractional integral of a function ¢ € L'([0, 7], R, )
of order 8 € R is defined as

18,c(t) = 1“(16)/0 (t — 5)P~1¢(s)ds, >0,

where T is the Euler gamma function defined by I'(5) = fooo pP=le=Pdp.

Lemma 2.3. [18] For a non-negative value of 8, we have

D) =) - 3 Wy (g1,
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Lemma 2.4. [18] For 8 > 0, the Caputo fractional differential equation CDgtC(t) =0
has a solution of the following form
C(t) = ag + art + ast> + -+ ap_1t" 1,
where a; € R, i =0,1,...,n—1 and n =[] + 1.
Lemma 2.5. [18] For 3 > 0, we have
I5,°Dg (1)) = C(t) + ag + art + agt® + -+ + ap_1t" 7,
where a; € R, 1 =0,1,....,n—1 and n = [B] + 1.

Let I = [0,7] and C(I,R) be the space of all continuous functions from I to .
Let B = PC(I, %) represents the space of piecewise continuous functions. Obviously
B = PC(I,R) is a Banach space with the norm

|lull P = sup{u(?)[}-
tel

Now, we introducing the concept of Ulam type stabilities for the problem (1.2). Let
Re =1[0,400), € >0, p >0 and ¢p € PC(I,RT) be nondecreasing. we focus on the
following inequalities:

°Dg x(t) — f(t,z(t),° Dy a(t)| < e, t#tn,el, m=0,1,2,...,q,8¢€ (0,1],
{|Aw(tm)—lm(w(tm))| <e¢ m=12,...,q.
(2.1)
°Dg x(t) — f(t,2(t),° Dg,a(t)| < ¢(t), t#tmel, m=0,1,2,....q, B€(0,1],
{|Aw(tm) —In(w(tm)) <9, m=12,...,q.
(2.2)
and

|CDg,t'r(t) - f(t?x(t)7c Dg,tx(t)” S 6(,0(t)7 t 7é tm € I7 m = 07 1727 -y q, B S (07 1])
(2.3)

Definition 2.6. The problem (1.1) is said to be Hyers-Ulam stble on I if there exists a
real number Ng ,,, > 0 such that,for every ¢ > 0 and for every solution y € PC™(I,R)
of (2.1), there exists a solution xg € PC™(I,R) of (1.1) with

ly(t) — xo(t)| < Npme, tel.

Definition 2.7. The problem (1.1) is said to be generalized Hyers-Ulam stble on I if
there exists a function gg,, € C(RT,R") with gg,,(0) = 0 such that,for every € > 0
and for every solution y € PC™(I,R) of (2.1), there exists a solution o € PC™(I,R)
of (1.1) with

ly(t) = 2o(t)] < grm(e), tel.

Definition 2.8. The problem (1.1) is called Hyers—Ulam-Rassias stble on I with
respect to (6, p)if there exists Mg, 9 > 0 such that, for every ¢ > 0 and for every
solution y € PC™(I,R) of (2.3), there exists a solution zy € PC™(I,R) of (1.1) with

ly(t) — xo(t)| < Mpmee(0(t) +p), tel.
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Definition 2.9. The problem (1.1) is said to be generalized Hyers-Ulam-Rassias
stble on I with respect to (8, p) if there exists an Lg,, ¢ > 0 such that,for every € > 0
and for every solution y € PC™(I,R) of (2.2), there exists a solution z¢o € PC™(I,R)
of (1.1) with

ly(t) — 2o(t)| < Lem,e(0(t) + 1), tel.

Remark 2.10. A function w € B is a solution of the inequality (2.1), if there exists
a function w € B and w dependent sequence w,,, m = 1,2,...,k, such that

o |w(t)|<e, tel |wm| <e m=1,2...k

o ODf,w(t) = f(t,w(t).C Dy w(t) +w(t), t€l,m=0,1,...,k

o w(t) = In(w(tm)) + @m, tel,m=12,...,k.

Remark 2.11. A function w € B is a solution of the inequality (2.2), if there exists
a function w € B and a sequence w,,, m = 1,2,...,k which depends on w, such that
o |w(t)]| <o), tel. |onm|l <, m=1,2,... k.
o °Df w(t) = f(t,w(t).C Dy w(t)) +w(t), t€l,m=0,1,... k.
o Aw(t) = In(w(tm)) + @m, telm=12... k.

Remark 2.12. A function w € B is a solution of the inequality (2.3), if there exists
a function w € B and a sequence w,,, m = 1,2,...,k which depends on w, such that
o |w(t)] <ep(t), tel |wn|<ep, m=12,... k.
o °Df w(t) = f(t,w(t).C Dy w(t)) +w(t), t€l,m=0,1,...,k
o Aw(t) = Ln(w(tm)) + @m, tel,m=1,2,... k.

Theorem 2.13. [13] (Banach fized point theorem) Let C be a non—empty closed
subset of a Banach space B. Then any contraction mapping 1 : B — B has a unique
fixed point.

Theorem 2.14. [13] (Schaefer’s fixzed point theorem) Let B be a Banach space
and 7 : B — B is a completely continuous operator and the set D = {u € B : u =
1w, 0 < p < 1} is bounded. Then 7 has a fized point in B.

Theorem 2.15. [20] (Arzela—Ascoli’s theorem) Let H € C(I,R), H is relatively
compact if the following two conditions satisfy
o H is uniformly bounded that is there exists € > 0, such that
|f(v)] <e  foreachge H andv € I.
e H is equicontinuous, that is for every € > 0, there exists d > 0 such that for any
w,v €1, |[v—1'| <4 implies |g(v) — g(v')| <€, for each g € H.

3. Main Results

In this section, we investigate the existence and uniqueness of solution to the
proposed class of impulsive integral boundary value problem of implicit fractional
differential equations.

Lemma 3.1. Let 0 < 5 < 1 and assume that y : I — R be a continuous function.
Then a function u € B is a solution of the following fractional integral boundary value
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problem of impulsive differential equations.

Dy ult) =y(t), t#tmel
Aulty,) = In(ulty)), m=1,2,...,q—1,

mu(0) + & IPu(t) |i=o= v,
nou(T) + &1°u(t) [i=r= v2,

(3.1)

if and only if u € B is the solution of the fractional differential equation given by

¢ _ v
5 Jo(t = )P Ly(s)ds + o te0,t]

+y1 te (tmatm-ﬁ-l}

ft (s)ds + w5y ft P=ly(s)ds
u(t) = +Zf43m34i‘8‘M®@+MMJO+@wm»
_g)f-1
+V1+t["ﬂ” i Jo (Tr(g> u(s)ds

3l [0 9 s+ iy 0y~ N

t e (tg, T

Proof. For t € [0,t1], we consider
DY ult) = y(t),
with m1u(0) + & T%u(t) |;=o= 1. By using Lemma 2.5, we get
u(t) = IPy(t) + co.

—L t — 52 Yy(s)ds + ¢
ut) = 557 [ (=9 us)ds +co

Using the initial condition we have

Thus Eq. (3.3) becomes

L S APARRY R 41
u(t) = T03) /0 (t—s)" " y(s)ds + e
For t € (t1,t2], we consider

“Dgu(t) = y(t),

with Au(ty) = I (u(t1)). By Lemma 2.5 we obtain

u(t) = I%y(t) + di.

¢

u(t) = ﬁ/ (t — 8)P"1y(s)ds + d;.

t1

+2£Xﬁbﬂgm—®“%@“+M“m0*”WW»+$

i

d@ﬁﬁ@BW@@+Z£{ﬁmﬁzm@Bw@@+nmm»

(3.2)

(3.3)

(3.5)
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Since we know that

Au(ty) = u(t?) ~ u(ty) = L(u(t))
Sy eds 4

W9 = 5 [, (= 9" s+
dy = u(tf) = ulty) + h(u(t))

L ! —5)7 " Yy(s)ds “ U

w5 | s+ 2 (),

now putting in Eq. (3.5), we get

U :L t—sﬁflss L ! 1—557155 1(u(t1 “

0= 55 [ 0= st g [0 = s+ D) + 2 (36)

m

dy =

On the similar procedure for t € (¢, tm41], where m =1,2,...,¢ — 1, we get

u(t) = ﬁ/t (t—s)P"1y ds—i—Z{ /tb 1 (t; — )P~ Ly(s)ds + L;(u(t;)) + 4

m

Finally for t € (¢4, T, we consider

“Dp ult) = y(t),
with impulse Au(t,) = I,(u(t,)), and boundary condition nou(T)+& TP u(t) |=7= ve.

Now using Lemma 2.5, we have

u(t) = IPy(t) +d, +ct

u(t) = =—— /t(t — 5)7 7 y(s)ds + d, + ct. (3.8)
Since

Au(ty) = u(t)) —u(t,).
Thus u(t, ) can be calculated from Eq. (3.7) by putting t = ¢, i. e.

W)= g | a1 [r(lm | =ty L) |+ 2
m - Z (3.9)
L s
dy = wu(t) = g5 | 0= (e
m 1 ti ._ngl s)ds (uts V1 U
+; {F(ﬁ) /til(tl )" y(s)ds + L (tz))} +o + I,(ulty).  (3.10)
Eq. (3.8) implies
u(t) =ﬁ/t (t—s)° 1y(s)ds+ﬁ/t (tg — 5)PLy(s)ds

m L t; 5 B—1 $)ds (u(t: ﬂ u c
+Z {F(ﬂ) /ti—l(tz )7 y(s)ds + Ii( (t,))] + m + I, (u(ty)) +ct. (3.11)
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Using condition nou(T) + &oIPu(t) |—7= va, for finding the value of c, we obtained
1

U :—T—sﬁ_lssL — 58 Yy(s)ds
D) = g | =9 s gy [ o

m L ti o B—1 $)ds (u(ts 123 u -
2 {F(B) /tu(“ Sl I W} + =+ y(ulty)) + T,

Multiplying 72 and adding &1 |,—r to both sides, we get

_ v S 4 (T — )71 Ly 1 T -1
c = 77272T_77272T/0 TG u(s)ds—i—T{F(ﬂ)/tq (T — 5)P~1y(s)ds

L K —sB_1 s)ds
*rw)/tm“q YP-ty(s)d

m 1 t;
+ (1“(5)/ (ti — )" 'y(s)ds + Ii(u(ti))) + Iy(ulty)) + — |
i=1 ti-1
Now putting the value of ¢ in Eq. (3.11), we have
1

U :—t—sﬂflssitt] — 5)P Ly (s)ds
O = g s+ g [yt

m L ti ‘_55_1 $)ds (ults w V1
+;<r(5) /tf,_l(t’ )" y(s)ds + I (u))) + 1, (ulty)) +

+ {VQ i /OT T u(s)ds

wT T Jo ()
1 1 T o1 L tq e
—&-T (1“(5) /tq (T —s)° " y(s)ds + ) /tm (t — 8)P Ly (s)ds
m 1 t; . "
2 (g7 = Mwtshts Bgute)) + 1y ute)) + 22 ) .

Conversely, assume that u is a solution of the integral Eq. (3.1), then we can easily
verify that the solution wu(t) given by Eq. (3.2) satisfies problem (3.1) along with its
impulsive and integral boundary conditions. O

For obtaining our results, we consider the following assumptions
(Hy) The function g : I x  x & — R is continuous;
(H2) There exist constants K; > 0 and 0 < Ly < 1 such that

lg(t,ur, w1) — g(t, ug, wa)| < Kglup — uz| + Lg|wy — wal,

for t € I, and uq, ug, wy,ws € RN;
(H3) There exists a constant L; > 0 such that

| (w1) — I (u2)| < Lp|uy — ugl,

for each uj,ug0 € R, t€lp,andm=1,2,...,q—1;
(Hy4) There exist constants «, 8,7 € C(I,R), such that

|f (&, u(t), wt)| < alt) + B()|u] + (@) wl],



STABILITY ANALYSIS FOR A CLASS OF IMPLICIT FRACTIONAL DIFF. EQ. 95

for t € I,u,w € R, with o = sup,c; a(t), B =sup,c; B(t), 7v* = sup,e; ¥(t) < 1;
(Hs) The functions I,,, : ® — R are continuous and there exist constants N, N* > 0,
such that

[T (u)| < Nlu(t)| + N7,

foreachue R, m=1,2,...,q—1.
(Hg) Suppose a function ¢ € PC(I,R;), which is increasing. Then there exists
Ap > 0, such that the following inequality holds

IPp(t) < Ape(t),
for each t € I.

Theorem 3.2. Let the assumptions (Hy) — (Hs) are satisfied and if

2K,TP K,T"
Il < | s G
1 2K, TP K,T"
e R e e RERR |
(3.12)

then the problem (1.2) has a unique solution in B.
Proof. For this we define a mapping 1: B — B by

e fé t—s) ﬁ-1f<s u(s), g(s))ds + 22, t€[0,t];

) Jo & =)7L (s,u(s), g(s))ds

o (o ft (1= 97 s u(s) g(6))ds + Tu(e)

1t t € (tms tmals

w)ft (t— - 1f(s u(s), g(8))ds + iy 1 (b — $)7~" £ (s, u(s), g(s))ds

nya 1(M s>ﬁ-1f<s,u<s>,g<s>>ds+fi<u< i>>)
(w)(t) = c

y(ulty) + 2 + 1 [T—T

fOT <T;g;)’ u(s)ds + }{Fgﬁ) Jo (T = )77 f(s,u(s), g(s))ds

+355 Ji2 (ta —3)5—1 (s, u(s), (s))ds

e 1(m> Ji (6= 9P o) g6 + Eule)

+14(u(ty)) + Zi} t € (tg, 7.
For t € I, = (t4,T), we consider
)0 = ()0 < 055 [ (€= olo) ~ a0

L " — )P a(s) — g(s)|ds mi ’ —8)P 7 Ha(s) — g(s
5 /tm 2 =57 o) =905 ds+ 3 5 /ti_losl Y= [a(s) — g(s)
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0 oto) ~ gt + 5 [ -

o(6) ~ g0

—
~
| @

<
—~

»
~

Il

60(,209) = 5.5, 006)

IN

Ry fule) = uls)

+ L,

o(6) = 965

Thus

o) = 9(6)| < 2

w(s) —u(s)|.

(3.13)

Now using the inequality (3.13) and assumption (H3), we have

< K, f(t—s)"!

T 1-Lg )i, T
Ky "ty — )"

1="Lg Jp,  T()

Ky g~ [ (9™ w(s) —u(s
*uggﬁlrm ) o)
1

ng /tT - ;(2))ﬂ_1 ’w(s) — u(s)

m

s)|ds+ Ly Z ’w(s) —u(s)

Mwm<mm

+

ds+ Ly Z ’w(s) — u(s)
i=1

ds
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Which implies that

H_I . { K,T? . K,T? LomE,T
w—"Tu < m
re LA-LIUE+1) T (1-LTE+1) ~ A-LyT(E+1)
+L +t[1< KT + K,T7
T T\ -Lyr(B+1) " (1 —LyT(B+1)
mK,T?
L L — .
e RRE || LR
(3.15)
Similarly for ¢ € I,,,, we obtain
K,T7 mK,T?
Tw — Tu < [ g + g —&—mL[} ’w—u . (3.16)
H pc LA=Ll(B+1)  (1—LyI(B+1) PC
By the same procedure for ¢t € Iy, we have the following result
K,T?
Tw — Tu < J Hw—u . (3.17)
H pc (1=LI'(B+1) PC

As I = Iy U1, UI,, Thus combining Eq. (3.14), Eq. (3.15) and Eq. (3.16), we have

H_Iw < [ K,T? N K,T? N mK,T?
pec LA=LHI(B+1)  (1-LyHLI'(B+1)  (1—LyT(B+1)
1 K, T8 K,T?
*mM*J”+{T{u—LQn5+1y*u—Lﬁm5+n
mK,T?
uLw36+n*”“”+L&”Hw‘“pa
Now since
2K,TP K, T8
e el e AR
1 2K, TP K,T"?
(G rormn Ly 0 ) | <

hence by Banach contraction theorem 71 is a contraction operator and thus it has a
unique fixed point, which is the corresponding unique solution of problem (1.2). This
completes the proof. O

Theorem 3.3. If the assumptions (H1)—(Hs) are satisfied and if

B*T8(m +1)
(1—=9)(B+1)

then the problem has at least one solution.

mN +

<1,

Proof. Consider the operator 1 defined in Theorem 3.2. We use Schaefers fixed point
theorem to prove our required result.
Step 1: First we prove that 7 is continuous. For this take a sequence {u,} € B, such
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that u,, = u € B.
For t € I, we have

0 = (0] < 5 [[- 9

B
7 J,, 0

m 1 t; .
;mL_l(ti —s)’

yn(s) —y(n)|ds

yn(s) — y(s)|ds

+
+ yn(s) - y(S)

+ Z Li(un(t;)) — Ii(u<ti))’

7

T
ot =ttt 44 7 (g = o) vt
i t _8[3—1 $) — u(s)|ds mi t; ‘_8;3—1 o s
+F(ﬁ)/tm(tq )77 yn(s) = y(s)|d +;F(5)/ti_l(tl Y2y (s) — y(s)

Io(un(tq)) — Ig(u(ty))

)}

I (un () — Ii(u(ti))‘ n

i=1

(3.18)
where y,,,y € C(I,R) and given as
yn(s) = f(S,Un(S),yn(S)), y(S) = f(S,’LL(S),y(S))
So by (Hz), we have
) =966)] =766 (50 6) = S50
< K, Un(s) - u(s) + 1L, yn(s) - y(s) .
Thus X
) = (6)| < T unlo) — wte)| (319)

Now since u,, — u as n — oo, which implies that y,(s) — y(s) as n — oo for each
s € I,. As a consequence of Lebesgue dominated convergence theorem, the right hand
side of inequality (3.18) tends to zero as n — oo, hence

]mun)(t) (W)

—0, as n — oo.

Which implies that
(Tuy) — (Tu) —0, as n— oo.
For t € I,,,, we have
(Tuy) — (Tu) -0, as n— oo.
And similarly for ¢ € Iy, we obtain

(Tuy) — (Tu) —0, as n— .
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Thus T is continuous.

Step 2: Now to prove that 7 maps bounded sets into bounded sets in B. In fact we
just need to show that for any positive constant u, there exists a constant v > 0, such
that for each v € B, = {u € B : ||u]|pc < p}, we have ||T(u)||pc < v. For t € I, we
get

(Tu)(t) = / (t— )5 Ly(s)ds + / (ty — 57 Ly(s)ds

rG) J., G) J.,
m L ti g Bs—1 s)ds Cults " ﬂ
—i—; (F(B) /til(tz )" y(s)ds + Ii( (tl))) + I (u(ty)) + "
v I3 T (T _ 8)5_1
+ t[n;T - 7727271/0 Wu(s)ds

L0 T et ags e b [ o uiends
*T{rw)/tq(T P hyds + i [t = ()

m

5 (55 ] (t ~ 9P y(o)ds + iu(t) ) + futta)) + 2 ||

— \I'(p m
(3.20)
where y € C(I, %), is given by
y(s) = f(s,u(s),y(s)).
By (H,) for t € I, we can write
ly(s)l = [f(s,uls),y(s))]
< as)+ B(s)lul + v(s)lyl
< als) +B(s)u+(s)ly(s)]
So
ly(s)] < a” + B+ 7"y (s)], (3.21)

where a* = sup,c; a(t), 8% = sup,c; B(t), v* = sup,e;7(¢) < 1 and from Eq (3.20),
we get
a* + 3%
<——=M.
)l < T

Thus by (Hy) and (Hs), Eq. (3.20) becomes

MT?P MTP gMT? . Rz
‘(‘lu)(t)‘ < F(6+1)+F(6+1)+F(6+1)+Q(”N+N)+(“N+N)+E
{ug_ &TP +1{ MTP
ne mIT@E+1) T I(B+1)
MT? qMT? . oo ]
+F(ﬁ+1)+F(B+1)+Q(”N+N)+(”N+N)+m}]_Q'
For t € I,,,, we have
MT? qMT? o V1T
’("IU)(t)’SF(5+1)+F(5+1)+Q(MN+N)+m—Q-



100 A. ZADA AND B. DAYYAN

And similarly for t € Iy, we have

MT’B 141 s
o] < e+ 5 o

Thus the function is bounded.

Step 3:Now we need to show that 1 maps bounded set into equicontinuous set of B.

Let t1,t2 € I, with t; < t2 and let B, be a bounded set in the second step. Then for
u € By, we have

\(‘iuxm ~ () (1)

t1
S/
t

q

/t]

(12— )P — (1 — 5!
o) o)

(tg — )P~
—————y(s)|ds +
I'(8) 0<tm2<;2—t1

(to —s)P~1
————y(s)|ds +
) e

(tg — S)ﬂ_l

is + /

Lt )}H{}(/T y(s)

+/: Imu(tm)‘ +/: ds)}
M

< m |:(t2 - tq)ﬁ —2(t2 — tl)ﬂ — 2ty — t)5:| + (ta — t1)(N|u||pc + N*)

(T — )Pt
r(3)
— )81

(a9 T B)) y(s)

ds

st Frrm ()~ 20 =00 =262 =0 ) + (12~ )WVl + ) .

We see that the right hand side of the above equation tends to zero as t; — t5. Thus
by Arzela—Ascoli theorem, we can say that 71:B — B is completely continuous.
Step 4: Now in the final step, we show that the set defined by

S={ueB:u=7§"Tu) for some 0 < < 1}

is bounded. Let u € S, then for some 0 < § < 1, u = §(Tu). Therefore for ¢ € I, we
have

Z / 8>5‘1y<8>d8+5§h<u<t>>

Z 3 T_(T —s)f !

ELT_LH IR P
+T{5r(5)/tq (T —s) y(s)ds+5r(5)/t (ty — )P Vy(s)ds

m

+i::(5r(lﬁ)/:l(ti—s)ﬁ ! ds—i—éZI )) + 01, (ult >)+”1H,

m
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u(t) < ﬁ /tq (t— s)ﬁ—ly(s)ds + ﬁ /tm (tq _ S)ﬁ_ly(s)ds
1 L S "
lzlrw)/n (=) y(s)d +;I< u(ti)) + y(ulty) +

t[ﬁzT 772T/0 T(5) (s)d
L R H LT
+T{I‘(5) /tq (T —s) y(s)d8+r(6) /tm (tg — )" y(s)ds

+§;F(1ﬂ)/ti (t: — 5)P 1y ds+ZI (tq))+”1H~(3.22>

ti—1 m

Also we have |y(s)| < % = M. Thus inequality (3.22) becomes

‘u(t)‘ < w /t(t _ S)Bfly(s)ds 4 w /tq(tq _ S)Bfly(s)ds
t t

(L=)L(B) Ji, (L=)TB) i,
SIS [ = s+ oVl + N°) + (Ve -+ V)
V1 Vo 2 r —s)f1 o *u T _
+2 +tL72T & <Tw>) u(s)ds + ;{utﬁ”"’c} (T - 5P 1y(s)ds

vt Dllec [, gty + O e -9
A=) / K e DG Z/ " e

+g(Nlullpe + N*) + (N|Jullpc + N*) + 771”

implies
_(¢4+2)a"T? %4 v
y - e T LA QN+ 5 +1L
pc (g+2)B*T8 1) _(¢+2)p*T5
L= a5y Ha+ DN +1 {T { G @+ 1)NH
= M
where
T8 1 + 2)a* TP
Y A1)
T mIT@E+1) T(1-y9)IB+1) m

It means that the set S is bounded. Thus by Schaefer’s fixed point theorem, we
prove that S has a fixed point which is the solution of the problem (1.2). O

4. Ulam—Hyers Stability Analysis

In this section, we discuss various types of Ulam—Hyers stability.
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Theorem 4.1. If the assumptions (Hy) — (H3) and the inequality (3.12) are satisfied,
then the problem (1.2) is Ulam—Hyers stable and consequently generalized Ulam—Hyers
stable.

Proof. Let w € B is the solution of inequality (2.1) and u be the unique solution of
the following problem.

Dy u(t) = g(t), t#tmel=1[0,T],
Au(t) :Im(u(tm))a m = 172a"'7q_17

8 (4.1)
mu(0) + & 17 u(t) [1=0= v1,
1@ (T) + &1Pu(t) |i—r= 1o
so by Lemma 3.1, for each ¢ € I,,, we have
1 /t - 1 tq B
u(t) = ———= t—sﬁlgsds—ki/ ty — )% Lg(s)ds
O = g [T+ g [t
+ —/ ti—sﬁ_lgsds—i—liuti}—l—l u(ty)) + —,
> (i [t " atohs  huw)] + 1ute) + 2
where g € C(I,R), and is given by
g(s) = f(s,u(s), g(s)).
Since w is the solution of inequality (2.1) hence by Remark 2.10, we have
CD()tu():g(t)+w(t)v t¢tm€I
77130(0) +&I%2(t) [i=0= 11, ’
M2 (T) + &1%2(t) |t=7= V.
Obviously the solution of the Eq. (4.2) will be
_ t _ v
ﬁf(}i(tfsﬁl()d5+r(15)fo s)° ()dSJFTTi, tely
3 i, ( )ds+ F(B) ft 5)P 1w (s)ds
n t _
el T NG ft . y(s)ds + Zzzl W Ji  (ti = 5)" "t (s)ds
+Zz:1 (( ))+Zz 1wl+7%7 tel,
t
ﬁftq(t_ "y(s >d5+rﬁ)ft 5)° 1w (s)ds

tq _

1) Jin (e = 517 y(s)ds + 1353 ftm =) (s)ds

JrZ;il ﬁ f‘til—l(ti —5)81y(s)ds + Z:il ﬁ ftil—l(ti — 5)8 L (s)ds
a(t)=q + 2 L(wts) + 300 @i + Ig(w(ty)) + 2

T (T—s)P—1 T B
+f[m — i Jo Ut u(s)ds + %{Fém S (T = )"y (s)ds
_ tq _
+7F(B) ftq (T — 5)P " wo(s)ds + 71“(1[3) ft (ty — 5)PLy(s)ds
tq _ m ti _
g Jol (tg — )Pt w(s)ds + 0L gy i (= 8) T y(s)ds

Xy i (6= 9 (s S B(w(e) + £

I (w(ty) + } tel,
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where z € C(I,R), and is given by

x = g(s,u(s), xz(s)).

Therefore, for each t € I, we have

u(t) - uto) sr(lﬁ)/t:u—s)ﬁ tlg(s) - y(s) +F(lﬁ)/t:<t—s>ﬁ Leo(s)
w7 | = e )|+ i [0 e
+§3r<15) /,:1“ — )7 g(s) — y(s) d”ir(ﬁ) /(t Yoo (s)|ds
+ i L(w(t) - L) + i @il + | (w(ta)) — Ty (u(ty)
wil3 (w9 + 15 [ =9 o)

+Y i [ =9 —uoas 3 s [ -9 mtelas
# Yl + Y [fw(e) - 1ttt + 1wt - e

By (H,), we get

le —yll < Hw—UHPc-

Kg
Hence by (H2), (H3), (Hy) and (i) of Remark 2.10, we get

R e e A

LY Hw*UI\PO/ (tq S)ﬁldere/tq (tg — )"
tm t

1-L F(ﬁ) w0
K waul\pc [ (i)
+ = Z/t 1 d$+€§/ti1 T(3)

—|—Hw—quch[-l—ZG‘i‘LIHw—UHPC

i=1 =1

+t{111 (Kg|1w_—L1:|Pc /tT (T ;(;))5—1 . e/tT (T ;(;))ﬁ—l
1

q aq

K, llw—ullpc (% (t, — 5)° o (t, — 5)51
A / T(3) +E/t T'(3)

m
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m

K — t —
n Hw u||pc Z/ ds—l—eZ/ s)
ti—1
+||w—u||chL1+ZG+LI|W—UHPCH

=1 =1

T8 T8 T8 1 T8
{rml) IR RS YCESY +m+t<TF(B+1)
T8 T8
IR RSy *m)]
+ { KT + RoT" +m— Dl +mL;+ Ly
1—L,0(B+1)  1-L,0(B+1)  "1-L,0(B+1)
1 K,T? K, TP K, TP
+t(T1LgI‘(5+1) Ty TTToLIBr D +mL’+L1)]‘

e{2+2m+t<%(2+m) NEESY) +m)}

[lw —ullpc <
B
1= [ufﬁﬁm <2+m(t+ 1) +t(7 + 1>> +(t+ 1) (m+ 1)L,

(4.3)
Similarly for ¢ € Iy, we have
T8
T(B+1)
Hw —u < (4.4)
o
(1- Lq)F(ﬂJrl)
Now repeat the same procedure for t € I,,,, we obtain
T8 T8
€<P</3+1) Y CE m)
Hw —u < (4.5)

PC K T#P K TP '
1- {(1 17 nreEmy B e o) (== +mL1}

Combining Eq. (4.3), Eq. (4.4) and Eq. (4.5), we get

2+2m+t<;(2+m)r(}§il)+m>

oo =
PC K. T8
1— |:(1Lg£)71-\(ﬁ+1)(2+m(t+1)+t(711+1)) +(t+1)(m+1)L1
TB Tﬁ Tﬁ
NGES)) rern e T
+ 1 K, TP + 1 K, TP KT I
R E 7)== Nl ¢ v s ¢ =y L v )F(ﬂ+1) +mly
Thus

[lw —ullpc < Mg pq,0€,



STABILITY ANALYSIS FOR A CLASS OF IMPLICIT FRACTIONAL DIFF. EQ. 105

where

2+2m+t(;(2+m)r(§il)+m>

Mg,p,q,0 =

1— [%<2+m(t+l)+t(}+l)>+(t+1)(m+1)L1

T8 T8 T8
N T3+ N rer) e T
1— K,T8 1— K,T8 +m K,T8 +mL :
(I—L,)T(B+1) (I—Lg)T(B+1) (I—L,)T(B+D) I

Hence the problem (1.2) is Ulam-Hyers stable. Moreover if we set 0(€) = myp q.05
6(0) = 0, then the problem (1.2) is generalized Ulam-Hyers stable.

Theorem 4.2. Let us suppose that the inequalities (Hy — H3), Hg and (3.12) are
satisfied then the problem (1.2) is Ulam—Hyers—Rassias stable with respect to (¢,1)),
consequently generalized Ulam—Hyers—Rassias stable.

Proof. Let w € I be a solution of the inequality (2.3) and let u be a unique solution
of the following problem

“Dgu(t) = gt u(t),* DG u(t)), t#tm el
Au(t) = Ln(u(ty)),m=1,2,...,q— 1,
mu(0) + & IPu(t) [i—o= v1,

nou(T) + &I1°u(t) [i=r= va.

From the proof of Theorem 4.1, for each ¢t € I, we obtain

kmw—uaﬂ<&Dlﬁv—@ﬁim@—y@>+F&DA3t—$”ﬂw@M
n F(lﬁ)/:(tq — )P g(s) — y(s)| + F(lﬂ)/:(tq = O]
+ Zi? ﬁ /t;il(ti = )" g(s) —y(s)|ds + i ﬁ /t;il(ti = 5)" " | (s)lds
+§ Li(w(t;)) — Li(u(t:)) +§;|wi + [ (wl(ty)) —Iq(u(tq))‘
+t[;, (F(lﬁ) /t:(T =)o) ~v(s)| + 55 /t:(T — )M (s)]
b [ =97 o o as i [0 o

9(s) = y(s)

m 1 t; .
Y ),

m m
Y il + Y
=1 =1

dS-i—rzll_‘(lB)/l (ti—g)fﬂ_1|w(8)‘d8

ti—1

Li(w(t;)) — Ii(“(ti))‘ +

(w(t) = 1u(e)| ) |
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By (Hs) we get that

K
ngHw—uHPo

—yll <
ke —yll < 5

Hence by (Hz), (H3), (Hy) and (i) of Remark 2.11, we get

_ Kyllw —ullpc [* (t—s)°! t(t — )P
) —utn| < Sl [ [
)1
)

Kgllw —ullpc [ (tg—s)° " (tg — )"
R /tm ) dHE/ T

m

,_J

q

CIJ

ti t—sﬁl

+K ||w UHPC Z/ (ti —s) ds+eZ/ (1)

+ ||wqupCZLI+eZ¢+L1||w7quc

=1 =1

“HK Jllw = ullpe /tT (T —s)°~1 “/tT (A

1=L, ) )
Kyllw —ullre % G = 91 |~ !
Kgllw —ullpe x~ [P (ti —5)77!
+g1——Lg / st

i=1
m

+e2/ o) + Il - U||PCZL1+€Z¢+LI|U’U||Pc)]-

=1 =1

Using (Hg) we have

(t) = )| < ¢ 3o0e) + 250(0) + mrg() 4 15+ 7 (Aao0

K,T? K,T?
+ AlE) + mAgd(E) + W) H " {u B ES RN (S B RS
e K,T? L 4L +t{1< K,T? N K,T?
(1—L)T(B+1) rr T\(1—L)T(B+1)  (1—Ly)T(B+1)

K,T?
Fm g g e i) fle e

<e((t) + (1)) [Azb + A +mAg +mw+t{ (M Aot mAg *”“") H

{ K,T? N K,T? e K,T? N
(1 - Lg)r(ﬁ + 1) (1 - Lg)F(ﬁ + 1) (1 - Lg)r(ﬁ + 1)
+t{1( K,T? N K, TP

T (1 - Lg)r(ﬁ + 1) (1 - Lg)F(ﬂ + 1)

K,T?
+m(1—Lg§F(B+1) —|—mL1+L1>}]||w—u|pC.
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From which we get

(6() + (1)) [w o+ m) i +t{%(<2 T ”“’”) H

Hw —u < .(4.6)
PC K T8
— |:(1Lq)l_‘(ﬁ+1) (2 +m(t+ ].) +t(% + 1)) + (t+ ].)(m+ 1)L[
Similarly for t € Iy, we obtain
Ap (1
Hw(t) - u(t)H < Aod(t) . (4.7)
1_ K,T5
{ (1—Lg)F(ﬁ+1)]
Now similarly for ¢t € I,,,, we get
€ <)\¢¢(t) + m>\¢¢(t) + m1/)>
(4.8)

K,T#8 K, T8
T—L,)T(FTD) T ML, T+ *mLf}

el

Combining (4.4), (4.5) and (4.6), we get

e(d(t) + (1) [%(2 +m) +my+ t{% <(2 Tt m¢) H

PC K,T5
- [(1—L)F(ﬁ+1> (2 +m(t+1) + (g + 1)) +(t+1)(m+1)L;

<

o=

(D) +v(E)Ne e((t) + (1)) (A¢ +mAg + m)

+ K, TP

K T#P K,T8

(s == IR = e R e oy R O
Thus
llw —ullpc < My pgoee(dt) + (1)),
where
[A¢(2 +m) +my + t((}p +1+m)As + mwﬂ
Mg,p,q,0,6 =

1— [%(2+m(t+l)+t(%+l))+(t+1)(m+1)L1

(/\¢ +mAy + m)

K, TP K,T5 :
1— aT—L,rE+D T Ma=L,rG+n mLjy

Ag
_ K_qTB
1I—L,)T(F+D)

+

+
1

Thus the problem (1.2) is Ulam—Hyers—Rassias stable. Hence it is also obvious that
the proposed problem (3.1) is generalized Ulam—Hyers—Rassias stable. O

Finally, we give an example.
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Example 4.1. Consider the instantaneous impulsive boundary value problem

1 w(®)|+€ DE u
lcwmw wOR Pec® - yefo,3] 43,
m
*>

€24 u(t)|+C Dg yu(t)
Lu(3)) = 20‘J1:I(u()| Ik
u(0) + I%u( ) le=0= 3,
B)+I2u(t)—s =3, vi=3,(i=12).

1, Iy = [0, %], I = (%,3], to =0, t; = %,and we set the function
a

g(t,w,u) =

fu(t)] + w(t) 3
eH2+wun+wa>t€[“2}

Also, for any u,w,w,w € R, we have

l9(tw,0) = g(t, 0,0)| < - lu— ] + w — ],

so we have K, =L, = Thus (Hs) holds, and also we see

4Oe7
1
l9(tw, )| < o (U] + [w(®)) el

Also we have a(t) = 53, B(t) = ¥(t) = 53+ so for this we find o* = 515, f* = 15

*

S ﬁ. Further, we see that

3 1 1
Lu(2)| < = |u(Z)] + 1.
()] < g5z +
For this we can see that N = 210,N*—1 SO
3 3
T D < oy —
hu3) - he(3)] < gglu—al
*Th 1 1 4y
mN + g7 (m+ 1) =+ —20 ___ ~0.2993 < 1.

(I1—T(B+1) 20 1-— 401 2F( )
Thus by Theorem 3.2 we can say that the problem has unique solution. Now
2K, T" K, TP
+m(
(1-Ly)I(B+1) (1-Ly)I(B+1)

”E{O—Z$Z+n*”u—éﬁé+n+“”i*ﬂ<L

putting all values in the above equation

+ L)+ Ly

22 240 1
40e 41 10.012)+0.012+ -
(1 — 40e)/(T0) (1— 4oe)ﬂn) 2
2 240e
2-—(1 — 40e)+/(I1) +0.012) +0.012 ) } ~ 0.0317 < 1.
{ ( 40e WA 1 (1 — 40e),/(IT) ) >}

Thus by Theorem 3.1 the problem has at least one solution on the similar way we
check the condition of Theorem 4.1 and 4.2.
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Conclusion

We proved the existence and uniqueness conditions for a class of nonlinear implicit
type impulsive boundary value problem by using Schaefer’s fixed point theorem, Ba-
nach contraction theorem and Arzela—Ascoli theorem. Further, we proved different
types of Ulam’s type stability.
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