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Mohammed Abdellaoui, Elhoussine Azroul, Stanislas Ouaro,
and Urbain Traoré

Abstract. We extend the theory of capacity to generalized Sobolev spaces for the study

of nonlinear parabolic equations. We introduce the definition and some properties of renor-
malized solutions and we show that diffuse measure can be decomposed in space and time.

As consequence, we show the existence and uniqueness of renormalized solutions. The main

technical tools used include estimates and compactness convergence.
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1. Introduction

The concept of capacity is of fundamental importance in the study of solutions of
partial differential equations and classical potential theory. For example, a char-
acterization of the relationship between sets and zero parabolic p−capacity sets is
fundamental. In the stationary case, capacity is related to the underlying Sobolev
space, but the situation is more delicate for parabolic partial differential equations.
Indeed the theory of capacity seems to be related more closely to the existence and
uniqueness of the solution of some elliptic and parabolic problems. The principal
prototype for evolution case is the p−parabolic equation

ut − div(|∇u|p−2∇u) = µ in (0, T )× Ω,

u(0, x) = u0(x) in Ω,

u(t, x) = 0 on (0, T )× ∂Ω,

(1)

with 1 < p < ∞, u 7→ −div(|∇u|p−2∇u) is the p−Laplace operator, and µ is a
non-negative Radon measure. When p = 2, the thermal capacity related to the heat
equation and its generalization have been studied, for example, by Lanconelli [33]
and Watson [45]. Capacities defined in terms of functions spaces are introduced in
[3, 24, 29, 36, 47]. For non-quadratic case, Droniou, Porretta and Prignet [22], as
well as Saraiva [43], introduced and studied the notion of parabolic capacity to get a
representation theorem for measures that are zero on subsets ofQ of null capacity. One
of essential results (Theorem 2.7 below), gives a generalization of the decomposition
result using the p(·)−parabolic capacity developed in [35] (this extends [22, Theorem
2.28]). In this paper we prove the existence of renormalized solutions to the parabolic
problems for arbitrary M0(Q)−data using the compactness results. The paper is

Received March 15, 2018. Accepted May 25, 2019.

269



270 M. ABDELLAOUI, E. AZROUL, S. OUARO, AND U. TRAORÉ

organized as follows: in Section 2, we recall some basic properties on Sobolev spaces
with variable exponents and p(·)−parabolic capacity. In section 3, we state the precise
hypotheses on the data and the main results of this paper. We then quickly prove
some a priori estimates on the solutions of (1). Finally, in Section 4, we show how
these estimates allow to obtain existence of solutions. Our argument will be based on
a special type of distributional solutions, the so-called ”renormalized solutions” and
also on the strong convergence of truncates.

2. Mathematical preliminaries

2.1. Sobolev spaces with variable exponents. We recall some definitions and
basic properties of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω) and

W
1,p(·)
0 (Ω), where Ω is an open subset of RN . We refer to Fan and Zhao [26, 27]

for further properties on variable exponent Lebesgue-Sobolev spaces. Let p(·) : Ω →
[1,+∞) be a continuous, real-valued function (the variable exponent) and let p− =
min
x∈Ω

p(x) and p+ = max
x∈Ω

p(x). We define the variable exponent Lebesgue spaces

Lp(·)(Ω) = {u : Ω→ R, u is measurable with

∫
Ω

|u(x)|p(x)dx <∞}.

We define a norm, the so-called Luxembourg norm, on this space by the formula

‖u‖Lp(·)(Ω) = inf{λ > 0 ;

∫
Ω

∣∣u(x)

λ

∣∣p(x)
dx ≤ 1}.

The following inequality will be used later

min{‖u‖p−
Lp(·)(Ω)

, ‖u‖p+
Lp(·)(Ω)

} ≤
∫

Ω

|u(x)|p(x)dx ≤ max{‖u‖p−
Lp(·)(Ω)

, ‖u‖p+
Lp(·)(Ω)

}. (2)

If p− > 1, then Lp(·)(Ω) is reflexive and its dual can be identified with Lp
′(·)(Ω), where

1
p(·) + 1

p′(·) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), the Hölder type inequality∫
Ω

|uv|dx ≤ (
1

p−
+

1

p′−
)‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω)

(3)

holds true. Extending a variable exponent p(·) : Ω → [1,+∞) to Q = [0, T ] × Ω by
setting p(t, x) := p(x) for all (t, x) ∈ Q, we may also consider the generalized Lebesgue
space (which, of course, shares the same type of properties as Lp(·)(Ω))

Lp(·)(Q) = {u : Q→ R; u is measurable with

∫
Q

|u(t, x)|p(x)d(t, x) <∞},

endowed with the norm

‖u‖Lp(·)(Q) = inf{λ > 0 ;

∫
Q

∣∣u(t, x)

λ

∣∣p(x)
d(t, x) ≤ 1}.

We define also the variable Sobolev space

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)}.
On W 1,p(·)(Ω) we may consider one of the following equivalent norms{

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω)

‖u‖W 1,p(·)(Ω) = inf{λ > 0 ;
∫

Ω
(
∣∣∇u(x)

λ

∣∣p(x)
+
∣∣u(x)
λ

∣∣p(x)
)dx ≤ 1}.
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We define alsoW
1,p(·)
0 (Ω) = C∞c (Ω)

W 1,p(·)(Ω)
. Assuming p− > 1, the spacesW 1,p(·)(Ω)

and W
1,p(·)
0 (Ω) are separable and reflexive Banach spaces and the space W−1,p′(·)(Ω)

denotes the dual of W
1,p(·)
0 (Ω).

Remark 2.1. The variable exponent p(·) : Ω→ [1,+∞) satisfies the Lög-continuity
condition if

∀x1, x2 ∈ Ω, |x1 − x2| < 1, |p(x1)− p(x2)| < ω(|x1 − x2|), (4)

where ω : (0,∞)→ R is a nondecreasing function with lim sup
α→0+

ω(α)ln( 1
α ) < +∞. The

Log-Hölder continuity condition is used to obtain regularity results on Sobolev spaces

with variable exponents; in particular, C∞(Ω) is dense in W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) =

W 1,p(·)(Ω) ∩ W 1,1
0 (Ω). Moreover, if p(·) satisfies the Lög-continuity condition and

1 < p− ≤ p+ < N , then the Sobolev embedding holds also for r(·) = p∗(·), i.e.

W 1,p(·)(Ω) ⊂ Lp
∗(·)(Ω) where p∗(x) = Np(x)

N−p(x) (see [17] for more details). We do not

need these regularity properties to prove our results and will most exclusively work
with Lebesgue and Lebesgue-Sobolev spaces with only continuous variable exponents
p(·) : Ω→ [1,+∞) such that p− > 1.

Remark 2.2. Note that the following inequality in general does not hold [26]∫
Ω

|u|p(x)dx ≤ C
∫

Ω

|∇u|p(x)dx.

Remark 2.3. Note also that the generalized Lebesgue and Sobolev spaces can also
be defined in the same way for only measurable real-valued variable exponents p(·)
satisfying 1 ≤ pinf ≤ psup < ∞ where pinf = ess-infx∈Ωp(x), psup = ess-supx∈Ωp(x).
According to [26], such variable exponent Lebesgue and Sobolev spaces are Banach
spaces, the Hölder type inequality holds, they are reflexive if and only if we have 1 <
pinf ≤ psup <∞. The inclusion between Lebesgue spaces also generalizes naturally: if
0 < |Ω| <∞ and r1, r2 are variable exponents so that r1(·) ≤ r2(·) almost everywhere
in Ω, then there exists the continuous embedding Lr2(·)(Ω) ↪→ Lr1(·)(Ω) whose norm

does not exceed |Ω|+ 1. For u ∈W 1,p(·)
0 (Ω) with p ∈ C(Ω) and p− ≥ 1, the Poincaré

inequality holds [28]

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω), (5)

for some constant C which depends on Ω and the function p(·). For p(·) ∈ C(Ω) with
1 < p− ≤ p+ < N , the Sobolev embedding hold [25]

W 1,p(·)(Ω) ↪→ Lr(·)(Ω), (6)

for any measurable function r(·) : Ω→ [1,+∞) such that ess-inf
x∈Ω

( Np(x)
N−p(x) − r(x)) > 0.

We will also use the standard notations for Bochner spaces, i.e., if q ≥ 1 and X is
a Banach space, then Lq(0, T ;X) denotes the space of strongly measurable functions
u : [0, T ]→ X for which t→ ‖u(t)‖X ∈ Lq(0, T ). Moreover, C([0, T ];X) denotes the
space of continuous functions u endowed with ‖u‖C([0,T ];X) := max

t∈[0,T ]
‖u(t)‖X .
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2.2. Parabolic Capacity. In this part, we shall mainly work with capacities of
compact sets, since we are interested in local properties, we restrict our attention to
U ⊂ Q, where U is an open set. Then, we begin with a general definition (in the
same spirit of Pierre [36]) of the space Wp(·)(0, T ) and the parabolic p(·)−capacity.

Definition 2.1. Let us define V = W
1,p(·)
0 (Ω) ∩ L2(Ω), endowed with its natural

norm ‖.‖
W

1,p(·)
0 (Ω)

+ ‖ · ‖L2(Ω) and the space

Wp(·)(0, T ) = {u ∈ Lp−(0, T ;V );∇u ∈ Lp(·)(Q), ut ∈ L(p−)′(0, T ;V ′)}
endowed with its natural norm

‖u‖Wp(·)(0,T ) = ‖u‖Lp− (0,T ;V ) + ‖∇u‖Lp(·)(Q) + ‖ut‖L(p−)′ (0,T ;V ′)
.

Definition 2.2. The parabolic p(·)−capacity of an arbitrary subset E of Q is

capp(·)(E) = inf {‖u‖Wp(·)(0,T );u ∈Wp(·)(0, T ), u > χU a.e. in Q}. (7)

If the set, over which the infimum is taken, is not bounded from above, we set
capp(·)(E) = 0.

Remark 2.4. Notice also that
(i) The parabolic capacity can be expressed in terms of Borelian subsets as

capp(·)(B) = inf {capp(·)(U), U open subset of Q,B ⊂ U}. (8)

(ii) It also follows immediately from the definition that if E1 ⊂ E2, then

capp(·)(E1) ≤ capp(·)(E2). (9)

Thus, the parabolic capacity is a monotonic set function.
(iii) For Ei, i ∈ N, be arbitrary subsets of Q and E = ∪∞i=1Ei. Then,

capp(·)(E) ≤
∞∑
i=1

capp(·)(Ei). (10)

The parabolic capacity is also countably sub-additive.

The next result shows that the capacity is inner regular.

Lemma 2.1. Let Ω be a bounded subset of RN and 1 < p− < p+ < ∞. Then
C∞c ([0, T ]× Ω) is dense in Wp(·)(0, T ).

Proof. See [35, Proposition 3.3]. �

Definition 2.3. Let K be a compact subset of Q. the capacity of K is defined as

capp(·)(K) = inf {‖u‖Wp(·)(0,T ) : u ∈ C∞c ([0, T ]× Ω);u > χK}.
The capacity of any open subset U of Q is then defined by

capp(·)(U) = sup {capp(·)(K),K compact ,K ⊂ U}
and the capacity of any Borelian set B ⊂ Q by

capp(·)(B) = inf {capp(·)(U), U open subset of Q,B ⊂ U}.

Definition 2.4. A claim is said to hold capp(·)−quasi everywhere if it holds every-

where except on a set of zero p(·)−capacity. A function u : Q → R is said to be
capp(·)−quasi continuous if for ε > 0, there exists an open set Uε with capp(·)(Uε) < ε

such that u restricted to Q\Uε is continuous.
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In fact, the natural space that appears in the study of nonlinear parabolic operators
is not Wp(·)(0, T ) but W p(·)(0, T ) ⊂Wp(·)(0, T ). Following the outlines of [35]

W p(·)(0, T ) = {u ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩ L∞(0, T ;L2(Ω));∇u ∈ (Lp(·)(Q))N ,

ut ∈ L(p−)′(0, T ;W−1,p′(·)(Ω))}

and for all z ∈W p(·)(0, T ), let us denote

[z]Wp(·)(0,T ) = ‖z‖p−
Lp−(0,T ;W

1,p(·)
0 (Ω))

+ ‖zt‖(p−)′

L(p−)′ (0,T ;V ′)
+ ‖z‖2L∞(0,T ;L2(Ω)).

In [35], the authors has shown the following result that we present in this paper as a
Lemma. For the sake of simplicity, we use the notations

[u]∗ = ρp(·)(|∇u|) + ‖ut‖2
L

(p′)− (0,T ;V ′)
+ ‖u‖2L∞(0,T ;L2(Ω)) + ‖ut‖

(p′−)

L
(p′−)

(0,T ;V ′)

+‖ut‖
L
p′− (0,T ;V ′)

+ ‖ut‖
L

(p′−)
(0,T ;V ′)

‖u‖L∞(0,T ;L2(Ω))

[u]∗∗ = ρp(·)(|∇u|) + ‖u‖2L∞(0,T ;L2(Ω)) + ‖ut‖
p′−

L
p′− (0,T ;W−1,p′(·)(Ω))+L1(Q)

+‖ut‖
L
p′− (0,T ;W−1,p′(·)(Ω))+L1(Q)

+ ‖ut‖
L
p′− (0,T ;W−1,p′(·)(Ω))+L1(Q)

‖u‖L∞(Q).

Lemma 2.2. Let u ∈Wp(·)(0, T ), there exists z ∈W p(·)(0, T ) such that |u| ≤ z and

[z]Wp(·) ≤ C([u]∗∗ + [u]
1
p−
∗∗ + [u]

1
p+
∗∗ + [u]

1
(p′)−
∗∗ + [u]

1
(p′)+ ),

where u ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩ L∞(Q), ut ∈ Lp−(0, T ;W−1,p′(·)(Ω)) + L1(Q) and

‖z‖Wp(·)(0,T ) ≤ C([u]
1
2
∗ + [u]

1
p−
∗ + [u]

1
p+
∗ + [u]

1
(p′)−
∗ + [u]

1
(p′)+
∗ ).

Now our aim is to prove the following result.

Theorem 2.3. Let u ∈Wp(·)(0, T ); then u admits a unique capp(·)−quasi continuous
representative defined capp(·)−quasi everywhere.

To prove Theorem 2.3, we need first a capacitary estimate, that is the goal of the
following result.

Lemma 2.4. Let u ∈Wp(·)(0, T ) be capp(·)−quasi continuous, then for every k > 0,

capp(·)({|u| > k}) ≤ c

k
max(‖u‖

p−
p′−
Wp(·)(0,T ), ‖u‖

p′−
p−
Wp(·)(0,T )). (11)

Proof. See [35, Proposition 3.16]. �

Proof of Theorem 2.3. Let us first observe that we can approximate a function
u ∈Wp(·)(0, T ) with smooth functions um ∈ C∞0 ([0, T ]×Ω) in the norm of Wp(·)(0, T )
using convolution arguments; so let um be a sequence such that

∞∑
m=1

2mmax{‖um+1 − um‖
p−
p′−
Wp(·)(0,T ), ‖u

m+1 − um‖
p′−
p−
Wp(·)(0,T )} is finite.

For every m and r, let us define

ωm = {|um+1 − um| > 1

2m
} and Ωr = ∪

m≥r
ωm.
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Now we can apply Lemma 2.4 to obtain

capp(·)(ω
m) ≤ C 2mmax{‖um+1 − um‖

p−
p′−
Wp(·)(0,T ), ‖u

m+1 − um‖
p′−
p−
Wp(·)(0,T )}

and so, by sub-additivity,

capp(·)(Ω
r) ≤ C

∑
m≥r

2mmax{‖um+1 − um‖
p−
p′−
Wp(·)(0,T ), ‖u

m+1 − um‖
p′−
p−
Wp(·)(0,T )}

which implies that
lim
r→∞

capp(·)(Ω
r) = 0. (12)

Moreover, for every y /∈ Ωr we have

|um+1 − um|(y) ≤ 1

2m
.

For any m ≥ r, um converges uniformly on the complement of Ωr and pointwise on
the complement of ∩∞r=1Ωr. But, for any l ∈ N, we have

capp(·)(∩∞r=1Ωr) ≤ capp(·)(Ω
l),

and so, by (12), we conclude that capp(·)(∩∞r=1Ωr) = 0; therefore the limit of um is
capp(·)−quasi continuous and is defined capp(·)−quasi everywhere. Let us denote ũ
this capp(·)−quasi continuous representative of u, and let z be another capp(·)−quasi
continuous representative of u; thanks to Lemma 2.4, for any ε > 0, we have

capp(·)({|ũ− z| > ε}) ≤ C

ε
(‖ũ− z‖

p−
p′−
Wp(·)(0,T ), ‖ũ− z‖

p′−
p−
Wp(·)(0,T )) = 0,

since ũ = z in Wp(·)(0, T ) and this conclude the proof.

2.3. Diffuse measures. We denote by Mb(Q) the space of bounded measures on
the σ−algebra of Borelian of Q, and M+

b (Q) will denote the subsets of nonnegative
measures of Mb(Q), with the symbol M0(Q) we mean a measure with bounded
variation over Q which does not charge the sets of zero p(·)−capacity, this measure µ
is called soft or diffuse measure. We refer the reader to [22] for further specifications
about parabolic p−capacity and to [35] for p(·)−capacity.

Definition 2.5. Let E be a subset of Q. the space M0(Q) is defined as

M0(Q) = {µ ∈Mb(Q) : µ(E) = 0, ∀E ⊂ Q such that capp(·)(E) = 0}.

We denote by 〈〈·, ·〉〉 the duality pairing between (Wp(·)(0, T ))′ and Wp(·)(0, T ), if
γ ∈ (Wp(·)(0, T ))′ such that there exists c > 0 satisfying 〈〈γ, ϕ〉〉 ≤ C‖ϕ‖L∞(Q) for
every function ϕ ∈ C∞c (Q).Then, γ ∈ (Wp(·)(0, T ))′ ∩ Mb(Q) and is identified by

unique linear application ϕ ∈ C∞c (Q) →
∫
Q
ϕγmeas when γmeas belongs to Mb(Q).

This shows that we need to detail the structure of the dual space (Wp(·)(0, T ))′.

Lemma 2.5. Let g ∈ (Wp(·)(0, T ))′, then there exists g1 ∈ Lp
′
−(0, T ;W−1,p′(·)(Ω)),

g2 ∈ Lp−(0, T ;V ), F ∈ (Lp
′(·)(Q))N and g3 ∈ Lp

′
−(0, T ;L2(Ω)) such that

〈〈g, u〉〉 =

∫ T

0

〈g1, u〉dt−
∫ T

0

〈ut, g2〉+

∫
Q

F · ∇u dxdt+

∫
Q

g3u dxdt, ∀u ∈Wp(·)(0, T )
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and there exist a constant C (do not depend on g) such that

‖g1‖
L
p′− (0,T ;W−1,p′(·)(Ω))

+ ‖g2‖Lp− (0,T ;V ) + ‖F‖
Lp
′(·)(Q)

+ ‖g3‖
L
p′− (0,T ;L2(Ω))

≤ C ‖g‖(Wp(·)(0,T ))′ .

Proof. See [35, Lemma 4.2]. �

The next Lemma will play an essential role in this context (see also [10, 48, 44]).

Lemma 2.6. Let µ ∈ M0(Q), there exists a decomposition (g, h) of µ such that
g ∈ (Wp(·)(0, T ))′, h ∈ L1(Q) and∫

Q

ϕdµ = 〈〈g, ϕ〉〉+

∫
Q

hϕdxdt for all ϕ ∈ C∞c ([0, T ]× Ω). (13)

Proof. See [35, Lemma 4.4]. �

Finally, the essential tool in our work is the following result.

Theorem 2.7. Let µ ∈ M0(Q); there exists a decomposition (f, F, g1, g2) of µ with

f ∈ L1(Q), F ∈ (Lp
′(·)(Q))N , g1 ∈ Lp

′
−(0, T ;W−1,p′(·)(Ω)), g2 ∈ Lp−(0, T ;V ) and∫

Q

ϕdµ =

∫
Q

fϕdxdt+

∫
Q

F · ∇ϕdxdt+

∫ T

0

〈g1, ϕ〉dt−
∫ T

0

〈ϕt, g2〉dt, ∀ϕ ∈ C∞c (Q).

Proof. The proof is a combination of the proof of Lemmas 2.5 and 2.6 (see [35, 22]).
�

Remark 2.5. In general, the decomposition in M0(Q) is not unique.

Indeed, we have the following result.

Lemma 2.8. Let µ ∈ M0(Q) and let (f, F, g1, g2), (f̃ , F̃ , g̃1, g̃2) be two different
decompositions of µ according to Theorem 2.7. Then, we have∫ T

0

〈(g2 − g̃2)t, ϕ〉dt =

∫
Q

(f̃ − f)ϕdxdt+

∫
Q

(F̃ − F ) · ∇ϕdxdt+

∫ T

0

〈g̃1 − g1, ϕ〉dt, (14)

where ϕ ∈ C∞c ([0, T ]× Ω) and g2 − g̃2 ∈ C([0, T ]× L1(Q)) with (g2 − g̃2)(0) = 0.

Proof. See [35, Lemma 4.6]. �

3. Weak and renormalized solutions for problems with M0(Q)−data and
approximation results

3.1. Variational case and weak solution. A large number of papers was devoted
to the study of solutions for parabolic problems under various assumptions (for el-
liptic problems, the reader should consult [20] for more details): for a review on
classical parabolic results (see [6, 9, 18, 30] and references therein). In [4, 5, 46] some
anisotropic problems with variable exponents are studied and in [30, 23, 1] for weight
Sobolev spaces and Orlicz spaces. Moreover, in the case when µ belongs to the dual of
the parabolic Sobolev spaces, we refer to [32], see also [2, 11, 42] for L1−data. General
results for a finite Radon measure can be found in [10, 22, 36], another approaches
can be found in [40, 41] for diffuse measures and in [37, 39] for singular measures (i.e.
general measures). Throughout the paper, we assume that Ω is a bounded open set
on RN , N ≥ 2, Q = Ω × (0, T ), T > 0, and a : Q × RN → RN is a Carathéodory
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function (i.e. a(·, ·, ζ) is measurable on Ω, for all ζ ∈ RN , and a(t, x, ·) is continuous
on RN for a.e. (t, x) ∈ Q) such that the following holds.

a(t, x, ζ) · ζ ≥ α|ζ|p(x), (15)

|a(t, x, ξ)| ≤ β[b(t, x) + |ζ|p(x)−1], (16)

(a(t, x, ζ)− a(t, x, η)) · (ζ − η) > 0, (17)

for a.e. (t, x) ∈ Q, for all ζ, η ∈ RN with ζ 6= η, where p− > 1, α, β are positive con-

stants and b is a nonnegative function in Lp
′(x)(Ω). For every u ∈ Lp−(0, T ;W

1,p(·)
0 (Ω))

with |∇u| ∈ (Lp(·)(Q))N , let us define the differential operatorA(u) = −div(a(t, x,∇u)),
which, thanks to the assumptions on a, turns out to be a coercive monotone operator

acting from the space Lp−(0, T ;W 1,p
0 (Ω)) into its dual Lp

′
−(0, T ;W−1,p′(·)(Ω)). We

shall deal with the solutions of initial boundary-value problem
ut +A(u) = µ in (0, T )× Ω,

u(0, x) = u0(x) in Ω,

u(t, x) = 0 on (0, T )× ∂Ω,

(18)

where µ is a measure with bounded variation over Q = (0, T ) × Ω, and u0 ∈ L1(Ω).

Let us fix T > 0, if µ ∈ Lp
′
−(0, T ;W−1,p′(·)(Ω)), it is well known that problem (18)

has a unique variational solution in Q = (0, T ) × Ω such that u ∈ Wp(·)(0, T ) ∩
C([0, T ];L2(Ω)), that is∫ T

0

〈ut, ϕ〉W−1,p′(·)(Ω),W
1,p(·)
0 (Ω)

dt+

∫
Q

a(t, x,∇u) · ∇ϕ dx dt =

∫ T

0

〈µ, ϕ〉
W−1,p′(·),W1,p(·)

0

dt.

(19)

We mean that u is a weak solution of (18) if u ∈ Lp−(0, T ;V ), |∇u| ∈ Lp(·)(Q) and if

−
∫
Q

〈ϕt, u〉dt−
∫

Ω

u0ϕ(0)dx+

∫
Q

a(t, x,∇u) · ∇ϕdxdt = 〈〈g, ϕ〉〉,

for any ϕ ∈ C∞c ([0, T ]×Ω). Since we are going to deal with measures, the solution we
will find will not belong in general to Sobolev spaces. For this reason, we are going to
justify the interest of (Wp(·)(0, T ))′ by the following existence and uniqueness theorem.

Theorem 3.1. Let g ∈ (Wp(·)(0, T ))′, and let u0 ∈ L2(Ω). Then there exists a unique
solution u ∈ Lp−(0, T ;V ) of (18) such that for every ϕ ∈Wp(·)(0, T ) with ϕ(T ) = 0

−
∫
Q

〈ϕt, u〉dt−
∫

Ω

u0ϕ(0) +

∫
Q

a(t, x,∇u) · ∇ϕdxdt = 〈〈g, ϕ〉〉. (20)

Remark 3.1. Since g ∈ (Wp(·)(0, T ))′, by Lemma 2.5 and (20), we deduce that

(u− g2)t = −Au+ g1 − div(F ) + g3 ∈ Lp
′
−(0, T ;W−1,p′(·)(Ω)) + Lp

′
−(0, T ;L2(Ω))

and then to Lp
′
−(0, T ;V ′)). Therefore, u− g2 ∈Wp(·)(0, T ) ⊂ C([0, T ];L2(Ω)). Then

by (20), (u − g2)(0) = u0. Moreover, for any two solutions u and v of (20), we have
u− v = u− g2 − (v − g2) ∈Wp(·)(0, T ) and (u− v)(0) = 0.

Remark 3.2. Theorem 3.1 could also be stated with right-hand side in (W p(·)(0, T ))
′

and test functions in W p(·)(0, T ). Moreover, according to [19], one has

W p(·)(0, T ) = {u ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩ L2(0, T ;L2(Ω)), |∇u| ∈ (Lp(·)(Q))N ;

ut ∈ L(p−)′(0, T ;W−1,p′(·)(Ω))},
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hence the right hand side g2 ∈W
′

p(·)(0, T ) with g2 ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ⊃ Lp−(0, T ;V ),

the term
∫ T

0
〈ϕt, g2〉 makes sense also when ϕ ∈W p(·)(0, T ).

3.2. Approximating measures. We will argue by density for proving the existence
of solutions, so that we need the following preliminary result that applies for equations
to obtain additional regularity on the renormalized solutions.

Proposition 3.2. Let µ ∈ M0(Q). Then there exists (f, F, g1, g2) of µ in the sense
of Theorem 2.7 and µε ∈ C∞c (Q) such that ‖µε‖L1(Q) ≤ C and∫

Q

µεϕdxdt =

∫
Q

ϕf εdxdt+

∫
Q

F ε · ∇ϕdxdt+

∫ t

0

〈div Gε1, ϕ〉dt−
∫ t

0

(ϕ, gε2)dt,

for every ϕ ∈ C∞c ([0, T ]× Ω) with (C not depending on ε)
f ε ∈ C∞c (Q) such that ‖f ε − f‖L1(Q) ≤ Cε,
F ε ∈ (C∞c (Q))N such that ‖F ε − F‖

(Lp
′(·)(Q))N

≤ Cε,
Gε1 ∈ (C∞c (Q))N such that ‖Gε1 −G1‖(Lp′(·)(Q))N

≤ Cε,
gε2 ∈ C∞c (Q) such that ‖gε2 − g2‖Lp− (0,T ;V ) ≤ Cε.

Proof. From Definition 2.5, there exists γ ∈ (Wp(·)(0, T ))′ ∩ M+
b (Ω) and a non-

negative Borel function f ∈ C1(Q, dγmeas) such that µ(B) =
∫
B
fdγmeas for Borel

set B in Q. From the fact that C∞c (Q) is dense in L1(Q, dγmeas), since γmeas is a
regular measure; there exists a sequence fn ∈ C∞c (Q) such that fn strongly converges
to f in L1(Q, dγmeas). Then we can assume

∑∞
n=0 ‖fn − fn−1‖L1(Q,dγmeas) <∞, and

we define νn = (fn − fn−1)γ ∈ (Wp(·)(0, T ))′, we have νn ∈ (Wp(·)(0, T ))′ ∩Mb(Q)

and
∑∞
n=0 ν

meas
n =

∑∞
n=0(fn − fn−1)γmeas = µ converges in the strong topology of

measures, ρl ∗ νmeas
n strongly converges to νn in (Wp(·)(0, T ))′ as l tends to infinity,

we can then extract a subsequence ln such that ‖ρln ∗ νmeas
n − νn‖(Wp(·)(0,T ))′ ≤ 1

2n .

We have then
∑n
k=0 ν

meas
k =

∑n
k=0 ρlk ∗ νmeas

k +
∑n
k=0(νmeas

k − ρlk ∗ νmeas
k ). Let us

denote mn =
∑n
k=0 ν

meas
k , hn =

∑n
k=0 ρlk ∗ νmeas

k , gn =
∑n
k=0(νk − ρlk ∗ νmeas

k )
and gmeas

n =
∑n
k=0(νmeas

k − ρlk ∗ νmeas
k ). We have that hn strongly converges in

L1(Q) (because ‖ρlk ∗ νmeas
k ‖L1(Q) ≤ ‖νmeas

k ‖Mb(Q)) and
∑∞
k=0 ν

meas
k is totally con-

vergent in Mb(Q); we denote by h its limit, we also have gn is strongly convergent
in (Wp(·)(0, T ))′ (because ‖ρlk ∗ νmeas

k − νk‖(Wp(·)(0,T ))′ ≤ 1
2k

), denoting by g its limit.

Now, we choose ζk ∈ C∞c (Q) such that ζk ≡ 1 on a neighborhood of supp(fn− fn−1);
then there exists C(ζk) only depending on ζk such that
‖ζkh‖E ≤ C(ζk)‖h‖E if E ⊂ {(Lp

′(·)(Q))N , Lp
′
−(0, T ;V ), Lp

′
−(0, T ;L2(Ω))} and h ∈ E;

‖H∇ζk‖Lp′(·)(Q)
≤ C(ζk)‖H‖

(Lp
′(·))N if H ∈ (Lp

′(·)(Q))N ;

‖(ζk)th‖Lp− (0,T ;L2(Ω)) ≤ C(ζk)‖h‖Lp− (0,T ;L2(Ω)) if h ∈ Lp−(0, T ;L2(Ω)).

We choose lk such that ‖ρlk ∗ νmeasn − νk‖(Wp(·)(0,T ))′ ≤ 1
(2k(C(ζk)+1))

and ζk ≡ 1 on

a neighborhood of supp(ρlk ∗ νmeask ). Thanks to this choice and the decomposition
(bk0 , div(Bk1 ), bk2 , b

k
3) of νk − ρlk ∗ νmeask , there exists a constant C (not depending on

k) such that

‖bk0‖(Lp′(·)(Q))N
+ ‖Bk1‖(Lp′(·)(Q))N

+ ‖bk2‖Lp− (0,T ;V ) + ‖bk3‖
L
p′− (0,T ;L2(Ω))

≤ C‖νk − ρlk ∗ ν
meas
k ‖(Wp(·)(0,T ))′ .
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So that we can write
∑
k≥1 ζkb

k
0 converges in (Lp

′(·)(Q))N ,
∑
k≥1 ζkB

k
1 converges in (Lp

′(·)(Q))N ,∑
k≥1 ζkb

k
2 converges in Lp−(0, T ;V ),

∑
k≥1 ζkb

k
3 converges in Lp

′
−(0, T ;L2(Ω)),∑

k≥1 b
k
0∇ζk converges in Lp

′(·)(Q),
∑
k≥1 B

k
1∇ζk converges in Lp

′(·)(Q),∑
k≥1(ζk)tb

k
2 converges in Lp−(0, T ;L2(Ω)).

(21)

We denote by F0, G,−g2, f0, f1, f2 and f3 the respective limits of the terms above;
(21) imply the convergence in L1(Q). Since νk − ρlk ∗ νmeask = ζk(νk − ρlk ∗ νmeask )
in (Wp(·)(0, T ))′ and thanks to the choice of ζk and ρk and the decomposition (bk0 ,

div(Bk1 ), bk2 , bk3) of νk − ρlk ∗ νmeasε , the last term admits a pseudo-decomposition
(ζkb

k
0 , ζkB

k
1 , ζkb

k
2 , ζkb

k
3 ,−bk0∇ζk,−Bk1 , (ζk)tb

k
2). Thus, as

∫
Q
ϕdmn =

∫
Q
hnϕdxdt +

〈gn, ϕ〉, we can write for all ϕ ∈ C∞c ([0, T ]× Ω),∫
Q

ϕdmn =

∫
Q

ϕhn +

∫ t

0

〈div(

n∑
k=0

ζkb
k
0), ϕ〉+

∫ t

0

〈div(

n∑
k=0

ζkB
k
1 ), ϕ〉+

∫ t

0

〈ϕt,
n∑
k=0

ζkb
k
2〉

+

∫ t

0

n∑
k=0

ζkb
k
3ϕ+

∫
Q

n∑
k=0

(−F k0∇ζk)ϕ+

∫
Q

n∑
k=0

(−Bk1∇ζk)ϕ+

∫
Q

n∑
k=0

(ζk)tb
k
2ϕ.

From the convergences of mn to µ, of hn to h and using (21), we have∫
Q

ϕdµ =

∫
Q

(h+ f0 + f1 − f2 + f3)ϕ+

∫ t

0

F · ∇ϕ+

∫ t

0

〈div(G), ϕ〉 −
∫ T

0

(ϕt, g2).

That is (f = h+ f0 + f1 − f2 + f3, F, div(G), g2) is a decomposition of µ in the sense
of Theorem 2.7. Taking n large enough and ε > 0 fixed, we obtain
‖
∑n
k=0 ζkb

k
0 − F‖(Lp′(·)(Q))N

≤ ε,
‖
∑n
k=0 ζkB

k
1 −G1‖(Lp′(·)(Q))N

≤ ε,
‖
∑n
k=0 ζkb

k
2 + g2‖Lp− (0,T ;V ) ≤ ε,

‖hn +
∑n
k=0 ζkb

k
3 −

∑n
k=0(bk0∇ζk)−

∑n
k=0(bk1∇ζk) +

∑n
k=0(ζ)tb

k
2 − f‖L1(Q) ≤ ε.

(22)

Note that νk − ρlk ∗ νmeask = ζk(νk − ρlk ∗ νmeask ) and (bk0 , div(Bk1 ), bk2 , b
k
3) is a decom-

position of νk − ρlk ∗ νmeask , note also that, for j large enough, ((ζkb
k
0) ∗ ρj , (ζkBk1 ) ∗

ρj , (ζkb
k
2) ∗ ρj , (ζkbk3) ∗ ρj , (−fk0∇ζk) ∗ ρj , ((ζk)tb

k
2) ∗ ρj) is a pseudo decomposition of

(νmeask − ρlk ∗ νmeask ) ∗ ρj ∈ C∞c (Q). We take jn such that, for all k ∈ [0, n],

‖(ζkbk0) ∗ ρjn − ζkbk0‖(Lp′(·)(Q))N
≤ ε

n+1
,

‖(ζkBk1 ) ∗ ρjn‖ − ζkBk1‖(Lp′(·)(Q))N
≤ ε

n+1
,

‖(ζkbk2) ∗ ρjn − ζkbk2‖Lp− (0,T ;V ) ≤ ε
n+1

,

‖(ζkbk3) ∗ ρjn − ζkbk3‖L1(Q) + ‖(bk0∇ζk) ∗ ρjn − bk0∇ζk‖L1(Q)

+‖(Bk1∇ζk) ∗ ρjn −Bk1∇ζk‖L1(Q) + ‖(ζk)tb
k
2) ∗ ρjn − (ζk)tb

k
2‖L1(Q) ≤ ε

n+1
.

(23)

Defining 

F ε =
∑n
k=0(ζkb

k
0) ∗ ρjn ∈ (C∞c (Q))N ,

Gε1 =
∑n
k=0(ζkB

k
1 ) ∗ ρjn ∈ (C∞c (Q))N ,

gε2 = −
∑n
k=0(ζkb

k
2) ∗ ρjn ∈ C∞c (Q),

f ε = hn +
∑n
k=0(ζkb

k
3) ∗ ρjn −

∑n
k=0(fk0∇ζk) ∗ ρjn

+
∑n
k=0(Bk1∇ζk) ∗ ρjn +

∑n
k=0((ζk)tb

k
2) ∗ ρjn ∈ C∞c (Q).
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Then by (22)–(23), we get{
‖F ε − F‖

(Lp
′(·)(Q))N

≤ 2ε, ‖Gε1 −G1‖(Lp′(·)(Q))N
≤ 2ε,

‖gε2 − g2‖Lp− (0,T ;V ) ≤ 2ε, ‖f ε − f‖L1(Q) ≤ 2ε.

Let us write µε as follows µε = f ε + F ε + div(Gε1) + (gε2)t ∈ C∞c (Q); it remains
to prove that ‖µε‖L1(Q) ≤ C with C not depending on ε. To see this, we recall

that ((ζkb
k
0) ∗ ρjn , (ζkBk1 ) ∗ ρjn , (ζkbk2) ∗ ρjn , (ζkbk3) ∗ ρjn , (−fk0∇ζk) ∗ ρjn , (−Bk1∇ζk) ∗

ρjn , ((ζk)tb
k
2) ∗ ρjn) is a pseudo-decomposition of (νmeask − ρlk ∗ νmeask ) ∗ ρjn , we have

µε =hn +

n∑
k=0

(νmeask − ρlk ∗ ν
meas
k ) ∗ ρjn

=hn + (

n∑
k=0

(νmeask − ρlk ∗ ν
meas
k )) ∗ ρjn = hn + gmeasn ∗ ρjn .

According to [22], gmeasn = mn − hn. Then, it follows that ‖µε‖L1(Q) ≤ 2‖hn‖L1(Q) +

‖mn‖Mb(Q). Since hn converges in L1(Q) and mn converges in Mb(Q), ‖hn‖L1(Q)

and ‖mn‖Mb(Q) are bounded and we have the desired majoration on ‖µε‖L1(Q).
�

3.3. Definition of renormalized solutions and main result. The notion of
renormalized solutions was first introduced by DiPerna and Lions in [18] for the
study of Boltzmann equation. It was then adapted to the study of some nonlinear
elliptic and parabolic problems in fluid mechanics. We refer to [20] (see also [11, 13]
for details). At the same time the notion of entropy solutions has been proposed by
Bénilan and al. in [8] for nonlinear elliptic problems. This framework was extended
to related problems with measures as data in [10, 42]. Recently, for elliptic prob-
lems and in [44] Sanchón and Urbano studied a Dirichlet problem of p(x)−Laplace
equation and obtained the existence and uniqueness of entropy solutions for L1−
data, as well as integrability results for the solution and its gradient. The proofs
rely crucially on a priori estimates in Marcinkiewicz spaces with variable exponents.
Besides, Bendahmane and Wittbold in [16] proved the existence and uniqueness of
renormalized solutions to nonlinear elliptic equations with variable exponents and
L1−data. Let µ ∈ M0(Ω) be a measure with bounded variation over Q which does
not charge the sets of zero elliptic p(x)−capacity; we call u a renormalized solution
for the p(x)−Laplacian problem

−div(|∇u|p(x)−2∇u) = µ in Ω, u = 0 on ∂Ω, (24)

if u is a function in L1(Ω), satisfying the following conditions:

Tk(u) ∈W 1,p(·)
0 (Ω) for any k > 0, lim

n→∞

∫
{n≤|u|≤n+1}

|∇u|p(x)dx = 0.

For any renormalization S ∈ C∞(R) such that supp S′ ⊂ [−M,M ] for some M > 0,

−div(S′(u)|∇u|p(x)−2∇u) + S′′(u)|∇u|p(x) = fS′(u) +G · ∇uS′′(u)− div(S′(u)G)

holds in D′(Ω). For parabolic problems, we are naturally led to introduce the func-
tional space

X = {u : Ω× (0, T )→ R is measurable |Tk(u) ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)),

with |∇Tk(u)| ∈ (Lp(·)(Q))N , for every k > 0},
(25)
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which, endowed with the norm (or, the equivalence norm)

‖u‖X := ‖∇u‖Lp(·)(Q), or ‖u‖X := ‖u‖
Lp− (0,T ;W

1,p(·)
0 (Ω))

+ ‖∇u‖Lp(·)(Q),

X is a separable and reflexive Banach space. The equivalence of the two norms is
an easy consequence of the continuous embedding Lp(·)(Q) ↪→ Lp−(0, T ;Lp(·)(Ω))
and the Poincaré inequality. We state some further properties of X in the following
lemma.

Lemma 3.3. (i) We have the following continuous dense embeddings:

Lp+(0, T ;W
1,p(·)
0 (Ω)) ↪→ X ↪→ Lp−(0, T ;W

1,p(·)
0 (Ω)). (26)

In particular, since D(Q) is dense in Lp+(0, T ;W
1,p(·)
0 (Ω)), it is dense in X and for

the corresponding dual space we have

L(p−)′(0, T ; (W
1,p(·)
0 (Ω))∗) ↪→ X∗ ↪→ L(p+)′(0, T ; (W

1,p(·)
0 (Ω))∗). (27)

(ii) One can represent the elements of X∗ as follows: If T ∈ X∗, then there exists F =

(f1, · · ·, fN ) ∈ (Lp
′(·)(Q))N such that T = divxF and 〈T, ζ〉X∗,X =

∫ T
0

∫
Ω
F ·∇ζdx dt,

for every ζ ∈ V . Moreover, we have ‖T‖X∗ = max{‖fi‖Lp(·)(Q), i = 1, . . . , n}.

Proof. See [16, Lemma 3.1]. �

For any non-negative real number k we denote by Tk(s) = max(−k,min(k, s))
the truncation function at level k and its primitive function Θk(z) =

∫ z
0
Tk(s) ds.

A function v such that Tk(v) ∈ X, for all k > 0, does not necessarily belongs to

L1(0, T ;W 1,1
0 (Ω)). Thus ∇v in our equations is defined in a very weak sense.

Definition 3.1. For every measurable function v : Ω× (0, T )→ R such that Tk(v) ∈
X,∀k > 0, there exists a unique measurable function w : Q → RN , called the very
weak gradient of v and denoted by w = ∇v, such that ∇Tk(v) = wχ{|v|<k} a.e. in Ω,
where χE denotes the characteristic function of a measurable set E. Moreover, if v
belongs to L1(0, T ;W 1,1

0 (Ω)), then w coincides with the weak gradient of v.

Now, let us define µ0 = µ − g2 = f + F − div(G) where g2 is the time-derivative
part of µ. In view of the definition given in [22] and the preceding remarks, we have
the following definition.

Definition 3.2. Let µ ∈M0(Q) and u0 ∈ L1(Ω). We say that a measurable function
u is a renormalized solution of the problem (18) if, for all k, T > 0, we have

u− g2 ∈ L∞(0, T ;L1(Ω)), Tk(u) ∈ X, (28)

lim
n→∞

∫
{n≤|u−g2|≤n+1}

|∇u|p(x)dxdt = 0. (29)

Moreover, for all S ∈W 2,∞(R) such that S′ has compact support,

−
∫
Q

S(u0)ϕ(0)dx−
∫ T

0

〈ϕt, S(u− g2)〉dt+

∫
Q

S′(u− g2)a(t, x,∇u) · ∇ϕdxdt

+

∫
Q

S′′(u− g2)a(t, x,∇u) · ∇(u− g2)ϕdxdt =

∫
Q

S′(u− g2)ϕdµ0,

(30)

∀ϕ ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩ L∞(Q) with ∇ϕ ∈ (Lp(·)(Q))N , ϕt ∈ Lp

′
−(0, T ;W−1,p′(·)(Ω))

with ϕ(T ) = 0 such that S′(u− g2)ϕ ∈ X, and

S(u− g2)(0) = S(u0) in L1(Ω). (31)
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Remark 3.3. Notice that, thanks to our regularity assumptions and the choice of
S′, all terms in (30) are well defined, also observe that (30) implies that equation

(S(u− g2))t − div(a(t, x,∇u)S′(u− g2)) + S′′(u− g2)a(t, x,∇u) · ∇(u− g2)

= S′(u− g2)f + S′′(u− g2)F · ∇(u− g2)− div(FS′(u− g2))

+S′′(u− g2)G · ∇(u− g2)− div(GS′(u− g2))

(32)

is satisfied in the sense of distributions since Tk(u − g2) belongs to X for every k >
0 and since S′ has compact support. Indeed by taking M such that Supp S′ ⊂
(−M,M), since S′(u − g2) = S′′(u − g2) = 0 as soon as |u − g2| ≥ M , we can
replace, everywhere in (30), ∇(u − g2) by ∇TM (u − g2) ∈ (Lp(·)(Q))N and ∇u by
∇(TM (u−g2))+∇g2 ∈ (Lp(·)(Q))N . Moreover, according to the assumption (16) and
the definition of ∇u, ∇u = ∇(u − g2) +∇g2, we have ∇(u − g2) is well defined and

|a(t, x,∇u)| ∈ Lp′(x)(Q).
We also have, for all S as above, S(u− g2) = S(TM (u− g2)) ∈ X and S′(u− g2)f ∈
L1(Q), S′(u − g2)F ∈ Lp

′(·)(Q), S′(u − g2)G1 ∈ Lp
′(·)(Q), S′(u − g2)a(t, x,∇u) ∈

(Lp
′(·)(Q))N , S′′(u−g2)a(t, x,∇u)·∇(u−g2) ∈ L1(Q), S′′(u−g2)F ·∇(u−g2) ∈ L1(Q)

and S′′(u− g2)G1 · ∇(u− g2) ∈ L1(Q). Thus, by equation (32), (S(u− g2))t belongs
to the space X ′+L1(Q), and therefore S(u− g2) belongs to C([0, T ];L1(Ω)), one can
say that the initial datum is achieved in a weak sense, that is S(u − g2)(0) = S(u0)
in L1(Ω) for every renormalization S. Note also that, since S(u− g2)t ∈ X∗+L1(Q),
we can use in (30) not only functions in C∞0 (Q) but also in X ∩ L∞(Q).

Remark 3.4. Observe that (29) implies

lim
n→∞

∫
{n≤|u−g2|≤n+c}

|∇(u− g2)|p(x)dxdt = 0, for all c > 0. (33)

Remark 3.5. Let us denote by v = u−g2 the solution of (18), since S(v) ∈ X∩L∞(Q)
and (Sn(v))t ∈ X∗ + L1(Q) and thanks to Theorem 2.3, Sn(v) turns out to admit a
capp(·)−quasi continuous representative finite capp(·)−quasi everywhere.

For classical Sobolev spaces, the definition of renormalized solution does not depend
on the decomposition of the measures µ as shown in [22, Proposition 3.10]. Next result
try to stress the fact that even for generalized Sobolev spaces this fact should be true.

Proposition 3.4. Let u be a renormalized solution of (1). Then u satisfies Definition

3.2 for every (f̃ , F̃ ,−div(G̃1), g̃2) such that g2 − g̃2 ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩L∞(Q).

Proof. Assume that u satisfies Definition 3.2 for (f, F,−divG, g2) and let (f̃ ,F̃ ,−divG̃,
g̃2) be a different decomposition of µ0 such that g2 − g̃2 is bounded. Thanks to
Lemma 2.8, we have ṽ = ũ − g̃2 ∈ L∞(0, T ;L1(Ω)); to prove that Tk(u − g̃2) ∈
Lp−(0, T ;W

1,p(·)
0 (Ω)) and ∇Tk(u− g̃2) ∈ Lp(·)(Q) with k > 0 we can reason as in [22]

by choosing S = Sn and Tk(Sn(u − g2) + g2 − g̃2) ∈ X ∩ L∞(Q) as test function in
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(30). Lemma 2.8 implies∫ T

0

〈(Sn(u− g2) + g2 − g̃2)t, Tk(Sn(u− g2) + g2 − g̃2)〉dt (A)

+

∫
Q

S′n(u− g2)a(t, x,∇u)∇Tk(Sn(u− g2) + g2 − g̃2)dxdt (B)

= −
∫
Q

S′′n(u− g2)a(t, x,∇u)∇(u− g2)Tk(Sn(u− g2) + g2 − g̃2)dxdt (C)

+

∫
Q

((S′n(u− g2)− 1)f + f̃)Tk(Sn(u− g2) + g2 − g̃2)dxdt (D)

+

∫
Q

(S′n(u− g2)− 1)F + F̃ )∇Tk(Sn(u− g2) + g2 − g̃2)dxdt (E)

+

∫
Q

((S′n(u− g2)− 1)G1 + G̃1)∇Tk(Sn(u− g2) + g2 − g̃2) (F )

+

∫
Q

S′′n(u− g2)F∇(u− g2)Tk(Sn(u− g2) + g2 − g̃2) (G)

+

∫
Q

S′′n(u− g2)G∇(u− g2)Tk(Sn(u− g2) + g2 − g̃2)dxdt (H)

(34)

Let us analyze term by term the above identity. First of all, concerning the first term
of (34) we integrate in time to get

(A) =

∫ T

0

〈(Sn(u− g2) + g2 − g̃2)t, Tk(Sn(u− g2) + g2 − g̃2)〉dt

=
[ ∫

Ω

Θk(Sn(u− g2) + g2 − g̃2)dx
]T

0

=

∫
Ω

Θk(Sn(u− g2)(T ) + (g2 − g̃2)(T )dx−
∫

Ω

Θk(Sn(u− g2)(0) + (g2 − g̃2)(0)dx.

Since Sn(u−g2)(0) = Sn(u0) and (g2−g̃2)(0) = 0, we have Sn(u−g2)(0)+(g2−g̃2)(0) =
Sn(u0), so that using 0 ≤ Θk(s) ≤ k(s), the first term of (34), (A) ≤ k‖u0‖L1(Ω). On
the other hand, since |S′′n(s)| ≤ 1 and S′′n(s) 6= 0 if |s| ∈ [n, n + 1], using (16) and
Young’s inequality we obtain

|(C) + (G) + (H)| ≤ βk‖S′n(s)‖L∞(R)

∫
{n≤|u−g2|≤n+1}

|(b(t, x) + |∇u|p(x)−1)||∇(u− g2)|

≤ Ck
[ ∫
{n≤|u−g2|≤n+1}

p+ − 1

p−
(|b(t, x)|p

′(x) + |G1|p
′(x) + |∇u|p

′(x)(p(x)−1))

+

∫
{n≤|u−g2|≤n+1}

(|∇u|p(x) + |∇g2|p(x))dxdt
]

≤ Ck
[ ∫
{n≤|u−g2|≤n+1}

(|b(t, x)|p
′(x) + |F |p

′(x) + |G1|p
′(x) + |∇g2|p

′(x))

+

∫
{n≤|u−g2|≤n+1}

|∇u|p(x)dxdt
]
.

By the fact that meas{n ≤ |u − g2| ≤ n + 1} →
n→∞

0 and using (29), we get |(C) +

(G) + (H)| ≤ ω(n), where ω(n) tends to zero as n→∞. Now, if En = {|Sn(u− g2) +
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g2 − g̃2| ≤ k} we have (recalling that if 0 ≤ S′n(s) ≤ 1 then |S′n(s)|p′(x) ≤ S′n(s)),

|(D) + (E) + (F )| ≤
∫
Q

(|f |+ |f̃ |)|Tk(Sn(u− g2) + g2 − g̃2)|dxdt

+

∫
En

(|F |+ |F̃ |)(S′n(u− g2)|∇(u− g2)|+ |∇g2|+ |∇g̃2|)dxdt

+

∫
En

(|G1|+ |G̃1|)(S′n(u− g2)|∇(u− g2)|+ |∇g2|+ |∇g̃2|)dxdt

≤ k(‖f‖L1(Q) + ‖f̃‖L1(Q)) +

∫
En

(|F1|+ |F̃1|)S′n(u− g2)|∇u|dxdt

+ 2

∫
Q

(|F1|+ |F̃1|)(|∇g2|+ |∇g̃2|)dxdt+

∫
En

(|G1|+ |G̃1|)S′n(u− g2)|∇u|dxdt

+ 2

∫
Q

(|G1|+ |G̃1|)(|∇g2|+ |∇g̃2|)dxdt

≤ k(‖f‖L1(Q) + ‖f̃‖L1(Q)) + 2
p+ − 1

p−

∫
Q

|F |p
′(x) + |F̃ |p

′(x) + |G1|p
′(x) + |G̃1|p

′(x)dxdt

+
2

p−

∫
{n≤|u−g2|≤n+1}

|∇u|p(x)dxdt+
2

p−

∫
Q

|∇g2|p(x) + |∇g̃2|p(x)dxdt ≤ C + ω(n).

�

Our main result is the following Theorem.

Theorem 3.5. Let 1 ≤ p− ≤ p+ < N , µ ∈ M0(Q) and u0 ∈ L1(Ω), assume that
p− > 2N+1

N+1 . Assume that (15)–(17) hold true. Then there exists a renormalized

solution u of problem (18).

4. Proof of main result

We can now start the proof of the existence result (Theorem 3.5). Following a
standard approach, we obtain the existence of a solution as limit of regular problems.
For this purpose we consider the approximate problem

uεt − div(a(t, x,∇uε)) = µε in (0, T )× Ω,

uε(0, x) = uε0(x) in Ω,

uε(t, x) = 0 on (0, T )× ∂Ω,

(35)

where {µε}ε>0, {uε0}ε>0 are smooth approximations of the data µ and u0 with

‖uε0‖L1(Ω) ≤ C‖u0‖L1(Ω), ‖µε‖L1(Q) ≤ C|µ|.
Hence by the standard theory of monotone operators [32] or using [48, Lemma 2.5]
with rather minor modifications, there exists a variational solution uε for each ε > 0.
Moreover, from Theorem 2.7, there exists a decomposition (f ε, F ε, div(Gε1), gε2) of
µε with f ε ∈ C∞c (Q) such that ‖f ε − f‖L1(Q) ≤ Cε, F ε ∈ (C∞c (Q))N such that

‖F ε −F‖(LP (·)(Q))N ≤ Cε, Gε1 ∈ (C∞c (Q))N such that ‖Gε1 −G1‖(Lp(·)(Q))N ≤ Cε and

gε2 ∈ C∞c (Q) such that ‖gε2 − g2‖Lp− (0,T ;V ) ≤ Cε (C not depending on ε) such that∫ t

0

〈(uε − gε2)t, ϕ〉ds+

∫ t

0

∫
Ω

a(s, x,∇uε)∇ϕdxds

=

∫ t

0

∫
Ω

f εϕdxds+

∫ t

0

∫
Ω

F · ∇ϕdxds+

∫ t

0

〈div(Gε1), ϕ〉ds,
(36)
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∀ϕ ∈ Lp−(0, T ;V ) with ∇ϕ ∈ (Lp(·)(Q))N , ∀t ∈ [0, T ]. Next, following the ideas of
[7, 21], we can perform some estimates for the sequence (uε)ε>0, to prove that u is
actually the renormalized solution to the parabolic problem (18).

Proposition 4.1. Let uε as defined before, then{
‖uε‖L∞(0,T ;L1(Ω)) ≤ C,

∫
Q
|∇Tk(uε)|p(x)dxdt ≤ Ck,

‖uε − gε2‖L∞(0,T ;L1(Ω)) ≤ C,
∫
Q
|∇Tk(uε − gε2)|p(x)dxdt ≤ C(k + 1).

(37)

Moreover, there exists a measurable functions u and v = u− g2 such that Tk(u) and
Tk(v) belongs to X, u and v belongs to L∞(0, T ;L1(Ω); and, up to a subsequence, for
any k > 0, and for every q(·) < p(·)− N

N+1 , we have

uε → u a.e. in Q weakly in Lq−(0, T ;W
1,q(·)
0 (Ω)) and strongly in L1(Q),

(uε − gε2)→ (u− g2) a.e. in Q weakly in Lq−(0, T ;W
1,q(·)
0 (Ω)) and strongly in L1(Q),

(Tk(uε) ⇀ Tk(u) weakly in Lp−(0, T ;W
1,p(·)
0 (Ω)) and a.e. on Q,

Tk(uε − gε2) ⇀ Tk(u− g2) weakly in Lp−(0, T ;W
1,p(·)
0 (Ω)) and a.e. on Q,

∇uε → ∇u a.e. in Q, ∇(uε − gε2)→ ∇(u− g2) a.e. in Q.

Proof. Here we give an idea on how (37) can be obtained following the outlines of
[22]. Let ε > 0, by taking Tk(uε) as test function in (35), we obtain∫ t

0

〈∂u
ε

∂t
, Tk(uε)〉dt+

∫
Q

a(t, x,∇uε) · ∇Tk(uε)dxdt =

∫
Q

µεTk(uε)dxdt.

We have Θk(r) =
∫ r

0
Tk(s)ds and |Θk(r)| ≤ k|r|, then∫ t

0

〈∂u
ε

∂t
, Tk(uε)〉dt =

∫
Ω

∫ t

0

∂uε

∂t
Tk(uε)dxdt =

∫
Ω

∫ t

0

∂Θk(uε)

∂t
dxdt

=

∫
Ω

Θk(uε(T ))dx−
∫

Ω

Θk(uε0)dx ≥
∫

Ω

Θk(uε(t))dx− k‖uε0‖L1(Ω).

From (15) and using the fact that ‖uε0‖L1(Ω) and ‖µε‖L1(Q) are bounded, then∫
Ω

Θk(uε(t))dx+

∫ t

0

∫
Ω

|∇Tk(uε)|p(x)dxdt ≤ Ck, ∀k ≥ 0,∀t ∈ [0, T ].

Since Θk(s) is nonnegative and |Θ1(s)| ≥ |s| − 1 for k = 1, we get∫
Ω

|uε(t)|dx+

∫ t

0

∫
Ω

|∇Tk(uε)|p(x)dxdt ≤ C(k + 1) ∀t ∈ [0, T ]. (38)

Taking the supremum on (0, T ) we obtain the estimate

‖uε‖L∞(0,T ;L1(Ω)) ≤ C.

To prove the estimate of uε − gε2 in L∞(0, T ;L1(Ω)), we will use the test function
Tk(uε − gε2) in (36), this gives∫ t

0

〈∂u
ε

∂t
, Tk(uε − gε2)〉dxdt−

∫ t

0

〈(gε2)t, Tk(uε − gε2)〉dt+

∫
Q

a(t, x,∇uε)∇Tk(uε − gε2)dxdt

=

∫
Q

f εTk(uε − gε2)dxdt+

∫
Q

F · ∇Tk(uε − gε2)dxdt−
∫ t

0

〈div(Gε1), Tk(uε − gε2)〉.
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Now, since gε2 has compact support in Q, so that (uε − gε2)(0) = uε(0) = uε0. Using
the integration by parts in time in the first term and using (15) we get∫

Ω

Θk(uε − gε2)(t)dx−
∫

Ω

Θk(uε0)dx+ α

∫
{|uε−gε2|≤k}

|∇uε|p(x)dxdt

−
∫
{|uε−gε2|≤k}

a(t, x,∇uε)∇gε2

≤
∫
Q

f εTk(uε − gε2)dxdt+

∫
{|uε−gε2|≤k}

F · ∇(uε − gε2)dxdt

+

∫
{|uε−gε2|≤k}

Gε1∇(uε − gε2)dxdt.

Young’s inequality then implies, using also (16),∫
Ω

Θk(uε − gε2)(t)dx+ α

∫
{|uε−gε2|≤k}

|∇uε|p(x)dxdt

≤ Cβ
[ ∫

Q

|b(t, x)|p
′(x)dxdt+

∫
Q

|∇uε|p(x)dxdt+

∫
Q

|∇gε2|p(x)dxdt
]

+ k
[
‖uε0‖L1(Ω) + ‖f ε‖L1(Q)

]
+
α

2

[ ∫
Q

|∇u|p(x)dxdt+

∫
Q

|∇gε2|p(x)dxdt

+ Cα
[ ∫

Q

|F |p
′(x)dxdt+

∫
Q

|Gε1|p
′(x)dxdt

]
,

where Cα denote a positive constant which depends on p+ and p− but not depending
on ε and k. In the same way we can deal with the right hand side of the last inequality,

we used the fact that f ε ∈ L1(Q), F ε ∈ (Lp
′(·)(Q))N , gε1 ∈ Lp

′
−(0, T ;W

1,p(·)
0 (Ω)),

g2 ∈ Lp−(0, T ;V ) and uε0 ∈ L1(Ω), (note that Θk(s) is nonnegative for any k ≥ 0)

Θ1(uε − gε2)(t) ≤ C ∀t ∈ [0, T ],

∫
{|uε−gε2|≤k}

|∇uε|p(x)dxdt ≤ C(k + 1).

Moreover, using the boundedness of gε2 in V , we have

‖uε − gε2‖L∞(0,T ;L1(Ω)) ≤ C,
∫
Q

|∇Tk(uε − gε2|p(x)dxdt ≤ C(k + 1).

Now, we shall use the above estimates to prove some compactness results that will be
useful to pass to the limit in the renormalized formulation for uε: If we multiply the
first equation in (35) by γ′k(uε − gε2) where γ is a C2(R) nondecreasing function with

γ(s) = s for |s| ≤ k
2 and γ(s) = k for |s| > k (γ′k, γ

′′
k has compact support), we get

(γk(uε − gε2))t − div(a(t, x,∇uε)γ′k(uε − gε2)) + γ′′k (uε − gε2)a(t, x,∇uε)∇(uε − gε2)

= γ′k(uε − gε2)f ε − div(F εγ′k(uε − gε2)) + γ′′n(uε − gε2)F ε∇(uε − gε2)

+ γ′′k (uε − gε2)G1∇(uε − gε2)− div(Gε1γ
′
k(uε − gε2)).

(39)

We also have γ′′k (uε−gε2)a(t, x,∇uε) ·∇(uε−gε2) ∈ L1(Q), γ′′k (uε−gε2)F ε ·∇(uε−gε2) ∈
L1(Q), γ′′k (uε − gε2)G1 · ∇(uε − gε2) ∈ L1(Q), γ′k(uε − gε2)a(t, x,∇uε) ∈ (Lp

′(·)(Q))N ,

γ′k(uε − gε2)Gε1 ∈ (Lp
′(·)(Q))N , γ′k(uε − gε2)F ε ∈ (Lp

′(·)(Q))N . Thus, by equation (39),
(γk(uε−gε2))t belong to the space X∗+L1(Q). On the other hand, by the last equality
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Tk(uε − gε2) is bounded in X for any k > 0, then we have

k meas{|uε − gε2| > k} =

∫
{|uε−gε2|>k}

|Tk(uε − gε2)|dxdt ≤
∫
Q

|Tk(uε − gε2)|dxdt

≤ 2( meas(Q) + 1)
1
p′− ‖Tk(uε − gε2)‖X ≤ Ck

1
p− ,

which implies that

meas{|uε − gε2| > k} ≤ C 1

k
1− 1

p−

→ 0 as k →∞. (40)

Let n,m ≥ 0, for all λ > 0, we have

meas{|(un − gn2 )| > λ} ≤ meas{|un − gn2 | > k}+ meas{|um − gm2 )| > k}
+ meas{|Tk(un − gn2 )− Tk(um − gm2 )| > λ}.

(41)

Using (40) we get that for all ε > 0, there exists k0 > 0 such that ∀k ≥ k0(ε),

meas{|un − gn2 | > k} ≤ ε

3
, meas{|um − gm2 | > k} ≤ ε

3
.

On the other hand, we have (Tk(un − gn2 ))n∈N is bounded in X. Then, there exists a
sequence still denoted (Tk(un − gn2 ))n∈N such that

Tk(un − gn2 ) ⇀ ηk in X as n→∞
and by the compact embedding {u : u ∈ X and ut ∈ X∗} in L1(Q), we obtain

Tk(un − gn2 )→ ηk in L1(Q) and a.e. in Q.

Thus, we can assume that (Tk(un − gn2 ))n∈N is a Cauchy sequence in Q, therefore for
all k > 0 and λ, ε > 0 there exists n0 = n0(k, λ, ε) such that

meas{|Tk(un − gn2 )− Tk(um − gm2 )| > λ} ≤ ε

3
∀n,m ≥ n0. (42)

By combining (40)–(42), we deduce that for ε, λ > 0 there exits n0 = n0(λ, ε) such
that

meas{|(un − gn2 )− (um − gm2 )| > λ} ≤ ε ∀n,m ≥ n0.

It follows that (uε − gε2)ε>0 is a Cauchy sequence in measure, then there exists a
subsequence still denoted (uε − gε2)ε>0 such that

uε − gε2 → u− g2 a.e. in Q, Tk(uε − gε2 > 0) ⇀ Tk(u− g2) weakly in X.

In the view of the strong convergence of gε2 to g2 in Lp−(0, T ;W
1,p(·)
0 (Ω)), we have

uε → u a.e. in Q, Tk(uε) ⇀ Tk(u) weakly in X.

Finally, the sequence uε − gε2 satisfies the hypotheses of [7], and so we get

∇(uε − gε2)→ ∇(u− g2) a.e. in Q, ∇uε → ∇(u) a.e. in Q.

Next we shall prove the strong convergence of truncates of renormalized solutions of
problem (18). To do that we will crossover the approach used in [38, 15]. With the
symbol Tk(v)µ we indicate the Landes time-regularization of the truncate function
Tk(v); this notion, introduced in [31], was fruitfully used in several papers afterwards
(see in particular [7, 15, 21]). Let zµ be a sequence of functions such that

zµ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω), ‖zµ‖L∞(Ω) ≤ k,

zµ → Tk(u0) a.e. in Ω as µ tends to infinity,
1
µ
‖zµ‖W1,p(·)

0 (Ω)
→ 0 as µ tends to infinity.
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Then, for fixed k > 0, and µ > 0, we denote by Tk(v)µ the unique solution of{
(Tk(v)µ)t = µ(Tk(v)− Tk(v)µ) in the sense of distributions,

Tk(v)µ(0) = zµ in Ω.

Therefore Tk(v)µ ∈ X ∩L∞(Q) and d
dtTk(v) ∈ V , and it can be proved (see also [31])

that up to subsequences

Tk(v)µ → Tk(v) strongly in X and a.e. in Q, ‖Tk(v)µ‖L∞(Q) ≤ k, ∀µ > 0.

Choosing wε as a test function in the formulation (36), we obtain∫ T

0

∫
Ω

(vε)tw
εdxdt+

∫ T

0

∫
Ω

a(t, x,∇uε) · ∇wεdxdt

=

∫ T

0

∫
Ω

f εwεdxdt+

∫ T

0

∫
Ω

F ε · ∇wεdxdt+

∫ T

0

〈gε1, wε〉dxdt.
(43)

So, for the first term on the right-hand side of (43), we have

|
∫ T

0

∫
Ω

f εwεdxdt| ≤
∫ T

0

∫
Ω

|f ε − f ||T2k(vε − Th(vε) + Tk(vε)− (Tk(v))µ)|dxdt

+

∫ T

0

∫
Ω

|fT2k(vε − Th(vε) + Tk(vε)− (Tk(v))µ)|dxdt ≤ 2k

∫ T

0

∫
Ω

|f ε − f |dxdt

+

∫ T

0

∫
Ω

|fT2k(vε − Th(vε) + Tk(vε)− (Tk(v))µ)|dxdt.

By using the fact that f ε is strongly compact in L1(Q), the weak convergence of

Tk(vε) to Tk(v) in Lp−(0, T ;W
1,p(·)
0 (Ω)) and a.e. in Q, the definition of (Tk(v)µ) and

the Lebesgue Dominated Convergence Theorem, we have

lim
h→+∞

lim
µ→+∞

lim
ε→0
|
∫ T

0

∫
Ω

f εwεdxdt| ≤ lim
h→+∞

∫ T

0

∫
Ω

|fT2k(v − Th(v))|dxdt = 0.

Using the notations ω(ε, µ, h), we obtain∫ T

0

∫
Ω

f εwεdxdt = ω(ε, µ, h),

∫ T

0

∫
Ω

F ε · ∇wεdxdt = ω(ε, µ, h). (44)

Let us analyze the second term in (43). By the fact that ∇wε = 0 if |vε| > M = h+4k∫ T

0

∫
Ω

a(t, x,∇uε) · ∇wεdxdt =

∫ T

0

∫
Ω

a(t, x,∇uεχ{|vε|≤M}) · ∇wεdxdt.

Next we split the integral in the sets {|vε| ≤ k} and {|vε| > k}, so that we have,
recalling that for h > 2k,∫ T

0

∫
Ω

a(t, x,∇uεχ{|uε|k}) · ∇T2k(vε − Th(vε) + Tk(vε)− (Tk(v))µ)dxdt

=

∫ ∫
{|vε|≤k}

a(t, x,∇uε)∇(vε − Tk(v)µ)dxdt

+

∫ ∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M})∇(vε − Th(vε))dxdt

−
∫ ∫

{|vε|>k}
a(t, x,∇uεχ{|vε|≤M})∇Tk(v)µdxdt = I1 + I2 + I3.

(45)
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Let us estimate I2. Since vε = Th(vε) = 0 if |vε| ≤ h, using (16) and young’s
inequality, we have

|I2| = |
∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M})∇(vε − Th(vε))dxdt| ≤
∫
{h≤|vε|≤M}

|a(t, x,∇uε)||∇vε|

≤
∫
{h≤|vε|≤M}

β(b(t, x) + |∇uε|p(x)−1)|∇(uε − gε2)|dxdt

≤
∫
{h≤|vε|≤M}

β(b(t, x)|∇(uε − gε2)|)dxdt+

∫
{h≤|vε|≤M}

C|∇u|p(x)−1|∇(uε − gε2)|dxdt

≤
∫
{h≤|vε|≤M}

C

p′−
|b(t, x)|p

′(x)dxdt+

∫
{h≤|vε|≤M}

C

p′−
|∇uε|p(x)dxdt

+

∫
{h≤|vε|≤M}

C

p′−
|∇gε2|p(x)dxdt+

∫
{h≤|vε|≤M}

|∇uε|p(x)dxdt

+

∫
{h≤|vε|≤M}

C

p′−
|∇uε|p(x)dxdt+

∫
{h≤|vε|≤M}

C

p−
|∇gε2|p(x)dxdt

≤ C
∫
{h≤|vε|≤M}

|∇uε|p(x)dxdt+ C

∫
{h≤|vε|≤M}

|b(t, x)|p
′(x)dxdt+ C

∫
{h≤|vε|≤M}

|∇gε2|p(x).

Moreover, since b(t, x) and (∇uε)ε≥0 are, respectively, bounded in Lp
′
−(0, T ;W

1,p(·)
0 (Ω))

and Lp−(0, T ;W
1,p(·)
0 (Ω)), and as meas{h ≤ |vε| < M} converges uniformly to zero

as h → ∞ with respect to ε, then, thanks to the equi-integrability of |∇gε2|p(x), we
can pass to the limit in (I2) as ε→ 0 and h→ +∞ respectively, and using Lebesgue
dominated convergence theorem, we easily get I2 = ω(ε, h). It remains to estimate

I3, let us remark that, since (∇uεχ|vε|≤M ) is bounded in Lp−(0, T ;W
1,p(·)
0 (Ω)), (16)

implies that (a(t, x,∇uε)χ{|vε|≤M})ε>0 is bounded in Lp
′(·)(Q). The a.e. convergence

of vε to v as ε → 0, implies that |∇Tk(v)|χ{|vε|≤k} strongly converges to zero in

Lp−(0, T ;W
1,p(·)
0 (Ω)). So that by the Lebesgue dominated convergence theorem

lim sup
ε→0

∫ ∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M})∇Tk(v)dxdt = 0

and we readily have that

I3 =

∫
{|vε}|>k

a(t, x∇uεχ{|vε|≤M})∇Tk(v)µdxdt

=

∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M}) · ∇(Tk(v)µ − Tk(v))dxdt

= ω(ε) +

∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M})∇(Tk(v)µ − Tk(v))dxdt.

Recall that (a(t, x,∇uεχ{|vε|≤M ))ε>0 is bounded in Lp
′(·)(Q) and thanks to the strong

convergence of Tk(v)µ to Tk(v) in X, by Lebesgue Dominated Convergence theorem∫
{|vε|>k}

a(t, x,∇uεχ{|vε|≤M})∇(Tk(v)µ − Tk(v))dxdt = ω(ε, µ).

We can conclude that I3 = ω(ε, µ). On the other hand, using (45), according to the
fact that I2 and I3 converges to zero, then∫

Q

a(t, x,∇uε) · ∇wεdxdt =

∫
{|vε|≤k}

a(t, x,∇uε) · ∇(vε − Tk(v)µ)dxdt+ ω(ε, µ, h).
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Moreover, (44) and (45) together with (43) yields∫
Q

(vε)tw
εdxdt+

∫
{|vε|≤k}

a(t, x,∇uε) · ∇(vε − (Tk(v))µ)dxdt = ω(ε, µ, h). (46)

While, for the first term of (46), using the Lemma 2.1 in [38], we have∫
Q

(vε)tw
εdxdt ≥ ω(ε, µ, h).

Hence (46) becomes∫
{|vε|≤k}

a(t, x,∇uε) · ∇(vε − (Tk(v))µ)dxdt ≤ ω(ε, µ, h). (47)

While, since ∇Tk(v)µ → ∇Tk(v) strongly in (Lp(·)(Q))N as µ → +∞ and gε2 → g2

strongly in Lp−(0, T ;W
1,p(·)
0 (Ω)), thanks to (47), we easily obtain∫

Q

a(t, x,∇(gε2 + Tk(vε))χ{|vε|≤k}∇(uε − Tk(v)))dxdt.

Moreover, again thanks to the fact that ∇Tk(v)µ → ∇Tk(v) strongly in (Lp(·)(Q))N

as µ→ +∞, and from (47),∫
Q

a(t, x,∇uεχ{|vε|≤k})∇(Tk(vε)− Tk(v))dxdt ≤ ω(ε, µ, h).

Therefore, passing to the limit in (45) as ε tends to zero, µ and h tends to infinity
respectively, we deduce that

lim sup
ε→0

∫
Q

a(t, x,∇uεχ{|vε|≤k}) · ∇(Tk(vε)− Tk(v)) ≤ 0.

Now, let k be such that χ{|vε|≤k} → χ{|v|≤k} a.e. and gn2 → g2 strongly in the space

Lp−(0, T ;W
1,p(·)
0 (Ω)), then using (16) [6, Lemma 3.2], we get

a(t, x,∇(gn2 + Tk(v)χ{|vε|≤k}))→ a(t, x,∇(g2 + Tk(v)χ{|v|≤k})) in (Lp(·)(Q))N (48)

and from (48) we obtain∫
Q

(a(t, x,∇(gn2 + Tk(vε)))− a(t, x,∇(g2 + Tk(v)))) · ∇(Tk(vε)− Tk(v))dxdt

≤ −
∫ T

0

∫
Ω

a(t, x,∇(g2 + Tk(v))) · ∇(Tk(vε)− Tk(v))dxdt+ ω(ε, µ, h).

(49)

Using the weak convergence of ∇Tk(vε) to ∇Tk(v) in (Lp(·)(Q))N , we conclude that

lim sup
ε→0

∫
Q

a(t, x,∇(gε2 + Tk(v))χ{|vε|≤k})∇(Tk(vε)− Tk(v))dxdt = 0.

In the same time, we can pass to the limit in (49) as ε tends to zero, µ and h tends
to infinity respectively, to deduce that

limsup
ε→0

∫
Q

[a(t, x,∇uεχ{|vε|≤k}) − a(t, x,∇(gε2 + Tk(v))χ{|vε|≤k})] · (∇uε − ∇(gε2 +

Tk(v))) = 0.
Using that χ{|vε|≤k} almost everywhere converges to χ{|vε|≤k} and that gε2 strongly

converges to g2 in Lp−(0, T ;W
1,p(·)
0 (Ω)), then thanks to the standard monotonicity

argument which relies on (17) (see [12, Lemma 5]) we readily have from (50),

∇uεχ{|vε|≤k} → ∇(g2 + Tk(v))χ{|vε|≤k} = ∇uχ{|vε|≤k} a.e. in Q,
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which means that

a(t, x,∇uεχ{|vε|≤k})∇uε → a(t, x,∇uχ{|vε|≤k})∇u strongly in L1(Q) and a.e. in Q.

Finally, collecting together all these facts with (15), we obtain the equi-integrability of
the sequence |∇uε|p(x)χ{|vε|≤k} in Q, we can write as consequences of Vitali’s theorem

and since gε2 strongly converges in Lp−(0, T ;W
1,p(·)
0 (Ω)) yields

Tk(uε − gε2)→ Tk(u− g2) strongly in Lp−(0, T ;W
1,p(·)
0 (Ω)).

Now, we have to check that

∇Tk(uε − gε2)→ ∇Tk(uε − gε2) in (Lp(·)(Q))N .

We need the following lemmas.

Lemma 4.2. [26, Theorem 1.4] Let v, vn ∈ Lp(·)(Q), n = 1, 2, · · ·. Then the following
statements are equivalent

(1) lim
n→∞

|vn − v|ρ(·) = 0;

(2) lim
n→∞

(vn − v) = 0;

(3) vn converges to v in Q in measure and lim
n→∞

ρp(·)(vn) = ρp(·)(v).

Lemma 4.3. Lebesgue Generalized Convergence Theorem: Let (fn)n∈N be a sequence
of measurable functions and f a measurable function such that fn → f a.e. in Q. let
(gn)n∈N ⊂ L1(Q) such that |fn| ≤ gn a.e. in Q and gn → g in L1(Q). Then∫

Q

fndxdt→
∫
Q

fdxdt.

Now, set f ε = |∇Tk(uε)|p(x), f = |∇Tk(u)|p(x), gε = a(t, x,∇uεχ{|vε|≤k}) · ∇uε
and g = a(t, x,∇uχ{|vε|≤k}) · ∇u, f ε is a sequence of measurable functions, f is a
measurable function and according to the almost convergence of ∇Tk(un) to ∇Tk(u)
in Ω,

f ε → f a.e. in Q.

Using a(x,∇Tk(uε)) · ∇Tk(uε)→ a(x,∇Tk(u)) · ∇Tk(u) strongly in L1(Ω) and a.e. in
Ω, we have (gε)ε>0 ⊂ L1(Q), gε → g a.e. in Q, gε → g in L1(Q), and |f ε| ≤ Cgε.
Then, by Lemma 4.3 we have∫

Q

f εdxdt→
∫ ∫

Q

fdxdt,

which is equivalent to∫
Q

|∇Tk(uε)|p(x)dxdt→
∫ ∫

Q

|∇Tk(u)|p(x)dxdt.

We deduce from (2) that the sequence (∇Tk(uε))ε>0 converges to ∇Tk(u) in Q in
measure. Then, by Lemma 4.2, we deduce that

lim
ε→0

∫
Q

|∇Tk(uε)−∇Tk(u)|p(x)dxdt = 0,

which is equivalent to

∇Tk(uε)→ ∇Tk(u) in (Lp(·)(Q))N .
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Finally, we are able to prove that problem (18) has a renormalized solution. Let
S ∈ W 2,∞(R) be such that S′ has a compact support, and let ϕ ∈ C∞c (Q); then the
approximating solutions uε and uε − gε2 satisfy

−
∫

Ω

S(uε0)ϕ(0)dx−
∫ T

0

〈ϕt, S(uε − gε2)〉+

∫
Q

S′(uε − gε2)a(t, x,∇uε)∇ϕdxdt

+

∫
Q

S′′(uε − gε2)a(t, x,∇uε)∇(uε − gε2)ϕdxdt =

∫
Q

S′(uε − gε2)f εϕdxdt

+

∫
Q

S′(uε − gε2)F ε · ∇ϕdxdt+

∫
Q

S′′(uε − gε2)F ε · ∇(uε − gε2)ϕdxdt

+

∫
Q

S′(uε − gε2)Gε1∇ϕdxdt+

∫
Q

S′′(uε − gε2)Gε1∇(uε − gε2)ϕdxdt.

(50)

We consider the first term in the left-hand side of (50). Since S is continuous, Propo-
sition 4.1 implies that S(uε − gε2) converges to S(u − g2) a.e. in Q and weakly∗ in
L∞(Q). Then (S(uε − gε2))t converges to (S(u− g2))t in D′(Q) as ε→ 0, that is∫

Q

(S(uε − gε2))tϕdxdt→
∫
Q

(S(u− g2))tϕdxdt.

As supp S′ ⊂ [−M,M ] for some M > 0, we have
S′(uε − gε2)a(t, x,∇uε) = S′(uε − gε2)a(t, x,∇TM (uε(uε − gε2) +∇gε2))

S′′(uε − gε2)a(t, x,∇uε) · ∇(uε − gε2)

= S′′(uε − gε2)a(t, x,∇TM (uε − gε2) +∇gε2)∇TM (uε − gε2).

Using Proposition 4.1, the strong convergence of gε2 to g2 in Lp−(0, T ;W
1,p(·)
0 (Ω)) and

assumption (16), we have
S′(uε − gε2)a(t, x,∇TM (uε − gε2) +∇gε2)

→ S′(u− g2)a(t, x,∇TM (u− g2) +∇g2) in (Lp
′(·)(Q))N

S′′(uε − gε2)a(t, x,∇TM (uε − gε2) +∇gε2)∇TM (uε − gε2)

→ S′′(u− g2)a(t, x,∇TM (u− g2) +∇g2)∇TM (u− g2) in L1(Q).

The pointwise convergence of S′(uε− gε2) to S′(u− g2) and the strong convergence of
f ε to f in L1(Q) yields

f εS′(uε − gε2)→ fS′(u− g2) strongly in L1(Q) as ε→ 0.

Finally, we recall that ∇S′(uε − gε2) ⇀ ∇S′(u− g2) weakly in (Lp(·)(Q))N . Then the
term S′′(uε − gε2) F · ∇(uε − gε2) which is equal to F · ∇S′(uε − gε2) satisfies

S′′(uε − gε2)F · ∇(uε − gε2) ⇀ F · ∇S′(u− g2) in L1(Q) as ε→ 0.

We can identifies the term F · ∇S′(u − g2) with S′′(u − g2) F · ∇(u − g2). As a
consequence of the last convergence results, we are in position to pass to the limit as
ε→ 0 in (50), and to conclude that u satisfies Definition 3.2. It remains to show that
S(u − g2) satisfies the initial condition (31). To this end, we take in mind the last
convergence results of the terms of equation (50), which imply that

(S(uε − gε2))t is bounded in X∗ + L1(Q).

While S(uε−gε2) strongly converges in X, we deduce [38, Theorem 1.1] that S(uε−gε2)
being bounded in L∞(Q) and

S(uε − gε2)→ S(u− g2) strongly in C([0, T ];L1(Q)).
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It follows that
S(uε − gε2)(0)→ S(u0) strongly in L1(Q).

Hence (31) is fulfilled. Thus, the proof of existence of renormalized solution u of
problem (18) is complete.

Now, we try to stress the fact that the notion of renormalized solution, as in the
elliptic case, should be the right one to get uniqueness. As we said before, if the
datum µ belongs to M0(Q), the renormalized solution turns out to be unique (see
[22]); the same happens for general Sobolev spaces with diffuse measure as data and
u0 ∈ L1(Ω) as initial condition by choosing an appropriate test function motivated by
[16]. Let Sn be defined as in Definition 3.2. We take Tk(Sn(u1− g2)−Sn(u2− g2)) as
a test function in both the equation solved by u1 and u2, we subtract them to obtain
J0 + J1 = J2 + J3 + J4 + J5 + J6 + J7, where

J0 =
∫ T

0

∫
Ω

(Sn(u1 − g2)− Sn(u2 − g2))tTk(Sn(u1 − g2)− Sn(u2 − g2)),

J1 =
∫ T

0

∫
Ω

[S′n(u1 − g2)a(t, x,∇u1)− S′n(u2 − g2)a(t, x,∇u2)]

∇Tk(Sn(u1 − g2)− Sn(u2 − g2)),

J2 = −
∫
Q

[S′′n(u1 − g2)a(t, x,∇u1)∇(u1 − g2)− S′′n(u2 − g2)a(t, x,∇u2)∇(u2 − g2)]

·[Tk(Sn(u1 − g2)− Sn(u2 − g2))],

J3 =
∫
Q
f(S′n(u1 − g2)− S′n(u− g2))Tk(Sn(u1 − g2)− Sn(u2 − g2)),

J4 =
∫
Q
F (S′n(u1 − g2)− S′n(u2 − g2))∇Tk(Sn(u1 − g2)− Sn(u2 − g2)),

J5 =
∫
Q

[S′′n(u1 − g2)F∇(u1 − g2)− S′′n(u2 − g2)F∇(u2 − g2)]

·Tk(Sn(u1 − g2)− Sn(u2 − g2)),

J6 =
∫
Q

[G1(S′n(u1 − g2)− S′n(u2 − g2))∇Tk(Sn(u1 − g2)− Sn(u2 − g2))],

J7 =
∫
Q

[S′′n(u1 − g2)G1∇(u1 − g2)− S′′n(u2 − g2)G∇(u2 − g2)]

·Tk(Sn(u1 − g2)− Sn(u2 − g2)).

We estimate Ji, i = 1, . . . , 7 one by one. Recalling Θk(r), J0 can be written as

J0 =

∫
Ω

Θk(Sn(u1 − g2)− Sn(u2 − g2))(T )dx

−
∫

Ω

Θk(Sn(u1 − g2)− Sn(u2 − g2))(T )dx.

Due to the same initial condition for u1 − g2 and u2 − g2, and properties of Θk,

J0 =

∫
Ω

Θk(Sn(u1 − g2)− Sn(u2 − g2))(0)dx ≥ 0.

We deal with J1 splitting it as bellow.

J1 =

∫
{|Sn(u1−g2)−Sn(u2−g2)|≤k}∩{|u1−g1|≤n,|u2−g2|≤n}

[a(t, x,∇u1)− a(t, x,∇u2)] · (∇u1 −∇u2)

+

∫
{|Sn(u1−g2)−Sn(u2−g2)|≤k}∩{|u1−g2|≤n,|u2−g2|>n}

[S′n(u1 − g2)a(t, x,∇u1)− S′n(u2 − g2)a(t, x,∇u2)] · ∇(Sn(u1 − g2)− Sn(u2 − g2))]

+

∫
{|Sn(u1−g2)−Sn(u2−g2)|≤k}∩{|u2−g2|>n}

[S′n(u1 − g2)a(t, x,∇u1)− S′n(u2 − g2)a(t, x,∇u2)] · ∇(Sn(u1 − g2)− Sn(u2 − g2))]

:= J 1
1 + J 2

1 + J 3
1 .
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Next, as {|Sn(u1− g2)−Sn(u2− g2)| ≤ k, |u1− g2| > n} ⊂ {|u1− g2| > n, |u2− g2| >
n− k} and using the fact that S′n(t) = 0 if |t| > n+ 1 and |S′n(t)| ≤ 1, we have

|J 3
1 | ≤

∫
{n≤|u2−g2|≤n+1}

|a(t, x,∇u1)||∇(u1 − g2)|dxdt

+

∫
{n≤|u1−g2|≤n+1}∩{n−k≤|u2−g2|≤n+1}

|a(t, x,∇u1)||∇(u2 − g2)|dxdt

+

∫
{n≤|u1−g2|≤n+1}∩{n−k≤|u2−g2|≤n+1}

|a(t, x,∇u2)||∇(u1 − g2)|dxdt

+

∫
{n−k≤|u2−g2|≤n+1}

|a(t, x,∇u2)||∇(u2 − g2)|dxdt.

(51)

We deduce from the first integral in the right- hand side of (51),∫
{n≤|u1−g2|≤n+1}

|a(t, x,∇u1)||∇(u1 − g2)|dxdt

≤
∫
{n≤|u1−g2|≤n+1}

β(b(t, x) + |∇u1|p(x)−1)|∇(u1 − g2)|dxdt

≤
∫
{n≤|u1−g2|≤n+1}

βb(t, x)|∇(u1 − g2)|

+

∫
{n≤|u1−g2|≤n+1}

β|∇u1|p(x)−1|∇(u1 − g2)|dxdt

≤
∫
{|u1−g2|≤n+1}

C

p′−
|b(t, x)|p

′(x)dxdt+

∫
{|u1−g2|≤n+1}

C

p−
|∇(u1 − g2)|p(x)dxdt

+

∫
{|u1−g2|≤n+1}

C

p′−
|∇u1|p(x)dxdt+

∫
{|u1−g2|≤n+1}

C

p−
|∇(u1 − g2)|p(x)dxdt.

Since b(t, x) is bounded in Lp
′
−(0, T ;W

1,p(·)
0 (Ω)) and meas{n ≤ |u1 − g2| ≤ n + 1}

converges uniformly to zero as n→∞, we deduce from conditions (29) and (33) that

lim
n→+∞

∫ ∫
|u1−g2|≤n+1

|a(t, x,∇u1)||∇(u1 − g2)|dxdt = 0.

Similarly, we prove that all the other integrals in the right-hand side of (51) converge
to zero as n → +∞. Thus J 3

1 converges to zero. Changing the roles of u1 − g2 and
u2 − g2, we may get the similar arguments for J 2

1 . Furthermore, J 2
1 converges to

zero. An application of Fatou’s Lemma gives

lim inf
n→+∞

J1 ≥
∫
{|u1−u2|≤k}

[a(t, x,∇u1)− a(t, x,∇u2)](∇u1 −∇u2)dxdt.

Now, we can pass to the study of the limit of J2. We have

J2 =

∫ T

0

∫
Ω

[S′′n(u1 − g2)a(t, x,∇u1)∇(u1 − g2)]Tk(Sn(u1 − g2)− Sn(u2 − g2))dxdt

+

∫ T

0

∫
Ω

[S′′n(u2 − g2)a(t, x,∇u2)∇(u2 − g2)]Tk(Sn(u1 − g2)− Sn(u2 − g2))dxdt

= J 1
2 + J 2

2 .
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By symmetry between J 1
2 and J 2

2 , it is enough to prove that J1
2 tends to zero. Since

|S′′n(s)| ≤ 1 and S′′n(s) 6= 0 only if |s| ∈ [n, n+ 1], using (16) we can write

|J 1
2 | ≤ k

∫ ∫
{n≤|u1−g2|≤n+1}

|a(t, x,∇u1)||∇(u1 − g2)|

≤ k
∫
{n≤|u1−g2|≤n+1}

β(b(t, x) + |∇u1|p(x)−1)||∇(u1 − g2)|dxdt

≤ k
∫

Ω

β(b(t, x) + |∇u1|p(x)−1)|∇(u1 − g2)|χ{n≤|u1−g2|≤n+1}dxdt

→ 0 as n→ +∞.

We conclude that lim
n→+∞

J2 = 0. Let us recall that by definition of Sn, we have that

S′n converge to 1 for every s in R. Then

f(S′n(u1 − g2)− S′n(u2 − g2))→ 0 strongly in L1(Q) as n→ +∞.

Using the dominated convergence Theorem, we deduce that lim
n→+∞

J3 = 0. Let us

study the limit of J6, we have S′n(u1−g2)−S′n(u2−g2) = 0 in {|u1−g2| ≤ n, |u2−g2| ≤
n} ∪ {|u1| > n+ 1, |u2| > n+ 1}, then J6 = J 1

6 + J 2
6 + J 3

6 , where

J 1
6 =

∫
{|Sn(u1−g2)−Sn(u2−g2)|≤k}∩{|u1−g2|≤n,|u2−g2|>n}

[G1(S′n(u1 − g2)− S′n(u2 − g2))

· ∇(Sn(u1 − g2)− Sn(u2 − g2))]

Recalling that Sn(t) = t if |t| ≤ n, Sn is nondecreasing and Supp S′n ⊂ [−n−1, n+1],

|J 1
6 | ≤

∫
{n−k≤|u1−g2|≤n}

|G1||∇(u1 − g2)|dxdt+

∫
{n≤|u2−g2|≤n+1}

|G1||∇(u2 − g2)|dxdt.

So that, using Hölder’s inequality, we get

|J 1
6 | ≤ C‖G1‖p′(x)

× (max(

∫
{n−k≤|u1−g2≤n|}

|∇u1 −∇g2|p(x))
1
p− , (

∫
{n−k≤|u1−g2|≤n}

|∇u1 −∇g2|p(x)dxdt)
1
p+ )

+ max(

∫
{n≤|u2−g2|≤n+1}

|∇u2 −∇g2|p(x)dxdt)
1
p− , (

∫
{n≤|u2−g2|≤n+1}

|∇u2 −∇g2|p(x)dxdt)
1
p+ ))

Thus by (29) we get that (J 1
6 ) converges to 0 as n→∞. The same is true for (J 2

6 )

J 2
6 =

∫
{|Sn(u1−g2)−Sn(u2−g2)|≤k}∩{n≤|u1−g2|≤n+1}

[G1(S′n(u1 − g2)− S′n(u2 − g2))

· ∇(Sn(u1 − g2)− Sn(u2 − g2))dxdt].

Since |Sn(t)| > n− k implies |t| > n− k, we have

|J 2
6 | ≤

∫
{n≤|u1−g2|≤n+1}

|G1||∇(u1 − g2)|+
∫
{n−k≤|u2−g2|≤n+1}

|G1||∇(u2 − g2)|dxdt.

So that using Hölder’s inequality and (29), we get that (J 2
6 ) converges to zero. The

term (J 3
6 ) can be dealt with the same way using that S′n(t) = 0 if |t| > n+ 1. Hence

we deduce lim
n→+∞

J6 = 0. As regards (J7), note that using the properties of S′′n and
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(16), we can split the integral as follows.

|J7| =
∫
Q

S′′n(u1 − g2)G1 · ∇(u1 − g2)Tk(Sn(u1 − g2)− Sn(u2 − g2))dxdt

−
∫
Q

S′′n(u2 − g2)G1 · ∇(u2 − g2)Tk(Sn(u1 − g2)− Sn(u2 − g2))dxdt.

(52)

We denote (J 1
7 ,J 2

7 ) the two integrals of (52). Using the properties of Sn and S′′n
(recall that S′′n(s) = −sgn(s)χ{n≤|s|≤n+1}) we have

|J 1
7 | ≤ k

∫
{n≤|u1−g2|≤n+1}

|G1||∇(u1 − g2)|dxdt ≤ Ck‖G1‖Lp′(x)(Q)

×max(

∫
{n≤|u1−g2|≤n+1}

|∇u1 −∇g2|p(x))
1
p− , (

∫
{n≤|u1−g2|≤n+1}

|∇u1 −∇g2|p(x))
1
p+ ).

Applying Hölder inequality and using property (33), we easily get that (J 1
7 ) converges

to zero as n tends to infinity. Similarly, we have

|J 2
7 | ≤ Ck‖G1‖Lp′(x)(Q)

×max(

∫
{n≤|u2−g2|≤n+1}

|∇u2 −∇g2|p(x))
1
p− , (

∫
{n≤|u2−g2|≤n+1}

|∇u2 −∇g2|p(x))
1
p+ ).

Again Hölder inequality together with (29) allow to deduce that (J 2
7 ) converges to

zero as well. So that we finally get that lim
n→+∞

J7 = 0. Similarly we have lim
n→+∞

J4 = 0

and lim
n→+∞

J5 = 0. Putting together (J1)− (J6) and (J7), we obtain lim
n→∞

∑1
i=0 Ji =

lim
n→∞

∑7
i=2 Ji, as n tends to infinity. Then∫

{|u1−u2|≤k}
[a(t, x,∇u1)− a(t, x,∇u2)](∇u1 −∇u2)dxdt ≤ 0

letting k tends to infinity (recall that u1 and u2 are finite a.e. in Q), we deduce that∫
Q

[a(t, x,∇u1)− a(t, x,∇u2)](∇u1 −∇u2)dxdt ≤ 0.

The strict monotonicity assumption (17) implies that ∇u1 = ∇u2 a.e. in Q. Then,

let ζn = T1(Tn+1(u1 − g2)− Tn+1(u2 − g2)). We have ζn ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) and

since ∇(u1 − g2) = ∇(u2 − g2) a.e. in Q,

∇ζn =


0 on {|u1 − g2| ≤ n+ 1, |u2 −2 | ≤ n+ 1} ∪ {|u1 − g2| > n+ 1, |u2 − g2| > n+ 1}
1{u1−g2−Tn+1(u2−g2)|≤1}∇(u1 − g2) on {|u1 − g2| ≤ n+ 1, |u2 − g2| > n+ 1}
−1{u2−g2−Tn+1(u1−g2)|≤1}∇(u2 − g2) on {|u1 − g2| > n+ 1, |u2 − g2| ≤ n+ 1}.

But, if |s| > n+ 1, |t| ≤ n+ 1 and |t− Tn+1(s)| ≤ 1, then n ≤ |t| ≤ n+ 1, and∫
Q

|∇ζn|p(x)dxdt ≤
∫
{n≤|u1−g2|≤n+1}

|∇(u1 − g2)|p(x)dxdt

+

∫
{n≤|u2−g2|≤n+1}

|∇(u2 − g2)|p(x)dxdt→ 0 as n→ +∞.

Then, ζn → 0 in Lp−(0, T ;W
1,p(·)
0 (Ω)), and thus in D′(Q) as n → +∞. Since ζn →

T1(u1 − g1) − (u2 − g2)) a.e. in S as n → +∞ and remains bounded by 1, we also
have ζn → T1((u1 − g2)− (u2 − g2)) in D′(Q). Hence, T1((u1 − g2)− (u2 − g2)) = 0
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i.e., u1 − g2 = u2 − g2 on Q. Therefore u1 = u2. Thus, we obtain the uniqueness of
the renormalized solution to (18). �
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[2] F. Andreu, J. M. Mazón, S. Segura de Léon, J. Toledo, Existence and uniqueness for a degenerate

parabolic equation with L1 data, Trans. Amer. Math. Soc. 351 (1999), 285–306.
[3] D. G. Aronson, Removable Singularities for Linear Parabolic Equations, Arch. Rational Mech.

Anal. 17 (1964), 79–84.

[4] S. Antontsev, S. Shmarev, Parabolic equations with anisotropic nonstandard growth conditions,
Internat. Ser. Numer. Math. 154 (2006), 33–44.

[5] S. Antontsev, V. Zhikov, Higher Integrability for Parabolic Equations of p(x, t)−Laplacian Type,

Adv. Differ. Equat. 10 (2005), no. 9, 1053–1080.
[6] D. Blanchard, Truncations and monotonicity methods for parabolic equations, Nonlinear Anal.

T., M. & A. 21 (1993), 725–743.
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