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Abstract. Fairly recently, extreme learning machine (ELM) has been proposed as a single-

hidden layer feedforward neural network (SLFN), where the input weights are randomly ini-

tiated and never updated, and the output weights are analytically computed. Setting the
parameters of the hidden layer randomly may not be always effective if the function that is

learned is not simple and the amount of labeled data is not small, even if theoretical stud-

ies have shown that ELM maintains the universal approximation capability. To address this
issue, we propose a new approach inspired by the Bayesian paradigm as an alternative to

the random initiation of the hidden node parameters. The idea behind this model is that we
can use the information (prior knowledge) about a certain labeled data through the corre-

lation between attributes and decision classes. The prior knowledge is acquired through the

Goodman−Kruskal Gamma rank correlation between attributes and labels, assuming that
the input weights should be related to the influence of attributes upon labels. Five publicly

available high-dimensional datasets regarding cancer (breast, lung, colon, and ovarian) related

to cDNA arrays, DNA microarray, and mass spectroscopy are used for experimentation and
model assessment. We compared the performance of this classifier with that of three ’neigh-

boring’ algorithms, such as a basic ELM, a SLFN trained by backpropagation (BP) algorithm,

and a radial basis function network (RBF). The experimental results undoubtedly indicated
that the proposed variant of ELM is very effective and its performance is superior to that of

the comparison models.
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1. Introduction

Particular cases of multi-layer perceptions (MLPs) using randomly initialized input
weights along with adaptable output weights have been proposed in literature, [5],
[10], [40], [37], [26] in order to substantially decrease the computational time spent in
adjusting the weights as occurs in the classical case.

Fairly recently, extreme learning machine (ELM) was proposed as a new learning
algorithm for single-hidden layer feedforward neural networks (SLFNs) [22], [23], [24].
The learning paradigm is based on the random choice of the hidden nodes and the
analytical calculation of the output weights. This approach has given rise to some
debate in the Machine Learning (ML) community, mainly due to its resemblance to
SFLNs with this particular learning technique [44]. In spite of this dispute, ELM
has been widely used in different domains because of its better generalization ability,
robustness, and fast learning speed [11], [43], [15], [25]. Recent years have seen a
strong development of ELM, various versions being proposed along with applications
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in a wide range of fields. State-of-the-art ELM models consist of evolutionary cost-
sensitive ELM, parsimonious kernel ELM, self-adaptive ELM, robust ELM, hybrid Bat
algorithm-ELM, hierarchical ELM, kernel ELM, sequential ELM, regularized ELM,
fuzzy ELM, incremental-based ELM, etc. [51], [52], [44], [36], [33], [39], [50], [46], [14],
[49], [7].

Because ELM requires a much shorter training time and less manual intervention,
it received increased attention, becoming very popular, particularly in the analysis
of a large amount of data. ELM has been successfully applied to solve a lot of
real-world applications, such as traffic flow prediction [41], image classification [12],
dimension reduction in image processing [30], stochastic sensitivity analysis [4], real-
time tidal prediction [50], prediction of demographic attributes [32], gene expression
data classification [46], etc.

For several years, ML changes the way health care professionals do their jobs,
by improving diagnostics and treatments, beginning to develop personalized care,
and optimizing patient management, [6]. In this context, ELM is extensively used
nowadays in various medical applications, such as Alzheimer’s disease detection [3],
lung cancer diagnosis [14], [18], [19], [20], [21] breast cancer diagnosis and analysis
[35], [9], heart disease diagnosis [28], diabetes [16], nuclear magnetic resonance imaging
[44], [50], pathological brain detection [33], electromyography [2], liver fibrosis [8].

The research on Bayesian methods used to enhance the ELM performance is a
current concern nowadays. Some of the most relevant studies of this kind focus
on different approaches, such as: Bayesian linear regression to optimize the weights
of the output layer(Bayesian ELM) [42], learning the output weights of ELM by
estimating the marginal likelihood of network outputs through a sparse Bayesian
approach [34], using the Bayesian posterior probability as activation function for the
hidden neurons in a constrained-optimization-based ELM [48], the determination of
network target vectors exploiting both training data labeling information and training
data geometric information in aELM-based unsupervised subspace learning [27], the
use of the Bayesian prior distribution and the variational approximation inference to
compute the posterior distribution and the independent variational hyper-parameters
for selecting the hidden nodes automatically [13].

This paper proposes and evaluates a novel approach, inspired by the Bayesian
paradigm,to set the parameters of the ELM hidden layer. The method has been
conceived as a more efficient alternative to the traditional random initialization,which
is independent from applications, thus representing a major topic of debate. To
the best of our knowledge, our method is completely different from the researches
regarding the use of the Bayes model to ELM.

The Bayes decision rule combines both the priors and the likelihoods to achieve the
minimum probability of error. In the Bayesian classification, the predicted class max-
imizes the posterior probability, i.e., the conditional probability of attributes, given a
class label. There are often situations where we have to answer the question: ’What
is a reasonable decision rule if the only available information is the prior?’. Different
from other approaches dealing with the Bayesian paradigm, the current study pro-
poses a way of making a reasonable decision by using the only information available
in datasets,that is the relation between attributes and class labels, statistically quan-
tified by the corresponding correlation. Assuming a nonlinear monotonic relationship
between variables, and the existence of many tied observations in data, which is a
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frequently encountered situation in real-world applications, we considered the non-
parametric Goodman-Kruskal Gamma rank correlation between attributes and class
labels as prior knowledge. Instead of randomly generating the hidden nodes, they are
now problem-dependent and estimated by a rank correlation between attributes and
labels. In the benchmarking process, the statistical comparison indicated that ELM
enhanced with this novel initialization technique of the hidden nodes outperforms the
nearest conventional techniques(traditional ELM, RBF, and SLFN trained by BP al-
gorithm (BP-SLFN with one hidden layer)) regarding both the decision accuracy and
the computation speed. The contributions of the paper are twofold: mainly, to develop
a novel initialization technique for ELM based on Bayesian paradigm, and secondary,
to assess its effectiveness using real-world high-dimensional cancer databases.

The remainder of this paper is organized in six sections. Section 2 is devoted
to a brief presentation of the Bayesian paradigm. Section 3 presents the design and
implementation of the novel model. Section 4 presents the benchmarking datasets and
briefly summarizes the statistical framework for performance assessment. Section 5
presents the experimental results, model assessment, and corresponding discussions.
Section 6 deals with the conclusions and future work.

2. THE BAYESIAN PARADIGM: PRIOR KNOWLEDGE

A. The Bayesian model
In the Bayesian framework, the (observable) data D are assumed to be generated

by hidden reasons r. The connection between data and the corresponding causes
is given through the conditional probability P(D|r)-likelihood, the probability P(D)-
evidence, and the prior knowledge P(r)-prior probability. The Bayesian model con-
sists in computing the conditional probability P(r|D)-posterior probability, using the
Bayes’ theorem:

P (r|D) =
P (D|r) · P (r)

P (D)
(1)

Using the Bayesian terminology, equation (1) can be written as

posterior =
likelihood · prior

evidence
.

Based on the Bayesian framework, a decision-making process combines prior knowl-
edge with information extracted from observations. Formally, the posterior probabil-
ity P (h|D) is computed given a hypothesis h, the data D, the likelihood P (D|h), the
prior probability P (h), and the evidence P (D). From a probabilistic point of view,
the Bayes’ formula is given by:

P{Ai|B} =
P{B|Ai}P{Ai}∑n
i=1 P{B|Ai}P{Ai}

(2)

P{B} > 0, P{Ai} > 0, i = 1, 2, ..., n,

where B is an arbitrary event and {A1, A2, ..., An} is a partition of the sample space
Ω.

In a decision-making/classification problem, an object with attributes {A1, A2, ..., An}
has to be assigned to a certain class C. Using the Bayesian model, the class C = Ck

that maximizes the posterior probability P{A1, A2, ..., An | Cj} is chosen accordingly.
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In addition, one often considers the so-called näive Bayes assumption (Idiot’s Bayes),
stating the independence of attributes (obviously, a false assumption most of the time)
for a given class C, namely P{A1, A2, ..., An | C} = P{A1 | C}·P{A2 | C}·P{An | C}.
B. Knowledge embedded in data

A dataset used in supervised learning contains objects characterized by inputs (fea-
tures) and outputs (classes/categories). The intrinsic connection between features and
the corresponding class labels provides valuable information, worth to be considered
in the decision-making process. Considering an objective Bayesian point of view [29],
the knowledge embedded in this connection, based upon available data, should lead to
the same decision, regardless of the way of usage. From a statistical point of view, the
prior knowledge may be measured by the prior probability P (h), expressing the (ob-
jective) information about a certain object through the liaison between its attributes
and decision class.

Consider that the (training) dataset contains N objects x1, x2, ..., xN . Each object
in the dataset is coded as a vector xk = (xk1 , ..., x

k
i , ..., x

k
p; yk), where xki , i = 1, 2, ..., p,

represents the i − th feature of the object xk, k = 1, 2, ..., N, and yk represents the
label corresponding to object xk, that is the decision class Cj , j = 1, 2, ..., q. From a
probabilistic point of view, assume that, for each k = 1, 2, ..., N, the attribute values
xki belonging to the attribute Ai, i = 1, 2, ..., p, are governed by a random variable
(r.v.) Xi, in other words, one identifies the attribute Ai with the corresponding
r.v. Xi. Statistically, the set {x1i , x2i , ..., xni } represents a random sample of length N
corresponding to the r.v. Xi. For the sake of simplicity and without loss of generality,
one can consider the näıve assumption that all attributes are independent of each
other, i.e., the parent r.v.’s Xi , i = 1, 2, ..., p are independent.

Next, assume that, for each object xk, the class labels yj , j = 1, 2, ..., q, are
governed by a categorical r.v. Y . Statistically, the set {y1j , y2j , ..., yNj } represents a
random sample of length N corresponding to the categorical r.v. Y .

A straightforward method to discover potential information within data is to as-
sess the statistical dependence between the parent r.v.’s Xi , i = 1, 2, ..., p, of at-
tributes and the parent r.v. Y of the decision class. Assuming a common situa-
tion in real-world applications, that is a non-linear monotonic relationships between
variables and the existence of many tied observations in data, we considered the
non-parametric Goodman-Kruskal Gamma rank correlation Γ, which is based on the
difference between concordant pairs (C) and discordant pairs (D), and computed as
Γ = (C −D)/(C +D) , although there are other alternative options (e.g., Spearman
rank ρ, Kendall Tau, etc.).

3. BAYESIAN INITIALIZATION OF ELM

The proposed alternative to the basic random initialization of the connections
between the input layer and the hidden neurons, called Bayesian initialization of
ELM (BiELM), simply assigns the rank correlation between attributes and decision
classes to the input weights. This controlled setting of the parameters of the hidden
layer directly expresses the prior knowledge embedded in the training dataset upon
the hidden weights.

A. Traditional ELM algorithm
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ELM is a special case of SLFN with a single layer of hidden units, where the
synaptic weights connecting inputs to hidden units are randomly initiated, while the
synaptic weights between hidden units and outputs are optimized using a Moore-
Penrose generalized inverse [24].

For a training dataset TS, containing N objects with p attributes and q decision
classes, consider a standard SLFN with Ñ hidden nodes and activation function g(x).
Denote by wi = (wi2, wi2, ..., wip) the weight vector connecting the ith hidden node
and the input nodes, by βi = (βi1, βi2, ..., βiq) the weight vector connecting the i-th
hidden node and the output nodes, and by bi the threshold of the i-th hidden node.
The traditional ELM learning method for SLFN can be summarized as follows [24]:

ELM algorithm: Given the training set TS, the activation function , and a
number Ñ of hidden nodes:
Step 1: Randomly assign input weight wi and bias bi , i = 1, 2, ...,Ñ .
Step 2: Calculate the hidden layer output matrix H.
Step 3. Calculate the output weight β = H+T , where H is the hidden layer output
matrix, H+ is the Moon-Penrose generalized inverse of H, and T is the output vector.

B. Bayesian initialization of the hidden nodes. The BiELM algorithm
For the sake of simplicity, consider Ñ = q. Denote by wij , i = 1, 2, ..., p, j =

1, 2, ..., q, the synaptic weight connecting the input attribute xi belonging to the fea-
ture vector x to the jth hidden neuron of the network. From a probabilistic point
of view, assume that the real values of the weights wij represent the values of a r.v.
denoted by Wij , i = 1, 2, ..., p, j = 1, 2, ..., q. A synaptic weight refers to the strength
of a connection between two units, perceived as a measure of this strength. Assum-
ing that the weights wij belong to the interval [0, 1], they might be interpreted as a
probability-like measure encoding the strength of the connection between attributes
and class labels. The basic idea of our Bayesian approach is to transfer this measure
of the connection strength from the couple formed by attribute and class label to the
couple formed by input and hidden neuron. In this way, one replaces an arbitrary
random initialization of the hidden nodes by a rational initialization, directly related
to the purpose of the network, that is to identify the optimal connection between
attributes and decision classes. Under these circumstances, the modulus of Γ might
be interpreted as a probability-like measure encoding the strength of the relation-
ship between attributes and class labels enhancing the connection between input and
hidden nodes.

Assume that the weights wij are naturally related to the attributes influence on the
decision class, and suppose that the events Aij corresponding to the r.v. Wij provide a
partition of the ”weight space” W . Then, the probabilities P{Aij} may be considered
as priors in the Bayesian context, expressing specific information about the object x
through the correlation between attributes Xi and decision Y . In Bayesian statistical
inference, these (informative) priors reflect the prior knowledge of how likely attributes
influence decision classes before the classification is taken into account. P{Aij} are
expressed in probabilistic terms by the rank correlation Γ between Xi and Y by:

P{Aij} = Γ(Xi, Y ), i = 1, 2, ..., p, j = 1, 2, ..., q. (3)
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For each hidden neuron, consider the non-linear activation function given by the
hyperbolic tangent f(u) = 1.7159 · tanh(2u/3), recommended by its fast conver-
gence [31]. Given a decision class Cj , j = 1, 2, ..., q, the corresponding label yj is en-
coded using the ”1-of-q” rule for nominal/categorical data, i.e., y1 ∼ (0, 0, ..., 1), y2 ∼
(0, 0, ..., 1, 0), ..., yq ∼ (1, 0, ..., 0). For each decision class Cj , j = 1, 2, ..., q, and for
each attribute Ai, i = 1, 2, ..., p, one computes the corresponding mean attribute value
mj

i , numerically encoding the knowledge regarding the connection between attributes
and decision classes. Then for the jth hidden unit, j = 1, 2, ..., q, one computes the
synaptic weights wij , given by:

Wij = Γ((xki −m
j
i ), yk), i = 1, 2, ..., p, j = 1, 2, ..., q, k = 1, 2, ..., N. (4)

BiELM algorithm: Given the training set TS, the hyperbolic tangent as activation

function, and a number Ñ=q of hidden nodes:
Step 1: For each decision class Cj , j = 1, 2, ..., q, and for each attribute Ai, i =

1, 2, ..., p, compute the corresponding mean attribute value mj
i .

Step 2: For each synaptic weight wij , i = 1, 2, ..., p, j = 1, 2, ..., q, assign the Goodman-
Kruskal Gamma rank correlation between attributes and decision classes, given by
formula (4).
Step 3: The network output is given by yk =

∑
βk · f(xk, wik), k = 1, 2, ..., N, i =

1, 2, ...p, where xk is a sample vector, and f is the hyperbolic tangent.
Step 4: Using TS, Calculate the hidden layer output matrix H.
Step 5: Calculate the output weight β = H+Y , where H is the hidden layer output
matrix, H+ is the Moon-Penrose generalized inverse of H, and Y is the output vector.
A Python implementation of BiELM and ELM has been performed on a 2.80 GHz

Intel(R) Core(TM)2 Extreme CPU X9000, 4.00GB (RAM).

4. BENCHMARKING DATASETS. STATISTICAL ASSESSMENT

A.Benchmarking datasets
The benchmarking datasets used for experimentation and model assessment orig-

inate from the publically available Machine Learning Data Set Repository http:

//mldata.org/. The first four refer to the DNA micro-array technology, while the
last one relates to proteomic spectra obtained by mass spectroscopy. All datasets
are characterized by high dimensionality, ranging from 2000 to 24481 attributes, in
order to highlight the huge computation power, speed and effectiveness of BiELM
algorithm regardless the dataset dimension. It is noteworthy that, although the bal-
anced datasets are desirable for classification, we considered the original (unbalanced)
datasets in order to test the algorithm in real-time conditions.
1) Breast cancer Kent Ridge (BCKR) available at
http://mldata.org/repository/data/viewslug/breast-cancer-kent-ridge-2/.
DNA microarray analysis was used to identify a gene expression signature strongly
predictive of a short interval to distant metastases for patients with primary breast
tumors [Veer]. The dataset contains 97 instances with 24481 attributes and two-class
decision (46-relapse vs. 51-non-relapse).
2) Colon cancer Kent Ridge(CCKR) available at
http://mldata.org/repository/data/viewslug/colon-cancer-kent-ridge/. The
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oligonucleotide arrays (or cDNA arrays), allowing the parallel monitoring of expres-
sion level of thousands of genes, was used to discriminate between tumor biopsies and
normal biopsies of colons of the same patients [1]. The dataset contains 62 instances
with 2000 attributes and two-class decision (40-negative vs. 22-positive).
3) Breast cancer Duke (BCD) available at
http://mldata.org/repository/data/viewslug/duke-breast-cancer/.Gene ex-
pression data derived from DNA microarray analysishave the capacity to discriminate
breast tumors on the basis of estrogen receptor (ER) status and also on the catego-
rized lymph node status. The dataset contains 86 instances with 7129 attributes and
two-class decision regarding the estrogen receptor (45-(ER+) vs. 41-(ER-)).
4) Lung cancer Michigan(LCM) available at
http://mldata.org/repository/data/viewslug/lung-cancer-michigan/. Gene
expression profiles based on microarray analysis can be used to predict patient sur-
vival in early-stage lung adenocarcinomas. The dataset contains 96 instances with
7129 attributes and two-class decision (86-tumor vs. 10-normal).
5) Ovarian cancer (NCI PBSII)(OC) available at
http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/.
The proteomic spectra were generated by mass spectroscopy and used to identify pro-
teomic patterns in serum that distinguish ovarian cancer from non-cancer [38]. The
dataset contains 253 instances with 15154 continuous attributes and two-class decision
(162-cancer vs. 91-normal).

B. Statistical assessment
Since the sample size is relatively small in all cases, the 10-fold cross-validation

(10-fold CV) has been chosen to assess the predictive accuracy. To assess the BiELM
performance and to compare it to those of ELM, RBF and BP-SLFN, each competing
algorithm has been independently run 100 times in 10-fold CV cycle, representing a
minimum sample size ensuring the validity of the envisaged statistical tools.

The average classification accuracy (ACC) along with the corresponding standard
deviation (SD) obtained in the testing phase have been chosen as the main indicators
of the classification accuracy and algorithm’s stability. The area under the ROC curve
(AUC), simultaneously combining the sensitivity and specificity of the classifier, has
been also considered as one of the best ways to evaluate or compare by a unique value
the classifiers’ performance. The corresponding AUCs related to example runs of each
model with similar classification accuracy to the average one have been presented to
serve the reader a more comprehensive overview.The traditional evaluation system
for AUC (i.e., 0.9-1.0 excellent; 0.8-0.9 good; 0.7-0.8 fair; 0.6-0.7 poor; 0.5-0.6 failure)
has been used to assess the performance of each classifier [17].

Inspired by the (Lyapunov) stability of trajectories of dynamical systems, one can
consider that the ACC values corresponding to a certain number of independent com-
puter runs represent an ’orbit’ related to the ’dynamics’ of the stochastic algorithm
(transition from one computer run to another). Accordingly, a stochastic algorithm
is considered ’stable’ if the ACC values stay in a small enough neighborhood of the
’point of equilibrium’ irrespective of the small perturbations due to its stochastic
nature (randomly assignation/initialization, etc.). The neighborhood might be con-
sidered the 95% confidence interval (95% CI) for the average accuracy obtained during
a certain number of independent computer runs (’point of equilibrium’), computed
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using SD. Consequently, narrow CI indicates evidence of a more stable model regard-
less of the number of computer runs.It is noteworthy that the distribution of ACC
values would be approximately Gaussian for large enough samples (e.g., greater than
or equal to 100) represented by independent computer runs showing consistency of
the CI.

Besides the classification accuracy, which is the most important performance mea-
sure especially in computer-aided medical diagnosis, we also need algorithms that run
quickly and use the available computing resources efficiently. NNs, generally, despite
their key role in classification, face a challenging issue regarding the learning speed
especially in case of very large data dimension. In this regard, we have compared the
CPU time (in seconds) for each model during a complete 10-fold CV cycle for 100
independent runs. This tough enough benchmarking condition has been chosen to
better highlight the very large difference regarding computation speed between the
two types of ELM algorithms and the traditional NNs.

The classical one-way ANOVA technique along with the Tukey’s honestly signifi-
cant difference (Tukey HSD) post-hoc test have been used to statistically quantify the
magnitude of the contrast between the corresponding classification performances.

5. RESULTS AND DISCUSSIONS

The experiments on five high-dimensional medical datasets regarding major types
of cancer aimed to assess the BiELM against some traditional approaches. In this
respect, a direct comparison of BiELM with results obtained by three closest algo-
rithms, namely traditional ELM, BP-SLFN, and RBF on the same datasets has been
performed.

A. Experimental results
The classification performance indicators, in terms of ACC, SD, and AUC are dis-
played in Table 1.

Dataset ACC/SD(%) AUC
BCKR 53.33/8.58 0.612
CCKR 71.27/12.34 0.724
BCD 72.63/4.69 0.732
LCM 92.58/4.21 0.995
OC 80.15/7.21 0.857

Table 1. Experimental results: ACC/SD and AUC for BiELM.

We observe that ACC as well as SD strongly depend on the dataset used. For
the dataset (BCKR) having the largest dimensionality (24481), ACC as well as AUC
are very unsatisfactory from a medical point of view (53.58% and 0.612), indicating a
poor classification performance. However, it seems that the classification performance
is not correlated with the data dimension. Thus, although BCD and LCM have the
same dimension (7129), the performance difference is significant, that is 72.63% vs.
92.58% and 0.732 vs. 0.995, respectively, ranging from fair to excellent. Moreover,
although OC has 15154 attributes as against CCKR with only 2000, ACC = 80.15%
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(AUC = 0.857) vs. ACC = 71.27% (AUC = 0.724). To conclude, BiELM is not
directly influenced by data dimension but by dataset itself. It is noteworthy that
the same conclusions can be drawn regarding the algorithm’s stability indicated by
SD(see, for instance, the case of BCKR and CCKR).

B. Evaluation of BiELM performance
The simulations regarding RBF and BP-SLFN have been carried out in STATISTICA
7 (StatSoft, Inc.) environment, run on a 2.80 GHz Intel(R) Core(TM)2 Extreme
CPU X9000, 4.00GB (RAM). The experimental results displayed in Table 2 refer to
ACC (%) and CPU time (seconds) obtained by each competing model during 100
independent computer runs (complete 10-fold CVcycle).

Dataset

BiELM ELM RBF BP-SLFN

ACC(%) ACC(%) ACC(%) ACC(%)
CPU(sec) CPU(sec) CPU(sec) CPU(sec)

BCKR
53.33 42.16 46.75 50.81
1751 761 4500 43020

CCKR
71.27 58.53 69.00 68.40
14 7 27 374

BCD
72.63 67.67 68.09 51.38
151 63 367 3567

LCM
92.58 87.10 80.95 89.91
173 79 305 4440

OC
80.15 75.18 65.42 75.20
1415 643 2296 363600

TABEL 2. Comparing models performance (ACC, CPU TIME).

From Table 2 one can notice, as before, that the performance of all classifiers,in
terms of ACC, strongly depends on the specific dataset, thus confirming the traditional
findings.It is important to note that, regardless of the dataset, BiELM has the best
classification performance. Regarding the competitors, we notice that the hierarchy
changes depending on the datasets. Thus, in three out of five datasets (BCKR, LCM,
OC), BP-SLFN is the most performant algorithm, pointing out that it is about the
datasets with the largest dimension. ELM outperforms RBF in just two cases (LCM,
OC), and BP-SLFN in just one case (BCD). It follows that there is need of improving
the classical ELM. In conjunction with Table 2, Fig. 1 illustrates the performance
comparison regarding the stability to several computer runs, expressed by the 95%
CI computed via SD. Excepting BCKR, with the poorer stability of BiELM, i.e., SD
= 8.58% (BiELM) vs. 4.60% (ELM), 5.88% (RBF), and 5.50% (BP-SLFN), and,
partially, CCKR with SD = 12.34% (BiELM) vs. 11.45% (ELM), 8.96% (RBF), and
26.99% (BP-SLFN), in the other cases BiELM was relatively more stable than its
competitors. Thus, on BCD we obtained SD = 4.69% (BiELM) vs. 8.95% (ELM),
11.36% (RBF), and 19.76% (BP-SLFN); on LCM, SD = 4.21% (BiELM) vs. 4.71%
(ELM), 11.52% (RBF), and 9.70% (BP-SLFN); and OC, SD = 7.21% (BiELM) vs.
9.63% (ELM), 6.20% (RBF), and 9.85% (BP-SLFN)).
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Figure 1. Performance comparison (Box&Whiskers plot).

The CPU time analysis explicitly highlighted the advantage of using ELM-like algo-
rithms, especially for huge dimensions. The fastest algorithm, regardless the dataset,
is ELM, closely followed by BiELM and, at considerable distance, by RBF. Regarding
BP-SLFN, it was by far the slowest algorithm, despite its relatively high classification
accuracy. These findings are fully justified if we take into consideration their learning
paradigms [17]. The BP algorithm is relatively time consuming because it uses two
distinct phases of computation. In the forward pass, the synaptic weights remain
unaltered and the network function signals are computed on a neuron-by-neuron ba-
sis. In the backward pass, the error signals are sent back layer-by-layer through the
network and the local gradient for each neuron is computed. Faster than the BP al-
gorithm, training RBF consists in determining the parameters of the (Gaussian) basis
functions, followed by the computation of the synaptic weights. While in the tradi-
tional ELM, only the output weights are learned in a single step, BiELM improves
the learning process by controlling the initialization of the input weights, losing thus
computation speed, but gaining accuracy.

The performance comparison displayed in Table 2 revealed primary information
about the behavior of each algorithm involved in the benchmarking process. Deepen-
ing the comparison, the one-way ANOVA technique along with the Tukey’s honestly
significant difference(Tukey HSD) post-hoc test have been used to highlight statis-
tically significant differences regarding ACCs between BiELM and the competitors.
The one-way ANOVA analysis is used to determine whether there is a significant
difference between the means of two or more independent groups. In our case a differ-
ence between the BiELM and all the other competitors for each dataset.The ANOVA
output, consisting of (combined) sums of squares (SS), degrees of freedom (df), mean
squares (MS), F-value, and p-level (contrasts: quadratic polynomial), is presented in
Table 3.
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Dataset SS df MS F-value p-level
BCKR 7167.58 3 2389.19 59.88 0.00
CCKR 9568.90 3 3189.63 11.68 0.00
BCD 24823.72 3 8274.57 52.22 0.00
LCM 7708.53 3 2569.51 40.20 0.00
OC 11237.32 3 3745.77 53.13 0.00

TABEL 3. One-Way ANOVA test BiELM vs. competitiors on each dataset.

The post-hoc Tukey HSD test has revealed the following statistically significant
differences in classification performance (p-level < 0.05):
- On BCKR dataset, BiELM vs. ELM (mean diff. = 12.73, std. err. = 2.34), BiELM
vs. RBF (mean diff. = 6.58, std. err. = 0.89), BiELM vs. MLP (mean diff. = 2.52,
std. err. = 0.89);
- On CCKR dataset, BiELM vs. ELM (mean diff. = 11.17, std. err. = 0.89);
- On BCD dataset BiELM vs. ELM (mean diff. = 4.87, std. err. = 1.78), BiELM
vs. RBF (mean diff. = 4.73, std. err. = 1.78), BiELM vs. MLP (mean diff. = 20.78,
std. err. = 1.78);
- On LCM dataset, BiELM vs. ELM (mean diff. = 5.53, std. err. = 1.13), BiELM
vs. RBF (mean diff. = 11.84, std. err. = 1.13);
- On OC dataset, BiELM vs. ELM (mean diff. = 4.98, std. err. = 1.19), BiELM vs.
RBF (mean diff. = 14.64, std. err. = 1.19), BiELM vs. MLP (mean diff. = 4.92,
std. err. = 1.19).

The one-way ANOVA test along with the Tukey’s post-hoc test provided the ob-
jective analytical confirmation regarding the statistically difference concerning ACC
between the competitor algorithms presented in Table 2. More importantly though is
the fact that, regardless the benchmarking dataset, BiELM had a better classification
performance,statistically proven, than the traditional model.

C. Discussion
It can be noticed that the idea of replacing the randomness specific to the tradi-

tional ELM by the embedded knowledge in data, quantified by the correlation between
attributes and class labels, has proven fruitful. The benchmarking results from Table
2 in terms of ACC, along with the ANOVA/post− hoc Tukey HSD comparison tests
from Table 3, undoubtedly showed a significant gain in accuracy. In addition, this
novel approach brought a gain in terms of algorithm stability quantified by the 95%
CI as illustrated in Fig. 1.

As regards the computational speed, although ELM remains the fastest algorithm,
BiELM proved surprisingly fast despite the relatively large volume of computations
needed for initialization. The significant gain in decision-making accuracy, of particu-
lar interest in medical diagnosis, is fully offset by an about two times lower computing
speed. As expected, BiELM took advantage both of the well-known parent ELM al-
gorithm’s speed, and the gain in classification accuracy obtained by using the new
initialization approach, based on extracting knowledge from data.
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6. CONCLUSIONS

The prior knowledge embedded in the connections between attributes and class
labels can successfully assist a traditional ELM algorithm in learning better samples in
a dataset. This paper explores the potential to enhance the classification performance
of a traditional ELM by replacing the simple random initiation of the hidden node
parameters by the Goodman-Kruskal Gamma rank correlation between attributes and
class labels. Based on the Bayesian model, by directly using the informative priors,
which measure the influence of attributes upon labels through the corresponding
rank correlation, BiELM uses the potential prior knowledge provided by the training
dataset to initialize the connections between the input layer and the hidden neurons.
The current algorithm offers the possibility of dealing with very large datasets due to
its ELM inheritance, combined with an enhanced classification capability due to the
novel initialization of the input weights.

The proposed approach can be improved in attempting to enhance the computation
speed. A task for future work concerns the design of a filtering mechanism of the rank
correlations, inspired by the partially connected models of neural networks. In this
way, only those that are truly significant for classification should be chosen for the
initiation of the hidden node parameters.
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