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A Gibbs sampler in a generalized sense, II

Udrea Păun

Abstract. We consider two new conditions for finite sequences of (finite) stochastic matrices.

The Gibbs samplers in a generalized sense which satisfy these conditions have important

properties, and thus became among the first our favorite chains — our interest is to design
very fast Markov chains and having, if possible, other important properties. We show, in the

finite case, that the probability distribution of a random vector with independent components

is a wavy probability distribution with respect to the lexicographic order and n+ 1 partitions
which will be specified, where n is the dimension of random vector. We define the wavy

probability distributions in a generalized sense. When these probability distributions have

normalization constant, we give, under certain conditions, a formula to compute this constant.
To give other examples of wavy probability distributions and of wavy probability distributions

in a generalized sense, we consider the Potts model (a model used in statistical physics and

other fields). Moreover, the normalization constant for the Ising model on Cn, the cycle graph
with n vertices, is computed.
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1. A short introduction

The reader is assumed to be acquainted with [16].

The Metropolis chain (1953) [9], its generalization, the Metropolis-Hastings chain
(1970) [3], and the Gibbs sampler (1984) [2] are Markov chains which were created
to simulate random variables. As far as we know, no application in which the exact
sampling holds was obtained for the first two chains. Moreover, as far as we know
too, for the speeds of convergence of these three chains — these speeds are the most
important things on these chains —, only in some special cases were obtained some
results, not very good results. However, some people are very enthusiastic, such as,
the authors of [18]. (For the theory of Markov chains, see, e.g., [4], and for the
Metropolis-Hastings chain and Gibbs sampler, besides [2]-[3] and [9], see, e.g., also
[6].)

Our hybrid Metropolis-Hastings chain (2011) [11] is also a Markov chain which was
created to simulate random variables. The construction of this chain was suggested
by some recent enough results from the theory of Markov chains from [10] (see also
[12]). The Gibbs sampler (the cyclic Gibbs sampler, see [16]) and its generalization
from [16], the Gibbs sampler in a generalized sense, are two important cases of our
hybrid Metropolis-Hastings chain(s). Four applications in which the exact sampling
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holds were obtained, one for the Gibbs sampler in [12, Application 3.5] and three for
the Gibbs sampler in a generalized sense in [13]−[15]. Moreover, besides the exact
sampling, other important things were obtained in [13]−[15]: closed-form expressions
for normalization constants (in [13]−[15]), bounds for normalization constants (in
[15]), etc.

So, we have sufficient reasons to continue our work on the hybrid Metropolis-
Hastings chain, Gibbs sampler in a generalized sense, wavy probability distributions, ...

2. New conditions for finite sequences of stochastic matrices

In this section, we present two new conditions for finite sequences of stochastic
matrices, which can be used as special conditions for the hybrid Metropolis-Hastings
chain(s). These conditions lead to some important results, the most important being
one on the Gibbs sampler(s) in a generalized sense — we find an important subcol-
lection of the collection of Gibbs samplers in a generalized sense. This subcollection
is (the two conditions are also) in conjunction with a main problem, a problem of
interest to us: finding the fastest Gibbs samplers in a generalized sense.

Let Q1, Q2, ..., Qt ∈ Sr (r, t ≥ 1). In [11] (see also [12]) we considered four special
conditions for our hybrid Metropolis-Hastings chain denoted (c1), (c2), (c3), (c4) (the
conditions (c1), (c2), and (c4) are also presented in [16]). Due this fact, the conditions
presented below are denoted (c5), (c6).

(c5) (Ql)ii > 0, ∀l ∈ 〈t〉 , ∀i ∈ 〈r〉 .
(c6) ∀l ∈ 〈t〉 , ∀i, j, k ∈ 〈r〉 , j 6= k, if (Ql)ij > 0 and (Ql)ik > 0, then (Ql)jk > 0.

These new conditions imply the basic condition (C1) of hybrid Metropolis-Hastings
chain from [11] ((C1) is also presented in [16]).

Theorem 2.1. Let Q1, Q2, ..., Qt ∈ Sr. If (c5) and (c6) hold, then (C1) holds.

Proof. We must show that (see [16]) Ql, the incidence matrix of Ql, is a symmetric
matrix, ∀l ∈ 〈t〉 — this is equivalent to

∀l ∈ 〈t〉 , ∀i, j ∈ 〈r〉 , i 6= j, [ (Ql)ij > 0⇐⇒ (Ql)ji > 0].

Let l ∈ 〈t〉 . Let i, j ∈ 〈r〉 , i 6= j.
“=⇒” By (c5), (Ql)ii > 0. By (c6), (Ql)ij > 0 and (Ql)ii > 0 imply

(Ql)ji > 0.

“⇐=” By (c5), (Ql)jj > 0. By (c6), (Ql)ji > 0 and (Ql)jj > 0 imply

(Ql)ij > 0.

�

Let A ∈ Nm,n (see [16] for Nm,n). Let i ∈ 〈m〉 . Set

NA,i = {j | j ∈ 〈n〉 and Aij > 0} .

Below we give another basic result on the structure of matrices Q1, Q2, ..., Qt
when the conditions (c5) and (c6) hold.

Theorem 2.2. Let Q1, Q2, ..., Qt ∈ Sr. Suppose that (c5) and (c6) hold. Let l ∈ 〈t〉 .
Let i ∈ 〈r〉 . Then
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(i)

(Ql)
NQl,i

NQl,i
> 0

((Ql)
NQl,i

NQl,i
is a matrix, see [16]; by (c5), i ∈ NQl,i, so NQl,i 6= ∅);

(ii)

(Ql)
N c

Ql,i

NQl,i
= 0 if N c

Ql,i
6= ∅

((Ql)
N c

Ql,i

NQl,i
is also a matrix ; N c

Ql,i
is the complement of NQl,i);

(iii)

(Ql)
NQl,i

N c
Ql,i

= 0 if N c
Ql,i
6= ∅;

(iv)

NQl,j = NQl,i, ∀j ∈ NQl,i.

Proof. (i) Obviously,

(Ql)
NQl,i

NQl,i
> 0⇐⇒ (Ql)jk > 0, ∀j, k ∈ NQl,i.

Let j, k ∈ NQl,i. We show that

(Ql)jk > 0.

Case 1. j = k. By (c5).
Case 2. j 6= k. Recall that, by (c5), i ∈ NQl,i.
Subcase 2.1. j = i. By k ∈ NQl,i we have (Ql)ik > 0. Since j = i, we have

(Ql)jk = (Ql)ik > 0.

Subcase 2.2. k = i. By j ∈ NQl,i we have (Ql)ij > 0. By (c5), (Ql)ii > 0. By j 6= k

and k = i we have j 6= i. By (c6), since (Ql)ij > 0, (Ql)ii > 0, and j 6= i, we have

(Ql)ji > 0. Finally,

(Ql)jk = (Ql)ji > 0.

Subcase 2.3. j, k 6= i (when r ≥ 3). By j, k ∈ NQl,i we have (Ql)ij > 0, (Ql)ik > 0.

So, using (c6), we have

(Ql)jk > 0.

(ii) Obviously, for N c
Ql,i
6= ∅,

(Ql)
N c

Ql,i

NQl,i
= 0⇐⇒ (Ql)jk = 0, ∀j ∈ NQl,i, ∀k ∈ N c

Ql,i
.

Let j ∈ NQl,i and k ∈ N c
Ql,i
6= ∅. We show that

(Ql)jk = 0.

Case 1. j = i. By k ∈ N c
Ql,i

we have (Ql)ik = 0. So,

(Ql)jk = (Ql)ik = 0.

Case 2. j 6= i (when r ≥ 3). Since i ∈ NQl,i (by (c5)) and k ∈ N c
Ql,i

, we have i 6= k.

By (i) we have (Ql)ji > 0. Suppose that (Ql)jk > 0. From (Ql)ji > 0, (Ql)jk > 0,

and i 6= k, using (c6), we have (Ql)ik > 0. It follows that k ∈ NQl,i. Contradiction.
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(iii) Since, by Theorem 2.1, Ql (the incidence matrix of Ql) is a symmetric matrix,
we have, for N c

Ql,i
6= ∅,

(Ql)
NQl,i

N c
Ql,i

= 0⇐⇒ (Ql)
N c

Ql,i

NQl,i
= 0.

As, by (ii),

(Ql)
N c

Ql,i

NQl,i
= 0 if N c

Ql,i
6= ∅,

it follows that

(Ql)
NQl,i

N c
Ql,i

= 0 if N c
Ql,i
6= ∅.

(iv) Let j ∈ NQl,i. By (i) we have

(Ql)
NQl,i

{j} > 0.

By (ii) we have

(Ql)
N c

Ql,i

{j} = 0 if N c
Ql,i
6= ∅.

Consequently,

NQl,j = NQl,i.

�

Below we give a corrected version of Theorem 2.1 from [16]. Although Theorem 2.1
from [16] is wrong, however, it contains the important case Pl = Ql, ∀l ∈ 〈t〉 , which
was suggested by the applications from [12]-[15]. On the other hand, the mistake
from this theorem was, fortunately, fruitful because, due to it, due to the important
case Pl = Ql, ∀l ∈ 〈t〉 , we found the conditions (c5) and (c6).

Theorem 2.3. Consider a hybrid Metropolis-Hastings chain with state space S = 〈r〉
and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2, ..., Qt,
respectively. Suppose that ∀l ∈ 〈t〉 , ∀i, j ∈ S,

(Ql)ij =
πj∑

k∈S, (Ql)ik>0

πk
if (Ql)ij > 0

(see Section 1 in [16] for Ql, l ∈ 〈t〉 , π = (πi)i∈S , ...). Then

(Pl)ij =



0 if j 6= i and (Ql)ij = 0,

(Ql)ij if j 6= i and πj (Ql)ji ≥ πi (Ql)ij > 0,
πj∑

k∈S, (Ql)jk>0

πk
if j 6= i and πj (Ql)ji < πi (Ql)ij ,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 , ∀i, j ∈ S. If, moreover,

πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈t〉 ,∀i, j ∈ S,

then

Pl = Ql, ∀l ∈ 〈t〉 .
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Proof. Note that “j 6= i” is superfluous in “j 6= i and πj (Ql)ji < πi (Ql)ij” because

if πj (Ql)ji < πi (Ql)ij , then j 6= i. Moreover, πj (Ql)ji < πi (Ql)ij implies 0 <

πj (Ql)ji . Indeed, if πj (Ql)ji < πi (Ql)ij , then (Ql)ij > 0. By (C1) (in [16]), (Ql)ij >

0 implies (Ql)ji > 0. Finally, (Ql)ji > 0 implies 0 < πj (Ql)ji .

If j 6= i and πj (Ql)ji < πi (Ql)ij (i, j ∈ S, l ∈ 〈t〉), we have (see Section 1 in [16])

(Pl)ij = (Ql)ij min

(
1,
πj (Ql)ji
πi (Ql)ij

)
= (Ql)ij ·

πj (Ql)ji
πi (Ql)ij

=

=
πj
πi
· (Ql)ji =

πj
πi
· πi∑
k∈S, (Ql)jk>0

πk
=

πj∑
k∈S, (Ql)jk>0

πk
.

The others are obvious. �

The hybrid Metropolis-Hastings chain from Theorem 2.1 in [16] (here, this chain
is in Theorem 2.3) was called the cyclic Gibbs sampler in a generalized sense —
the Gibbs sampler in a generalized sense for short. Therefore, the Gibbs sampler in a
generalized sense is a hybrid Metropolis-Hastings chain having the property: ∀l ∈ 〈t〉 ,
∀i, j ∈ S,

(Ql)ij =
πj∑

k∈S, (Ql)ik>0

πk
if (Ql)ij > 0.

Using the sets NQl,i, l ∈ 〈t〉 , i ∈ S, this property can be written differently: ∀l ∈ 〈t〉 ,
∀i, j ∈ S,

(Ql)ij =
πj∑

k∈NQl,i

πk
if j ∈ NQl,i.

Remark 2.1. (a) For our hybrid Metropolis-Hastings chain (in particular, for our
Gibbs sampler in a generalized sense) with state space S = 〈r〉 and transition matrix
P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2, ..., Qt, respectively, we have

|NPl,i| ≥ |NQl,i| , ∀l ∈ 〈t〉 , ∀i ∈ S
(|·| is the cardinal), more precisely, we have

either |NPl,i| = |NQl,i| or |NPl,i| = |NQl,i|+ 1

(the latter equation holds when (Ql)ii = 0 while (Pl)ii > 0), ∀l ∈ 〈t〉 , ∀i ∈ S. The
nearer the value |NPl,i| is to the value |NQl,i| , ∀l ∈ 〈t〉 , ∀i ∈ S, the faster the sampling
is. So, the best possible case for sampling is when

|NPl,i| = |NQl,i| , ∀l ∈ 〈t〉 , ∀i ∈ S.
(b) The case when the Gibbs sampler in a generalized sense has the property that

Pl = Ql, ∀l ∈ 〈t〉 , is an important one due to the following things.
(b1) When we run the chain, some of the values (Pl)ij , l ∈ 〈t〉 , i, j ∈ S, are

computed — these values will be computed using the simple formula

(Pl)ij =


0 if (Ql)ij = 0,

πj∑
k∈S, (Ql)ik>0

πk
if (Ql)ij > 0,

∀l ∈ 〈t〉 , ∀i, j ∈ S.
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(b2)

|NPl,i| = |NQl,i| , ∀l ∈ 〈t〉 , ∀i ∈ S.
See (a) again now.

(b3)

(Pl)ij =
πj∑

k∈S, (Pl)ik>0

πk
if (Pl)ij > 0

(l ∈ 〈t〉 , i, j ∈ S), so, (Pl)ij and πj are directly proportional when (Pl)ij > 0.

Due to Remark 2.1 and [12]−[16], the subcollection of Gibbs samplers in a gen-
eralized sense with Pl = Ql, ∀l ∈ 〈t〉 , is among the greatest subcollections of our
collection of hybrid Metropolis-Hastings chains. We have a Gibbs sampler in a gener-
alized sense belonging to this subcollection in Theorem 3.1 from [16], which has four
applications in [12]−[15] (in [12, Application 3.5], we even have a Gibbs sampler). (In
Theorem 3.1 from [16], the matrices Ql, l ∈ 〈t〉 , of Gibbs sampler in a generalized
sense from there do not appear — take Ql = Pl, ∀l ∈ 〈t〉.)

Related to the above considerations, below we give a result, the main result of this
section.

Theorem 2.4. Consider a Gibbs sampler in a generalized sense with state space
S = 〈r〉 and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2,
..., Qt, respectively. If Q1, Q2, ..., Qt satisfy the conditions (c5) and (c6), then

Pl = Ql, ∀l ∈ 〈t〉 .

Proof. Let l ∈ 〈t〉 . Since Pl and Ql are stochastic matrices, it is sufficient to show
that

(Pl)ij = (Ql)ij , ∀i, j ∈ S with i 6= j and (Ql)ij > 0.

Let i, j ∈ S with i 6= j and (Ql)ij > 0. We have

(Ql)ij =
πj∑

k∈S, (Ql)ik>0

πk
.

Since Ql (the incidence matrix of Ql) is symmetric, we have (Ql)ji > 0, so,

(Ql)ji =
πi∑

k∈S, (Ql)jk>0

πk
.

Since (Ql)ij > 0, we have j ∈ NQl,i. By Theorem 2.2(iv) we have NQl,i = NQl,j . It
follows that ∑

k∈S, (Ql)ik>0

πk =
∑

k∈NQl,i

πk =
∑

k∈NQl,j

πk =
∑

k∈S, (Ql)jk>0

πk.

Further, we have

πi (Ql)ij = πj (Ql)ji ,

so, by Theorem 2.3,

(Pl)ij = (Ql)ij .

�
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Remark 2.2. (a) It is easy to see that Pt = Qt for any Gibbs sampler in a generalized
sense with transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2, ...,
Qt, respectively. (This result follows from the condition (C3) in [16], ∆t+1 = ({i})i∈S ,
and definition of Gibbs sampler in a generalized sense.)

(b) It is easy to see that the conditions (c5) and (c6) hold for any Gibbs sampler in
a generalized sense with transition matrix P = P1, P1 corresponding to Q1 (t = 1 in
this case; (c5) and (c6) refer to Q1, not to P1; Q1 > 0 (by the condition (C3) in [16]),
Q1 = e′π (by Q1 > 0 and the definition of Gibbs sampler in a generalized sense),
P1 = Q1 (by (a)); Q1 > 0 implies (c5) and (c6)).

(c) If the conditions (c5) and (c6) do not hold for a Gibbs sampler in a generalized
sense with transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2,
..., Qt, respectively ((c5) and (c6) refer to Q1, Q2, ..., Qt, not to P1, P2, ..., Pt), we
can have either Pl 6= Ql for some l ∈ 〈t− 1〉 (t > 1, see (b); l ∈ 〈t− 1〉 because, see
(a), Pt = Qt) or Pl = Ql, ∀l ∈ 〈t〉. Indeed, this follows from the next two examples.

Example 2.1. Let S = 〈4〉 . Let

π =

(
θ

Z
,
θ2

Z
,
θ2

Z
,
θ3

Z

)
,

a probability distribution on S, where θ ∈ R+ (0 < θ ≤ 1 or θ > 1) and Z = θ+2θ2+θ3

(the normalization constant). Let

∆1 = (S) , ∆2 = ({1, 2} , {3, 4}) ,
∆3 = ({1} , {2} , {3} , {4}) = ({i})i∈S .

Note that π is a wavy probability distribution (with respect to ∆1, ∆2, ∆3), ∀θ ∈ R+.
Further, we consider the case θ > 1 only. For S, π, and ∆1, ∆2, ∆3, we consider
the Gibbs sampler in a generalized sense with transition matrix P = P1P2, P1, P2

corresponding to Q1, Q2, respectively, where

Q1 =


0 1

1+θ 0 θ
1+θ

1
1+θ 0 θ

1+θ 0

0 1
1+θ 0 θ

1+θ
1

1+θ 0 θ
1+θ 0

 , Q2 =


1

1+θ
θ

1+θ
1

1+θ
θ

1+θ
1

1+θ
θ

1+θ
1

1+θ
θ

1+θ


((Q1)12 = π2

π2+π4
= 1

1+θ , (Q1)14 = π4

π2+π4
= θ

1+θ (we considered (Q1)12 , (Q1)14 > 0),

etc.; Q1 (the incidence matrix of Q1) and Q2 are symmetric, Q1 and Q2 are not).
Since (Q1)11 = 0, the condition (c5) does not hold (for the sequence Q1, Q2). Since
2 6= 4, (Q1)12 > 0, and (Q1)14 > 0, but (Q1)24 = 0, the condition (c6) does not hold.
Moreover, we have

π1 (Q1)12 =
θ

Z (1 + θ)
6= π2 (Q1)21 =

θ2

Z (1 + θ)
, etc.

By Theorem 2.3 (or by the definition of matrices Pl, l ∈ 〈t〉 , from [16]) we have

P1 =


0 1

1+θ 0 θ
1+θ

1
θ(1+θ)

θ−1
θ

1
1+θ 0

0 1
1+θ 0 θ

1+θ
1

θ(1+θ) 0 1
1+θ

θ−1
θ

 and (see Remark 2.2(a)) P2 = Q2.
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Consequently, P1 6= Q1 — now, see Remark 2.2(c) again. Moreover, the second and
fourth row of P1 have 3 entries different from 0 while the second and fourth row of
Q1 have 2 entries different from 0 — now, it is interesting to go to Remark 2.1.

Example 2.2. Let S = 〈4〉 . Let

π =

(
1

10
,

3

10
,

4

10
,

2

10

)
,

a probability distribution on S. Let

∆1 = (S) , ∆2 = ({1, 2} , {3, 4}) , ∆3 = ({i})i∈S .
Note that π1 +π3 = π2 +π4. For S, π, and ∆1, ∆2, ∆3, we consider the Gibbs sampler
in a generalized sense with transition matrix P = P1P2, P1, P2 corresponding to Q1,
Q2, respectively, where

Q1 =


0 3

5 0 2
5

1
5 0 4

5 0

0 3
5 0 2

5
1
5 0 4

5 0

 , Q2 =


1
4

3
4

1
4

3
4

4
6

2
6

4
6

2
6


(Q1 and Q2 are symmetric, Q1 and Q2 are not). The conditions (c5) and (c6) do not
hold. Since πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈2〉 , ∀i, j ∈ S (π1 (Q1)12 = 3

50 = π2 (Q1)21 ,

etc.), by Theorem 2.3 we have Pl = Ql, ∀l ∈ 〈2〉 — now, see Remark 2.2(c) again.

Remark 2.3. For the Gibbs samplers in a generalized sense, by the proof of Theorem
2.4, the conditions (c5) and (c6) imply

πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈t〉 , ∀i, j ∈ S
— conversely, it is not true, see Example 2.2.

We conclude this section saying that to design good Gibbs samplers in a generalized
sense we can use the conditions (c5) and (c6) or, more generally, the equations from
Remark 2.3 — a case, a happy case, in which these equations hold is in Theorem 3.1
from [16]. (For more information on Theorem 3.1 from [16], see the first paragraph
after Remark 2.1.)

3. Probability distribution of a random vector with independent compo-
nents is a wavy probability distribution

In this section, we show that the probability distribution of a random vector with
independent components is a wavy probability distribution with respect to the lexi-
cographic order and certain partitions which will be specified. We work with random
vectors in the finite case only — the number of components is finite and each compo-
nent has a finite number of values, at least two values.

Let X = (X1, X2, ..., Xn) be a random vector with the set of values 〈〈h1〉〉 ×
〈〈h2〉〉 × ... × 〈〈hn〉〉 , where n, h1, h2, ..., hn ≥ 1. For simplification, suppose that
h1 = h2 = ... = hn := h, so, the set of values is 〈〈h〉〉n . Suppose that X1, X2, ..., Xn

are independent random variables. Let π be the probability distribution of X (π is
positive; π = (πx)x∈〈〈h〉〉n). Let

U(x1,x2,...,xl) = {(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ 〈〈h〉〉n and ys = xs,∀s ∈ 〈l〉} ,



A GIBBS SAMPLER IN A GENERALIZED SENSE, II 111

∀l ∈ 〈n〉 , ∀x1, x2, ..., xl ∈ 〈〈h〉〉 . (The set

{(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ 〈〈h〉〉n and ys = xs,∀s ∈ 〈l〉}

also appears in [16, Section 2], but in a different context and differently denoted,
K(x1,x2,...,xl) instead of U(x1,x2,...,xl).) Let

∆1 = (〈〈h〉〉n) ,

∆l+1 =
(
U(x1,x2,...,xl)

)
x1,x2,...,xl∈〈〈h〉〉

,∀l ∈ 〈n〉

(obviously,

∆n+1 =
(
U(x1,x2,...,xn)

)
x1,x2,...,xn∈〈〈h〉〉

= ({(x1, x2, ..., xn)})(x1,x2,...,xn)∈〈〈h〉〉n

and

∆1 � ∆2 � ... � ∆n+1).

Suppose that 〈〈h〉〉n is equipped with the lexicographic order. The sets of each parti-
tion ∆l+1, where l ∈ 〈n〉, can be considered, if this is of interest to the reader, in the

order induced by the lexicographic order on 〈〈h〉〉l : ∀ (a1, a2, ..., al) , (b1, b2, ..., bl) ∈
〈〈h〉〉l ,

U(a1,a2,...,al)

ilex
≤ U(b1,b2,...,bl) if (a1, a2, ..., al)

lex
≤ (b1, b2, ..., bl) ,

where
lex
≤ is the lexicographic order on 〈〈h〉〉l and

ilex
≤ is the induced order by this on

∆l+1.

Theorem 3.1. Under the above conditions π is a wavy probability distribution on
〈〈h〉〉n (with respect to the lexicographic order and partitions ∆1, ∆2, ..., ∆n+1).

Proof. Let p
(v)
u = P (Xv = u) , ∀u ∈ 〈〈h〉〉 , ∀v ∈ 〈n〉 . Let l ∈ 〈n〉 . Let x1, x2, ..., xl ∈

〈〈h〉〉 . Let (y1, y2, ..., yn) ∈ U(x1,x2,...,xl). It follows that ys = xs, ∀s ∈ 〈l〉 . We have

π(y1,y2,...,yn) = π(x1,x2,...,xl,yl+1,yl+2,...,yn) =

= P (X1 = x1)P (X2 =x2) ...

...P (Xl = xl)P (Xl+1 = yl+1)P (Xl+2 = yl+2) ...P (Xn = yn) =

= p(1)
x1
p(2)
x2
...p(l)

xl
p(l+1)
yl+1

p(l+2)
yl+2

...p(n)
yn

(yl+1, yl+2, ..., yn, etc. vanish when l = n).
Set

K =

{
S if l = 1,

U(x1,x2,...,xl−1) if l ∈ 〈n〉 − {1} .
The sets from ∆l+1 which are included in K (K ∈ ∆l) are

U(x1,x2,...,xl−1,0), U(x1,x2,...,xl−1,1), ..., U(x1,x2,...,xl−1,h)

(x1, x2, ..., xl−1 vanish when l = 1). U(x1,x2,...,xl−1,0) contains the first
∣∣U(x1,x2,...,xl−1,0)

∣∣
elements of K (see the definition of wavy probability distribution in [16]). Suppose,
further, that xl 6= 0. Consequently, (x1, x2, ..., xl, yl+1, yl+2, ..., yn) /∈ U(x1,x2,...,xl−1,0)

((x1, x2, ..., xl, yl+1, yl+2, ..., yn) ∈ U(x1,x2,...,xl−1,1) ⊆ K, or ∈ U(x1,x2,...,xl−1,2) ⊆ K, ...,
or ∈ U(x1,x2,...,xl−1,h) ⊆ K). We have

π(x1,x2,...,xl,yl+1,yl+2,...,yn) = p(1)
x1
p(2)
x2
...p(l)

xl
p(l+1)
yl+1

p(l+2)
yl+2

...p(n)
yn
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=
p

(l)
xl

p
(l)
0

p(1)
x1
p(2)
x2
...p(l−1)

xl−1
p

(l)
0 p(l+1)

yl+1
p(l+2)
yl+2

...p(n)
yn =

p
(l)
xl

p
(l)
0

π(x1,x2,...,xl−1,0,yl+1,yl+2,...,yn)

(
p(l)xl

p
(l)
0

is the proportionality factor). Therefore, π is a wavy probability distribution on

〈〈h〉〉n. �

Remark 3.1. The Gibbs sampler with the state space S = 〈〈h〉〉n (h, n ≥ 1) and
transition matrix P = P1P2...Pn from [12, Theorem 3.2] attains its stationarity at time
1 (1 step due to P or n steps due to P1, P2, ..., Pn). Using Theorem 3.1 from [16],
we can construct the Gibbs sampler in a generalized sense for the wavy probability
distribution π of random vector X. (For more information on Theorem 3.1 from [16],
see the first paragraph after Remark 2.1 and last paragraph from Section 2.) This
chain attains its stationarity at time 1 and, moreover, is even a Gibbs sampler. So,
we have another case in which the Gibbs sampler attains its stationarity at time 1.

Remark 3.2. (a) If the random vector X = (X1, X2, ..., Xn) has the set of values
〈〈1〉〉n and independent and identically distributed components, then

X1 +X2 + ...+Xn ∼ Bi (n, p) ,

where p = P (X1 = 1) , 0 < p < 1. It is interesting to connect the binomial distribution
to the wavy probability distributions, i.e., to obtain the results on the binomial distri-
bution using the fact that π (the probability distribution of X) is a wavy probability
distribution.

(b) The geometric distribution is a probability distribution related to the wavy
probability distributions (see [12, Application 3.5]).

In the finite case, in the collection of probability distributions of random vectors
with dependent components, we found three important wavy probability distributions:
the Mallows model through Cayley metric and that through Kendall metric (see
[13]−[14]; see also [16]) and, when θ 6= 1, the Potts model on the tree (see [15]; see
also [16]; see also Remark 5.1; for θ, see [15] or Section 5). Our interest is to find other,
as many as possible, important wavy probability distributions. It is also of interest
to us to find, besides the geometric distribution (see Remark 3.2(b)), other important
probability distributions having connections with the wavy probability distributions.

4. Wavy probability distributions in a generalized sense

In this section, we generalize the notion of wavy probability distribution and The-
orem 3.2 from [16].

Definition 4.1. Let S = 〈r〉. Let π be a positive probability distribution on S. Let
t ≥ 1. Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S .
(∆1 � ∆2 implies r ≥ 2.) We say that π is a wavy probability distribution in a
generalized sense (with respect to ∆1, ∆2, ..., ∆t+1) if there exists a hybrid Metropolis-
Hastings chain (in particular, a Gibbs sampler in a generalized sense) with state space
S and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2, ...,
Qt, respectively, the latter matrices being defined by means of ∆1, ∆2, ..., ∆t+1 (see
[16]), such that

P = e′π.
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The notion of wavy probability distribution in a generalized sense makes sense if
the wavy probability distributions are wavy probability distributions in a generalized
sense and if there exists at least one wavy probability distribution in a generalized
sense which is not a wavy probability distribution. By Theorem 3.1 from [16], the wavy
probability distributions are wavy probability distributions in a generalized sense.
(For more information on Theorem 3.1 from [16], see the first paragraph after Remark
2.1 and last paragraph from Section 2.) An example of wavy probability distribution
in a generalized sense (with respect to 3 partitions) which is not a wavy probability
distribution (with respect to the same 3 partitions) is presented in Example 5.1 (from
Section 5).

Although an order relation on S is not required for a wavy probability distribution
in a generalized sense on S, such a relation will be considered when we will need it.

It is interesting to find the structure, if any, of wavy probability distributions in a
generalized sense, at least in the case of Gibbs samplers in a generalized sense.

One way to obtain wavy probability distributions in a generalized sense is presented
in the next result.

Theorem 4.1. Let S = 〈r〉. Let π be a positive probability distribution on S. Let
t ≥ 1. Let ∆1, ∆2, ..., ∆t+1 ∈ Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S .
If there exists a hybrid Metropolis-Hastings chain (in particular, a Gibbs sampler in
a generalized sense) with state space S and transition matrix P = P1P2...Pt, P1, P2,
..., Pt corresponding to Q1, Q2, ..., Qt, respectively, the latter matrices being defined
by means of ∆1, ∆2, ..., ∆t+1, such that

P1 ∈ G∆1,∆2 , P2 ∈ G∆2,∆3 , ..., Pt ∈ G∆t,∆t+1 ,

then π is a wavy probability distribution in a generalized sense with respect to ∆1, ∆2,
..., ∆t+1.

Proof. By Theorem 1.2 from [16] we have

πP = π.

By Theorem 1.1 from [16], P is a stable matrix. So, ∃ψ, ψ is a probability distribution
on S, such that

P = e′ψ.

Finally, we have

π = πP = πe′ψ = ψ,

so,

P = e′π.

�

Let ∆1 ∈Par(〈m〉) and ∆2 ∈Par(〈n〉). Let P ∈ G∆1,∆2 ⊆ Sm,n (see, e.g., [16] for
G∆1,∆2

). Let K ∈ ∆1 and L ∈ ∆2. Then ∃aK,L ≥ 0,∃QK,L ∈ S|K|,|L| such that

PLK = aK,LQK,L. Set the matrix

P−+ =
(
P−+
KL

)
K∈∆1,L∈∆2

, P−+
KL = aK,L, ∀K ∈ ∆1, ∀L ∈ ∆2

(P−+
KL , K ∈ ∆1, L ∈ ∆2, are the entries of matrix P−+). If confusion can arise we

write P−+(∆1,∆2) instead of P−+. (For an example, see, e.g., [12].)

Below we give a generalization of Theorem 3.2 from [16].
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Theorem 4.2. Let S = 〈r〉 . Let π = (πi)i∈S be a wavy probability distribution in a
generalized sense (on S) with respect to the partitions ∆1, ∆2, ..., ∆t+1. Suppose that

P1 ∈ G∆1,∆2
, P2 ∈ G∆2,∆3

, ..., Pt ∈ G∆t,∆t+1

(we use the notation from Definition 4.1, ...). Suppose that

πi =
νi
Z
, ∀i ∈ S,

where

Z =
∑
i∈S

νi,

Z is the normalization constant (νi ∈ R+, ∀i ∈ S, so, Z ∈ R+). Then ∃!U2 ∈ ∆2,
U3 ∈ ∆3, ..., Ut ∈ ∆t such that

S ⊇ U2 ⊇ U3 ⊇ ... ⊇ Ut ⊇ {1} ;

further, we have

Z =
ν1

(P1)
−+
SU2

(P2)
−+
U2U3

... (Pt)
−+
Ut{1}

((P1)
−+

= (P1)
−+(∆1,∆2)

, (P2)
−+

= (P2)
−+(∆2,∆3)

, ..., (Pt)
−+

= (Pt)
−+(∆t,∆t+1)

).

Proof. The first part of conclusion is obvious because ∆2, ∆3, ..., ∆t are partitions
and ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S .

By Definition 4.1 we have P = e′π. It follows that

P−+(∆1,∆t+1) = (e′π)
−+(∆1,∆t+1)

and, consequently, (
P−+(∆1,∆t+1)

)
S{1}

= π1.

By Theorem 2.3(ii) from [10] (or Theorem 1.5(ii) from [11]) we have

P−+(∆1,∆t+1) = (P1)
−+(∆1,∆2)

(P2)
−+(∆2,∆3)

... (Pt)
−+(∆t,∆t+1)

=

= (P1)
−+

(P2)
−+

... (Pt)
−+

.

We now have

π1 =
(
P−+(∆1,∆t+1)

)
S{1}

=
(

(P1)
−+

(P2)
−+

... (Pt)
−+
)
S{1}

=

= (P1)
−+
SU2

(P2)
−+
U2U3

... (Pt)
−+
Ut{1} .

On the other hand,

π1 =
ν1

Z
.

So,

Z =
ν1

(P1)
−+
SU2

(P2)
−+
U2U3

... (Pt)
−+
Ut{1}

.

�



A GIBBS SAMPLER IN A GENERALIZED SENSE, II 115

5. Potts model

In this section, we show that the Potts model on a (finite) graph is a wavy prob-
ability distribution with respect to an order relation and three partitions which will
be specified. For the Ising model on Cn, the cycle graph with n vertices (n ≥ 3), we
compute the normalization constant and give an example for n = 3.

Let G = (V, E) be a (nondirected) graph with vertex set V = {V1, V2, ..., Vn} and
edge set E . Suppose that n ≥ 2 and |E| ≥ 1 (|·| is the cardinal). [Vi, Vj ] is the edge
whose ends are vertices Vi and Vj , where i, j ∈ 〈n〉 (i 6= j). Consider the set of
functions

〈〈h〉〉V = {f | f : V → 〈〈h〉〉} ,
where h ≥ 1 (h ∈ N). Represent the functions from 〈〈h〉〉V by vectors: if f ∈ 〈〈h〉〉V ,
Vi 7−→ f (Vi) := xi, ∀i ∈ 〈n〉 , then its vectorial representation is (x1, x2, ..., xn) .
(x1, x2, ..., xn) , x1, x2, ..., xn ∈ 〈〈h〉〉 , are called configurations. 〈〈h〉〉 can be seen as a
set of colors; in this case, if (x1, x2, ..., xn) is a configuration, then x1 is the color of
V1, x2 is the color of V2, ..., xn is the color of Vn.

Set (see, e.g., [6, Chapter 6])

H (x) =
∑

[Vi,Vj ]∈E

1 [xi 6= xj ] , ∀x ∈ 〈〈h〉〉n (x = (x1, x2, ..., xn) ),

where

1 [xi 6= xj ] =

{
1 if xi 6= xj ,
0 if xi = xj ,

∀x ∈ 〈〈h〉〉n , ∀i, j ∈ 〈n〉 . The function H is called the Hamiltonian or energy. H (x)
represents the energy of configuration x.

Set

πx =
θH(x)

Z
, ∀x ∈ 〈〈h〉〉n ,

where θ ∈ R+ and

Z =
∑

x∈〈〈h〉〉n
θ
H(x)

.

The probability distribution π = (πx)x∈〈〈h〉〉n (on 〈〈h〉〉n) is called, when 0 < θ < 1,

the Potts model on the graph G (see [17]; see, e.g., also [6, Chapter 6], [7], and [19])
— we extend this notion considering θ ∈ R+. In particular, if h = 1 and 0 < θ < 1, π
is called the Ising model on the graph G (see [5]; see, e.g., also [6, Chapter 6] and [8];
no external field is allowed in our article) — we also extend this notion considering
θ ∈ R+. Z is called the normalization constant.

In this section, ⊕ is the addition modulo h+ 1.
Consider the subsets U(k), k ∈ 〈〈h〉〉 , of 〈〈h〉〉n ,

U(k) = {(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ 〈〈h〉〉n and y1 = k } , ∀k ∈ 〈〈h〉〉 .

Theorem 5.1. We have

U(k) = U(0) ⊕ (k, k, ..., k) , ∀k ∈ 〈〈h〉〉 ,

where

U(0) ⊕ (k, k, ..., k) =
{

(x1, x2, ..., xn)⊕ (k, k, ..., k)
∣∣ (x1, x2, ..., xn) ∈ U(0)

}
=
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=
{

(x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k)
∣∣ (x1, x2, ..., xn) ∈ U(0)

}
, ∀k ∈ 〈〈h〉〉 .

Proof. Let k ∈ 〈〈h〉〉 . Consider the function f0,k : U(0) −→ U(k),

f0,k (x1, x2, ..., xn) = (x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k)

((x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k) ∈ U(k) because x1 ⊕ k = 0 ⊕ k = k; f0,k is a special case
of the function fj,j⊕k (j, k ∈ 〈〈h〉〉) from [15]). This function is bijective because it is
injective (it is easy to show this fact) and

∣∣U(k)

∣∣ =
∣∣U(0)

∣∣ . Consequently,

U(k) =
{

(x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k)
∣∣ (x1, x2, ..., xn) ∈ U(0)

}
.

�

Let
0
≤ be an order relation on U(0). The case when

0
≤=

lex
≤ is an interesting one, see

Remark 5.1, where
lex
≤ is, as in Section 3, the lexicographic order (here, on U(0)). Let

k ∈ 〈h〉 (〈h〉 = 〈〈h〉〉−{0}). Consider U(k) equipped with the order relation
k
≤ defined

as follows (see the formula for U(k) from Theorem 5.1):

(x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k)
k
≤ (z1 ⊕ k, z2 ⊕ k, ..., zn ⊕ k)

if

(x1, x2, ..., xn)
0
≤ (z1, z2, ..., zn) ,

where (x1, x2, ..., xn) , (z1, z2, ..., zn) ∈ U(0).

Consider 〈〈h〉〉n equipped with the order relation 0 defined as follows (〈〈h〉〉n =⋃
k∈〈〈h〉〉

U(k)):

(u1, u2, ..., un) 0 (v1, v2, ..., vn)

if

(u1, u2, ..., un) ∈ U(k1) and (v1, v2, ..., vn) ∈ U(k2) for some k1, k2 ∈ 〈〈h〉〉 , k1 < k2,

or if

(u1, u2, ..., un) , (v1, v2, ..., vn) ∈ U(k) and

(u1, u2, ..., un)
k
≤ (v1, v2, ..., vn) for some k ∈ 〈〈h〉〉 ,

where (u1, u2, ..., un) , (v1, v2, ..., vn) ∈ 〈〈h〉〉n .

Theorem 5.2. The Potts model on the graph G is a wavy probability distribution
with respect to the order relation 0 and partitions

∆1 = (〈〈h〉〉n) , ∆2 =
(
U(0), U(1), ..., U(h)

)
, ∆3 = ({x})x∈〈〈h〉〉n .

Proof. First, we consider ∆1 and ∆2 (see the definition of wavy probability distribu-
tion in [16]). U(0) contains the first

∣∣U(0)

∣∣ elements of 〈〈h〉〉n (〈〈h〉〉n ∈ ∆1; 〈〈h〉〉n

is equipped with the order relation 0; U(0) ∈ ∆2). Fix U(k) (U(k) ∈ ∆2), where
k ∈ 〈h〉 (not k ∈ 〈〈h〉〉). (It follows that U(k) 6= U(0).) Since H (u1, u2, ..., un) =

H (u1 ⊕ k, u2 ⊕ k, ..., un ⊕ k) , ∀ (u1, u2, ..., un) ∈ 〈〈h〉〉n (it is easy to show this), it
follows that

π(x1⊕k,x2⊕k,...,xn⊕k) = π(x1,x2,...,xn)

(the proportionality factor is 1), ∀ (x1, x2, ..., xn) ∈ U(0) ((x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k) ∈
U(k) if (x1, x2, ..., xn) ∈ U(0), see Theorem 5.1).
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Second, we consider ∆2 and ∆3. Fix {x} ({x} ∈ ∆3; x = (x1, x2, ..., xn)). Then
∃s ∈ 〈〈h〉〉 such that {x} ⊆ U(s) (U(s) ∈ ∆2). Let y be the smallest element of U(s)

(y = (y1, y2, ..., yn) ; y1 = s). Suppose, moreover, that x 6= y. Since

πy =
θH(y)

Z
,

we have

πx =
θH(x)

Z
=
θH(x)

θH(y)
· θ

H(y)

Z
= θH(x)−H(y)πy

(the proportionality factor is θH(x)−H(y)). �

Remark 5.1. Since π(0,0,...,0) = 1
Z , by Theorem 3.2 from [16] and Theorem 5.2 we

obtain

Z = (1 + h)

1 +
∑

x∈U(0), x6=0

θH(x)

 = (h+ 1)
∑
x∈U(0)

θH(x)

for the Potts model on the graph G (to compute Z, the normalization constant, we
also used the fact that (0, 0, ..., 0) ∈ U(0) and θH(0,0,...,0) = θ0 = 1). For the Potts
model on the tree, we obtained more, namely,

ZT = (h+ 1) (hθ + 1)
n−1

(see [15]), where ZT is the normalization constant for this special model and n is the
number of nodes (vertices) of tree (n ≥ 2). This good formula is due to the fact
that the Potts model on the tree with n nodes is a wavy probability distribution with

respect to the n + 1 partitions from [15] and order relation
fc
≤, the induced order by

(the function) fc, defined as follows. By [15] it is easy to see that the Potts model
on the star graph with n vertices (n ≥ 2) is a wavy probability distribution with
respect to the n + 1 partitions from [15] and order relation 0 when (do not forget

this!)
0
≤=

lex
≤ . Set

(x1, x2, ..., xn)
fc
≤ (y1, y2, ..., yn) if fc (x1, x2, ..., xn) 0 fc (y1, y2, ..., yn) ,

where (x1, x2, ..., xn) , (y1, y2, ..., yn) ∈ 〈〈h〉〉n , (x1, x2, ..., xn) , (y1, y2, ..., yn) are con-
figurations of the tree with n nodes, fc : 〈〈h〉〉n −→ 〈〈h〉〉n , the function for configu-
rations from [15] (see this work for the complete definition of fc, for the fact that fc is
bijective, etc.), and fc (x1, x2, ..., xn) , fc (y1, y2, ..., yn) are configurations of the star
graph with n vertices. Note, moreover, that, due to Theorem 5.2, the Potts model on
the tree is also a wavy probability distribution with respect to the 3 partitions from
Theorem 5.2 and order relation 0.

Below we give another application of our results about trees from [15] — we derive
the normalization constant for the Ising model on Cn, the cycle graph with n vertices,
from the normalization constant for the Ising model on Pn, the path graph with n
vertices. For a different proof of the next result, see, e.g., [8, pp. 31−35].

Theorem 5.3. Let ZCn be the normalization constant for the Ising model on Cn (with
the parameter θ; h = 1 in this case; n ≥ 3). Then

ZCn = (1 + θ)
n

+ (1− θ)n .
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Proof. Suppose that Cn has the vertices V1, V2, ..., Vn and edges [V1, V2] , [V2, V3] , ...,
[Vn−1, Vn] , [Vn, V1] . We cut the edge [V1, Vn] of Cn ([V1, Vn] = [Vn, V1]) and obtain
Pn, which is a special tree with n vertices. Denote the normalization constant for the
Ising model on Pn by ZPn

. By [15] we have

ZPn
= 2 (θ + 1)

n−1
.

Let HCn and HPn
be the energies of Ising model on Cn and of that on Pn, respectively.

Any configuration of Pn is a (finite) sequence of 0′s and 1′s. If the ends of sequence
are equal, 0, 0 or 1, 1, then, from left to right, the number of transitions from 0 to 1 or
from 1 to 0 is even while if the ends of sequence are different, 0, 1 or 1, 0, then, from
left to right too, the number of transitions from 0 to 1 or from 1 to 0 is odd. E.g., for
n = 6, the sequence 0, 1, 0, 0, 1, 0 has 4 transitions (from 0 to 1 or from 1 to 0, from
left to right), so, HP6 (0, 1, 0, 0, 1, 0) = 4 and, consequently, HC6 (0, 1, 0, 0, 1, 0) = 4
while the sequence 0, 1, 1, 0, 1, 1 has 3 transitions, so, HP6 (0, 1, 1, 0, 1, 1) = 3 and,
consequently, HC6 (0, 1, 1, 0, 1, 1) = 3 + 1 = 4. Due this fact, we have

ZCn =
∑

x∈〈〈1〉〉n
θHCn (x)

= [the sum of terms of ZPn having θ with even exponent]

+ θ × [the sum of terms of ZPn having θ with odd exponent]

= 2
[(

1 + C2
n−1θ

2 + C4
n−1θ

4 + ...
)

+ θ
(
C1
n−1θ + C3

n−1θ
3 + ...

)]
.

It is easy to see that (a known result)

Ct−1
s−1 + Cts−1 = Cts, ∀s, t, s ≥ 2, 1 ≤ t ≤ s− 1.

Case 1. n = 2k, k ≥ 2. We have

ZC2k = 2
[(

1 + C2
2k−1θ

2 + C4
2k−1θ

4 + ...
)

+ θ
(
C1

2k−1θ + C3
2k−1θ

3 + ...
)]

= 2C0
2k−1 + 2

(
C1

2k−1 + C2
2k−1

)
θ2 + 2

(
C3

2k−1 + C4
2k−1

)
θ4 + ...+

+ 2
(
C2k−3

2k−1 + C2k−2
2k−1

)
θ2k−2 + 2C2k−1

2k−1θ
2k

= 2C0
2k + 2C2

2kθ
2 + 2C4

2kθ
4 + ...+ 2C2k−2

2k θ2k−2 + 2C2k
2kθ

2k

=
(
C0

2k + C1
2kθ + C2

2kθ
2 + ...+ C2k

2kθ
2k
)

+
(
C0

2k − C1
2kθ + C2

2kθ
2 − ...+ C2k

2kθ
2k
)

= (1 + θ)
2k

+ (1− θ)2k
.

Case 2. n = 2k + 1, k ≥ 1. We have

ZC2k+1
= 2

[(
1 + C2

2kθ
2 + C4

2kθ
4 + ...

)
+ θ

(
C1

2kθ + C3
2kθ

3 + ...
)]

= 2C0
2k + 2

(
C1

2k + C2
2k

)
θ2 + 2

(
C3

2k + C4
2k

)
θ4 + ...+ 2

(
C2k−1

2k + C2k
2k

)
θ2k

= 2C0
2k+1 + 2C2

2k+1θ
2 + 2C4

2k+1θ
4 + ...+ 2C2k

2k+1θ
2k

=
(
C0

2k+1 + C1
2k+1θ + C2

2k+1θ
2 + ...+ C2k+1

2k+1θ
2k+1

)
+
(
C0

2k+1 − C1
2k+1θ + C2

2k+1θ
2 − ...− C2k+1

2k+1θ
2k+1

)
= (1 + θ)

2k+1
+ (1− θ)2k+1

.

From Cases 1 and 2, we have

ZCn = (1 + θ)
n

+ (1− θ)n . �
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From Theorem 5.2, we know that the Ising model on C3 is a wavy probability
distribution with respect to the order relation 0 and 3 partitions from there in this
special case. But the Ising model on C3 is also a wavy probability distribution in
a generalized sense with respect to 3 partitions which will be specified in the next
example (it is easy to give other examples for 3 or even more partitions).

Example 5.1. Let π be the Ising model on C3. Consider that the elements of 〈〈1〉〉3
are in the order:

(0, 0, 0) , (1, 1, 1) , (0, 0, 1) , (1, 1, 0) , (0, 1, 0) , (1, 0, 1) , (0, 1, 1) , (1, 0, 0) .

By this order,

π =

(
1

Z
,

1

Z
,
θ2

Z
,
θ2

Z
,
θ2

Z
,
θ2

Z
,
θ2

Z
,
θ2

Z

)
.

Consider the partitions

∆1 =
(
〈〈1〉〉3

)
,

∆2 = ({(0, 0, 0) , (1, 1, 1)} , {(0, 0, 1) , (1, 1, 0)} , {(0, 1, 0) , (1, 0, 1) , (0, 1, 1) , (1, 0, 0)}) ,
∆3 = ({x})x∈〈〈1〉〉3 .

Consider the Gibbs sampler in a generalized sense with transition matrix P = P1P2,
P1, P2 corresponding to Q1, Q2, respectively, where (we use Theorems 2.2 and 2.4 —
these results, among other things, help us to construct examples of Gibbs samplers
in a generalized sense more quickly)

P1 = Q1 =



1
1+3θ2 0 θ2

1+3θ2 0 θ2

1+3θ2
θ2

1+3θ2 0 0

0 1
1+3θ2 0 θ2

1+3θ2 0 0 θ2

1+3θ2
θ2

1+3θ2

1
1+3θ2 0 θ2

1+3θ2 0 θ2

1+3θ2
θ2

1+3θ2 0 0

0 1
1+3θ2 0 θ2

1+3θ2 0 0 θ2

1+3θ2
θ2

1+3θ2

1
1+3θ2 0 θ2

1+3θ2 0 θ2

1+3θ2
θ2

1+3θ2 0 0

1
1+3θ2 0 θ2

1+3θ2 0 θ2

1+3θ2
θ2

1+3θ2 0 0

0 1
1+3θ2 0 θ2

1+3θ2 0 0 θ2

1+3θ2
θ2

1+3θ2

0 1
1+3θ2 0 θ2

1+3θ2 0 0 θ2

1+3θ2
θ2

1+3θ2



,

P2 = Q2 =



1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


(the rows and columns of P1 and P2 are labeled using the given order relation). We
have

P1 ∈ G∆1,∆2
, P2 ∈ G∆2,∆3

.
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By Theorem 4.1, π is a wavy probability distribution in a generalized sense with
respect to the partitions considered. The normalization constant Z can be obtained
in this case by direct computation, Theorem 5.3, or Theorem 4.2. If we use Theorem
4.2, since

π(0,0,0) =
1

Z
,

we have

Z =
1

(P1)
−+
〈〈1〉〉3{(0,0,0), (1,1,1)} (P2)

−+
{(0,0,0), (1,1,1)}{(0,0,0)}

=
1

1
1+3θ2 ·

1
2

= 2
(
1 + 3θ2

)
(we can use the notations

(P1)
−+
〈〈1〉〉3→{(0,0,0), (1,1,1)} and (P2)

−+
{(0,0,0), (1,1,1)}→{(0,0,0)}

instead of

(P1)
−+
〈〈1〉〉3{(0,0,0), (1,1,1)} and (P2)

−+
{(0,0,0), (1,1,1)}{(0,0,0)} ,

respectively, see [16]).

Remark 5.2. For the Ising model on Cn, from the normalization constant computed
in Theorem 5.3, we can obtain other things, such as, the mean energy (see, e.g., [1,
p. 6] or [15] for the computation method for this) and free energy per site (see, e.g.,
[7] or [15] for this notion).
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