
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 30, 2003, Pages 45–52
ISSN: 1223-6934

On Mixed Methods for Signorini Problems

Faker Ben Belgacem, Yves Renard, and Leila Slimane

Abstract. We present here some mixed strategies to solve numerically the Signorini prob-
lems. A general Framework for the discretization of such problems and convergence results in
the nearly incompressible case are given. Two and three-dimensional numerical experiments
are presented.
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1. General framework

A so-called Signorini problem is a boundary value problem of a scalar or vectorial
partial differential equation with a Signorini condition on a part of its boundary. A
Signorini condition is a complementary condition which modeled threshold phenom-
ena like contact problem, thermostatic device or semi-permeable membranes.

1.1. Scalar Signorini problem. Let Ω be a Lipschitz bounded domain in R2. The
boundary ∂Ω is a union of three non-overlapping portions ΓD, ΓN and ΓC . The part
ΓD of nonzero measure is subjected to Dirichlet condition while on ΓN a Neumann
condition is prescribed, and ΓC is the part of the boundary submitted to a Signorini
condition.

For a given data f ∈ L2(Ω) and g ∈ H−1/2(ΓN ), the scalar Signorini problem
consists in finding u such that





−4u = f, in Ω,
u = 0, on ΓD,
∂u

∂n
= g, on ΓN ,

u ≥ 0,
∂u

∂n
≥ 0, u

∂u

∂n
= 0, on ΓC ,

(1)

where n is the outward unit normal on ∂Ω. It is assumed here an homogeneous
Dirichlet condition and no initial gap for the Signorini condition. The analysis can
be extended straightforwardly to the case of non-vanishing Dirichlet condition and
initial gap.
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1.2. Vectorial Signorini problem. In the framework of deformable solid mechan-
ics, the displacement of a linearly elastic body Ω supported by a frictionless rigid
foundation ΓC , fixed along a part ΓD of the boundary and subjected to external
forces f|Ω and g|ΓN

(see figure 1) is solution to the following problem




−div σ(u) = f, in Ω,
u = 0, on ΓD,
σ(u)n = g, on ΓN ,
u

N
≤ 0, σ

N
≤ 0, u

N
σ

N
= 0,

σ
T

= 0, on ΓC ,

(2)

where the stress tensor is obtained from the displacement through the constitutive
law σ(u) = Aε(u), A ∈ L∞(Ω;R16) is the fourth order Hook tensor, symmetric and
elliptic, ε(u) = 1

2 (∇u + ∇uT ) is the small strain tensor, and σn = σ
N
n + σ

T
and

u = u
N
n+u

T
are the decompositions into normal and tangential components on ΓC .
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Figure 1. Deformable solid Ω on contact with a rigid foundation

1.3. weak formulation. Both the two models have the same weak formulation,
introducing

scalar model vectorial model
V = {v ∈ H1(Ω) : v ≤ 0 on ΓD} V = {v ∈ H1(Ω,R2) : v ≤ 0 on ΓD}

K0 = {v ∈ V : v ≥ 0 on ΓC} K0 = {v ∈ V : vN ≥ 0 on ΓC}

X
N

= {v|ΓC

: v ∈ V } X
N

= {v
N|ΓC

: v ∈ V }

a(u, v) =
∫

Ω

∇u.∇vdx a(u, v) =
∫

Ω

σ(u) : ε(v)dx

l(v) =
∫

Ω

fvdx +
∫

ΓN

gvdΓ l(v) =
∫

Ω

f.vdx +
∫

ΓN

g.vdΓ

which is {
Find u ∈ K0 satisfying
a(u, v − u) ≥ l(v − u), ∀ v ∈ K0.

(3)
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Another weak formulation is obtained introducing FN ∈ X ′
N

a multiplier which
represents the contact force on ΓC and

A : V −→ V ′, < Au, v >V ′,V = a(u, v), ∀u, v ∈ V,

F ∈ V ′, < F , v >V ′,V = l(v), ∀v ∈ V,

B
N

: X ′
N
−→ V ′, F

N
7−→< F

N
, . >X′

N
,XN





Find u ∈ V, F
N
∈ X ′

N
satisfying

Au = F + BN FN , in V ′

F
N

+ NK
N

(u
N

) 3 0, in X ′
N

,
(4)

where K
N

= {v
N
∈ X

N
: v

N
≤ 0}, NK

N
(u

N
) = ∂IK

N
(u

N
) = {F

N
∈ X ′

N
:<

F
N

, w
N
− u

N
>≤ 0, ∀w

N
∈ K

N
}. The solution to Problem 4 satisfies

u
N
≤ 0, < F

N
, v

N
>X′

N
,X

N
≥ 0, < F

N
, u

N
>X′

N
,X

N
= 0.

The inclusion of Problem 4 can also be inverted:



Find u ∈ V, F
N
∈ X ′

N
satisfying

Au = F + B
N

F
N

, in V ′

uN ∈ NK∗
N

(−FN ), in XN ,
(5)

where K∗
N

is the polar cone to KN

K∗
N

= {F
N
∈ X ′

N
:< F

N
, v

N
>≤ 0, ∀ v

N
∈ K

N
}.

1.4. Discretization. A discretization of Problem 5 will be the choice of three com-
ponents. The first choice consists in a finite dimensional discretization space V h ⊂ V .
This finite element discretization is defined on a regular triangulation T h of Ω. Then

Xh
N

= {vh
N|ΓC

: vh ∈ V h},
is given. The second choice is a discretization X ′h

N
of X ′

N
. Most of the time X ′h

N
⊂

L2(ΓC) and we will consider it the case in the following. For instance, a direct
discretization leads to X ′h

N
isomorphic to Xh

N
. The third choice is a discretization

K∗h
N

and Kh
N

of the cones K∗
N

and KN . They are linked by the relation

Kh
N

= {vh
N
∈ Xh

N
:
∫

ΓC

vh
N

Fh
N

dΓ ≤ 0, ∀Fh
N
∈ K∗h

N
}.

Since the mass matrix on the boundary ΓC is generally not diagonal, it is not
possible to have both Kh

N
⊂ KN and K∗h

N
⊂ K∗

N
. In the following, we will see

that for polynomial of order greater or equal to two, both the two discretizations are
non-conformal in that sense.

The discrete problem is obtained with the Galerkin procedure




Find uh ∈ V h, Fh
N
∈ X ′h

N
satisfying

Auh = F + B
N

Fh
N

, in V ′

uh
N
∈ NK∗h

N
(−Fh

N
), in Xh

N
,

(6)

where NK∗h
N

(−Fh
N

) = {vh
N
∈ L2(ΓC) :

∫

ΓC

vh
N

(wh
N

+ Fh
N

)dΓ ≤ 0}.
A condition for the discretized problem to be well posed is the so-called discrete

inf-sup condition:

inf
F h

N
∈X′h

N

sup
vh∈V h

< BN Fh
N

, vh >V ′,V

‖vh‖V ‖Fh
N
‖X′

N

≥ C, (7)
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where C > 0 is a constant preferably independent of h.

1.5. Standard discretizations.

1.5.1. direct discretization. The implicit choice of a direct discretization (i.e. a direct
Galerkin procedure applied to Problem 1) is the choice of X ′h

N
isomorphic to Xh

N
(a

problem could happen when Γ̄
C
∩ Γ̄

D
6= ◦/, see [4]). this discretization satisfies the

Inf-Sup condition (7) since the operator B
N
is represented by the finite element mass

matrix on Γ
C
.

1.5.2. P1-P0 discretization. When the finite element space V h is a classical P1 con-
tinuous element (i.e. continuous and piecewise polynomial of degree ≤ 1 on simplexes)
and since the derivative of a P1 function is a P0 function, representing the contact
force with a P0 element seems to be a good choice. Unfortunately, the inf-sup condi-
tion (7) is often not satisfied, due to the fact that P0 element may have more degrees
of freedom that the continuous P1 element. This is alway the case for three dimen-
sional problems, and also the case for two-dimensional problems when Γ

C
∩ Γ

D
6= ◦/.

One solution is to stabilized the finite element with additional bubble functions. A
complete study of this problem is presented in [4].

1.5.3. P2 Element. Quadratic finite element often gives a largely better approxima-
tion than P1 element, especially in linear elasticity framework. If one tries to have a
conformal discretization of the Signorini problem, one has to consider the following
convex of admissible displacements on the contact boundary:

Kh
N

= {v
N
∈ Xh

N
: v

N
≤ 0},

where

Xh
N

= {vN ∈ C0(ΓC ) : vN|T∩Γ
C

∈ P2(T ∩ ΓC ), ∀T ∈ T h}.
Unfortunately, this convex is hard to describe. There is no simple basis of Xh

N
such

that the set of components which represent Kh
N

is itself a convex.
A way to remedy for this is to approximate Kh

N
. A standard choice is to prescribe

the non-positiveness of the displacement on each finite element node. This gives the
convex set:

Kh(2)
N

= {vN ∈ Xh
N

: vN (ai) ≤ 0, for all finite element node ai on ΓC},

Another possible choice (see [3]) is to prescribe the non-positiveness of the displace-
ment only on the vertices of the elements and to prescribe non-positiveness of the
mean value on each edge:

Kh(3)
N

= {v
N
∈ Xh

N
: v

N
(ai) ≤ 0, for all vertex of the mesh ai on Γ

C
,∫

e

uhdΓ ≤ 0, for all edge e of the mesh on Γ
C
},

This gives two non-conformal discretizations in the sense that Kh(i)
N

⊂/ KN . The
set Kh(3)

N
has good properties for numerical analysis (see [3] and [6]).
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2. Taylor-Hood element for nearly incompressible linearized elasticity

Standard low degree finite element methods applied to linear elasticity problems
are known to produce unsatisfactory results when the material becomes almost in-
compressible (locking phenomena). A way is to consider a mixed formulation which
take into account the pressure p as an independent unknown. Let λ and µ be the
Lamé coefficients of the material. The incompressibility of the material means that λ
is very large, or equivalently that the Poisson coefficient ν is very closed to 1

2 . with

aλ(u, v) =
∫

Ω

2µε(u) : ε(v)dx +
λ

|Ω|
∫

Ω

div(u)dx

∫

Ω

div(v)dx,

b(v, p) =
∫

Ω

qdiv(u)dx,

the Signorini problem can be written in a mixed formulation as




u ∈ K0, p ∈ L2
0(Ω),

aλ(u, v − u) + b(v − u, p) ≥ l(v − u), ∀v ∈ K0,

b(u, q) =
1
λ

∫
Ω

pqdx, ∀q ∈ L2
0(Ω),

(8)

where L2
0(Ω) = {f ∈ L2(Ω) :

∫
Ω

fdx = 0}.
Taylor-Hood element consists in taking a continuous P2 element to discretize u

and a continuous P1 element to discretize the pressure p. In [6] the following result
is proved:

Theorem 2.1. When u ∈ H2(Ω;R2) and p ∈ H1(Ω) one has
• If Kh(2)

N
is used then

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ (1 +
√

λ)Ch3/4(‖u‖2,Ω + ‖p‖1,Ω),

• If Kh(3)
N

is used then

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ Ch3/4(‖u‖2,Ω + ‖p‖1,Ω),

where C > 0 does not depend on λ and uh, ph are the Taylor-Hood approximated
solutions.

This result indicates that, at least for the choice Kh(3)
N

, the quality of the solution
does not depend on λ, which means that λ can be arbitrary large. This is not the
case for the choice Kh(2)

N
but we think that this represents only a technical difficulty

of the numerical analysis since numerical experiments does not present a degradation
when λ is very large.

2.1. Numerical experiments. A rectangular nearly incompressible elastic body
is originally at rest on a rigid foundation. It is slightly lifted from its above edge
(Dirichlet condition u = (0, α) on the top). Under the effect of it own weight the solid
undergoes an elastic deformation and a part of its bottom edge ΓC = {0}× [0, 1] may
leave the ground. On the vertical edges the body is free of constraints (homogeneous
Neumann condition).

Figure 2 shows the reference configuration of the solid (dotted lines) and the con-
figuration after deformation (solid lines, with an exaggerated scale).

The algorithm used to compute the solution of the discrete problem is an Usawa
algorithm along with a Polak-Ribière conjugate gradient for the displacement uh. The
finite element code used, GETFEM++, is freely available [7].
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Figure 2. reference and deformed configuration for a particular computation

Figure 3 shows the L∞ norm between a very refined solution and the approximated
solution computed with three methods : mixed method with Taylor-Hood element,
direct discretization with a P1 element and with a P2 element.

The Locking phenomenon is clearly visible when the Poisson coefficient ν goes
to 1

2 . The P2 element has a better behavior but a significant deterioration appears
when the number of degrees of freedom increases. The condition number of the
stiffness matrix becomes very large and the C.G. is very slow and fails to compute
a satisfactory solution. The mixed Taylor-Hood element solution is not affected by
the nearly incompressible characteristic and we did not observe any slow down of the
C.G. procedure.

Figure 4 and 5 show experiments in dimension 3. The results are quite similar as
in dimension two.
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Figure 4. Result for a 3D domain, convergence curves for P1 el-
ement, P2 element and mixed Taylor-Hood element. max error vs
elements size (h). ν = 0.4999833
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