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Fixed point results for a new three steps iteration process
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Abstract. In this paper, we introduce a new three steps iteration process for approximating
the fixed point of a contractive like mapping and Suzuki generalized nonexapansive mapping

in the frame work of uniformly convex Banach space. Using our iteration process, we state
and prove some convergence results for approximating the fixed points of Suzuki generalized

nonexpansive mappings. In addition, we show that our proposed iterative scheme converges

faster than some existing iterative schemes in the literature and that it is equivalent to the well
known Mann iteration method in the sense of convergence. Finally, the stability (T -stable,

weak w2-stable) and data dependency results for our proposed iterative scheme are established

with an analytical and numerical example given to justify our claim.
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1. Introduction

Let (X, ‖ · ‖) denote a real Banach space and C be a nonempty closed and convex
subset of X. A fixed point problem for a mapping T : C → C is given as: find x ∈ C
such that

Tx = x. (1)

We denote the set of all fixed points of T by F (T ). The theory of fixed point has
progressively become an invaluable area of study as many problems in mathematics,
engineering, physics, economics, game theory, etc can be transformed into a fixed point
problem. In general, solving fixed point problems analytically is almost impossible,
thus the need for iterative solution arises. Over the years, researchers have developed
several iterative schemes for approximating the solution (1) for different operators
and spaces, for example, see ([12, 13, 14, 15, 16, 29, 30]). Developing a faster and
more efficient iterative algorithms for solving (1) is still an active area of research.
A good and reliable fixed point iteration is required at least to posses the following
attributes:
(1) it should converge to a fixed point of an operator;
(2) it should be T -stable;
(3) it should be fast compare to other existing iteration in literature;
(4) it should show data dependence result.

Received April 9, 2018. Accepted August 10, 2019.

298



FIXED POINT RESULTS FOR A NEW THREE STEPS ITERATION PROCESS 299

The Picard iterative process

xn+1 = Txn, ∀n ∈ N, (2)

is one of the earliest iterative process used to approximate Equation (1), where T
is a contraction mapping. If T is nonexpansive, the Picard iterative process fails to
approximate Equation (1) even when the existence of the fixed point is guaranteed.
To overcome this limitation, researchers in this area developed different iterative pro-
cesses to approximate fixed points of nonexpansive mappings and other mappings
more general than nonexpansive mappings. Among many others, we have the Mann
[20], Ishikawa [10], Krasnosel’skii [19], Noor [22], Abbas et al., [3], Jungck-AM [21]
and so on. There are numerous papers dealing with the approximation of fixed points
of nonexpansive mappings, asymptotically nonexpansive mappings, total asymptoti-
cally nonexpansive mappings in uniformly convex Banach spaces, see [1, 2, 3, 4] and
the references therein.
In 2005, Suntai in [27], proposed the following iterative process: For each u0 ∈ C, the
sequence {un} in C is defined by

wn = (1− cn)un + cnTun,

vn = (1− an − bn)un + anTwn + bnTun,

un+1 = (1− αn − βn)un + αnTvn + βnTwn, n ≥ 1,

(3)

where {αn}, {βn}, {an}, {bn} and {cn} are sequences in [0, 1] such that ({an} +
{bn}), ({αn}+ {βn}) are in [0, 1].
In 2011, Sahu [25] introduced the Normal S-iteration process in Banach space and
show that the rate of convergence of this iteration process is as fast as the Picard
iteration process and faster than other existing iteration schemes in literature. The
Normal S-iteration process is given as follows: Given a convex subset C of a normed
space E and T : C → C a nonlinear mapping. For each x0 ∈ C, the sequence {xn} in
C is defined by {

yn = (1− αn)xn + αnTxn,

xn+1 = Tyn, n ≥ 1,
(4)

where {αn} is a sequence in [0, 1].
In 2013, Karakaya et al., in [17], proposed the following iterative process: For each
q0 ∈ C, the sequence {qn} in C is defined by

sn = (1− cn)qn + cnTqn,

pn = (1− an − bn)sn + anTsn + bnTqn,

qn+1 = (1− αn − βn)pn + αnTpn + βnTsn, n ≥ 1,

(5)

where {αn}, {βn}, {an}, {bn} and {cn} are sequences in [0, 1] such that ({an} +
{bn}), ({αn} + {βn}) are in [0, 1]. They show that the rate of convergence of this
iterative scheme is faster than that of (3) with the aid of a numerical example.
In [11], Kadioglu and Yildirim introduced a Picard Normal S-iteration process and
show that the rate of convergence of this iteration process is faster than the Normal
S-iteration process. This iteration process is defined as follows: Given a convex subset
C of a normed space E and a nonlinear mapping T : C → C. For each x0 ∈ C, the
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sequence {xn} in C is defined by
zn = (1− βn)xn + βnTxn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 1,

(6)

where {αn} and {βn} are sequences in (0, 1).
In 2014, Gursoy and Karakay in [7] introduced a new iteration process called Picard-S
iteration process, which is defined as follows: Given a convex subset C of a normed
space E and a nonlinear mapping T : C → C. For each x0 ∈ C, the sequence {xn} in
C is defined by 

zn = (1− αn)xn + αnTxn,

yn = (1− βn)Txn + βnTzn

xn+1 = Tyn, n ≥ 1,

(7)

where {αn} and {βn} are sequences in (0, 1).
They proved that this iterative process converges faster than Picard, Mann, Ishikawa,
Noor, Abbas et al., and other existing iterative schemes in literature.
In 2017, Karakaya et al., in [18] introduced the following iteration process: For each
x0 ∈ C, the sequence {xn} in C is defined by

zn = Txn,

yn = (1− αn)zn + αnTzn

xn+1 = Tyn, n ≥ 1,

(8)

where {αn} is a sequence in (0, 1). They proved that this iterative process converges
faster than Picard, Mann, Ishikawa, Noor, Abass et al., and other existing iterative
schemes in literature.
In 2018, Ullah et al., in [31] introduced a new iteration process called M iteration
process, which is given as: For each x0 ∈ C, the sequence {xn} in C is defined by

zn = (1− αn)xn + αnTxn,

yn = Tzn

xn+1 = Tyn, n ≥ 1,

(9)

where {αn} is a sequence in (0, 1).
They proved that this iterative process converges faster than Picard, Mann, Ishikawa,
Noor, Abass et al., SP, CR, Normal-S process and the existing iterative schemes in
literature.

Definition 1.1. Let C be a nonempty subset of a metric space (X, d). A self mapping
T on C is said to be
(1) an a-contraction mapping, if for each x, y ∈ C and a ∈ (0, 1), ‖Tx − Ty‖ ≤

a‖x− y‖;
(2) Kannan mapping, if there exists b ∈ (0, 1

2 ) for each x, y ∈ C, ‖Tx − Ty‖ ≤
b[‖x− Tx‖+ b‖y − Ty‖];

(3) Chatterjea mapping, if there exists c ∈ (0, 1
2 ) for each x, y ∈ C, ‖Tx − Ty‖ ≤

c[‖x− Ty‖+ b‖y − Tx‖].



FIXED POINT RESULTS FOR A NEW THREE STEPS ITERATION PROCESS 301

Combining the above definitions, Zamfirescu [34] introduced a class of mappings called
Zamfirescu mappings and established some fixed point results for this class of map-
pings. This class of mappings is defined as follows:

Definition 1.2. Let X be a metric space. T : X → X is called a Zamfirescu mapping
if there exist real numbers, a, b and c satisfying 0 ≤ a < 1 and b, c ∈ (0, 1

2 ) such that
for all x, y ∈ X, at least one of the following conditions holds:
(1) ‖Tx− Ty‖ ≤ a‖x− y‖;
(2) ‖Tx− Ty‖ ≤ b[‖x− Tx‖+ ‖y − Ty‖];
(3) ‖Tx− Ty‖ ≤ c[‖x− Ty‖+ ‖y − Tx‖].

Theorem 1.1. [34] Let X be a complete metric space and T : X → X be a Zamfirescu
mapping. Then T has a unique fixed point say x∗ and the Picard iterative process
converges to x∗.

In [5] Berinde introduced another class of mappings in metric space satisfying

‖Tx− Ty‖ ≤ δ‖x− y‖+ L‖x− Tx‖, (10)

for all x, y ∈ C, δ ∈ (0, 1) and L ≥ 0.

He show that this class of mapping satisfying (10) contain the class of Zamfirescu
mappings.
In [9], Imoru and Olantiwo gave the following contractive definition.

Definition 1.3. Let T be a self-mapping on a Banach space X. The mapping T
is called contractive-like mapping if there exist a constant δ ∈ [0, 1) and a strictly
increasing and continuous function ξ : [0,∞)→ [0,∞) with ξ(0) = 0 such that for all
x, y ∈ X,

‖Tx− Ty‖ ≤ δ‖x− y‖+ ξ(‖x− Tx‖). (11)

They show that this class of mappings satisfying (11) is more general than those
considered by Berinde [?], Osilike and Udomene [24] and some other contractive like
mappings in literature.

Remark 1.1. If ξ(t) = Lt, then (11) reduces to (10).

Inspired and motivated by the above works and the ongoing research interest in this
direction, our purpose of this work is to introduce a new three steps iteration process
(13) and show that the proposed iterative scheme can be used to approximate the
fixed point of a contractive like mapping, Suzuki generalized nonexpansive mappings
and establish some convergence results for approximating the fixed points of Suzuki
generalized nonexapansive mappings in the frame work of uniformly convex Banach
space. In addition, we show that the proposed iterative scheme perform faster than
some existing iterative schemes in literature and that it is equivalent to the well known
Mann iteration method in the sense of convergence. Finally, the stability (T -stable,
weak w2-stable)and data dependency results for the proposed iterative scheme are
established with an analytical and numerical example given to justify our claim.

2. Preliminaries

In this section, we give some definitions and important results which are useful in
establishing our main results.
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Let X be a Banach space and SX = {x ∈ X : ‖x‖ ≤ 1} be a unit ball in X.
For α ∈ (0, 1) and x, y ∈ SX such that x 6= y, if ‖(1 − α)x + αy‖ < 1, then we
say X is strictly convex. If X is a strictly convex Banach space and ‖x‖ = ‖y‖ =
‖(1− λ)y + λx‖ ∀x, y ∈ X and λ ∈ (0, 1), then x = y.

Definition 2.1. A Banach space X is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(12)

exists for all x, y ∈ SX .

In the above definition, the norm of X is called Gateaux differentiable. For all y ∈ SX ,
if the limit (12) is attained uniformly for x ∈ SX , then the norm is said to be uniformly
Gateaux differentiable or Fréchet differentiable.

Definition 2.2. A Banach space X satisfies Opial’s condition [23], if for any sequence
{xn} ⊂ X,xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for all y ∈ X such that x 6= y.

Definition 2.3. Let C be a subset of a normed space X. A mapping T : C → C is said
to satisfy condition (A) if there exists a nondecreasing function f : [0,∞) → [0,∞)
such that f(0) = 0 and f(t) > 0 ∀ t ∈ (0,∞) and that ‖x− Tx‖ ≥ f(d(x, F (T ))) for
all x ∈ C where d(x, F (T )) denotes distance from x to F (T ).

Berinde [6] proposed a method to compare the fastness of two sequences.

Lemma 2.1. [6] Let {an} and {bn} be two sequences of real numbers converging to

a and b respectively. If limn→∞
|an−a|
|bn−b| = 0, then {an} converges faster than {bn}.

Lemma 2.2. [6] Suppose that for two fixed point iteration processes {un} and {vn}
both converging to the same fixed point x∗, the error estimates

‖un − x∗‖ ≤ an n ≥ 1,

‖vn − x∗‖ ≤ bn n ≥ 1,

are available where {an} and {bn} are two sequences of positive numbers converging
to zero. If {an} converges faster than {bn}, then {un} converges faster than {vn} to
x∗.

Definition 2.4 ([6]). Let T, T : C → C be two operators. We say that T is an
approximate operator for T if for some ε > 0, we have

‖Tx− Tx‖ ≤ ε,
for all x ∈ C.

Definition 2.5. [8] Let {tn} be any arbitrary sequence in C. Then, an iteration
procedure xn+1 = f(T, xn), converging to fixed point p, is said to be T -stable or stable
with respect to T, if for εn = ‖tn+1 − f(T, tn)‖, ∀n ∈ N, we have limn→∞ εn = 0 if
and only if limn→∞ tn = p.

Definition 2.6. Two sequences say {xn} and {yn} are said to be equivalence if
limn→∞ ‖xn − yn‖ = 0.
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Definition 2.7. [33] Let {tn} be an equivalent sequence of {xn}. Then an iteration
procedure xn+1 = f(T, xn), converging to fixed point p, is said to be weak w2-stable
with respect to T, if and only if limn→∞ ‖tn+1 − f(T, tn)‖ = 0, ∀n ∈ N, implies that
limn→∞ tn = p.

Lemma 2.3. [32] Let {Ψn} and {Φn} be nonnegative real sequences satisfying the
following inequality:

Ψn+1 ≤ (1− φn)Ψn + Φn,

where φn ∈ (0, 1) for all n ∈ N,
∑∞
n=0 φn =∞ and limn→∞

Φn

φn
= 0, then limn→∞Ψn =

0.

Lemma 2.4. [26] Let {Ψn} and {Φn} be nonnegative real sequences satisfying the
following inequality:

Ψn+1 ≤ (1− φn)Ψn + φnΦn,

where φn ∈ (0, 1) for all n ∈ N,
∑∞
n=0 φn =∞ and Φn ≥ 0 for all n ∈ N, then

0 ≤ lim sup
n→∞

Ψn ≤ lim sup
n→∞

Φn.

Lemma 2.5. Let X be a uniformly convex Banach space and 0 < p ≤ tn ≤ q <
1 ∀n ∈ N. Let {xn} and {yn} be two sequences in X such that lim supn→∞ ‖xn‖ ≤
c, lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn + (1 − tn)yn‖ = c hold for some c ≥ 0.
Then limn→∞ ‖xn − yn‖ = 0.

Proposition 2.6. [28] Let C be a nonempty closed subset of a Banach space X with
the Opial property and T : C → C a Suzuki generalized nonexpansive mapping. If
{xn} converges weakly to a point z and limn→∞ ‖Txn − xn‖ = 0, then T(z) = z.

Definition 2.8. Let C be a nonempty subset of a Banach space X and {xn} be a
sequence in X. Then {xn} is called a Fejér monotone sequence with respect to C if
for all x ∈ C and n ≥ 1,

‖xn+1 − x‖ ≤ ‖xn − x‖.

Proposition 2.7. Let {xn} be a sequence in X and C be a nonempty subset of X.
Suppose that T : C → C is any nonlinear mapping and the sequence {xn} is Fejer
monotone with respect to C, then we have the following:
(i) {xn} is bounded.

(ii) The sequence {‖xn − x∗‖} is decreasing and converges for all x∗ ∈ F (T ).

Lemma 2.8 ([28]). Let C be a nonempty subset of a Banach space X. Let T : C →
C be a Suzuki generalized nonexpansive mapping and F (T ) 6= ∅, then T is quasi-
nonexpansive.

3. Rate of convergence, stability and data dependency

In this section, we establish the rate of convergence, stability and data dependency
results for the iterative process (13). In addition, we show that the proposed iterative
scheme perform faster than some existing iterative schemes in literature and that it
is equivalent to the well known Mann iteration method in the sense of convergence.
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We define our iterative process as follows: For each x0 ∈ C, the sequence {xn} in C
is defined by 

zn = (1− γn)xn + γnTxn,

yn = (1− αn − βn)zn + αnTzn + βnTxn,

xn+1 = Tyn, n ≥ 1,

(13)

where {αn}, {βn} and {γn} are sequences in [0, 1], satisfying (αn + βn) ∈ [0, 1].

Remark 3.1. (1) If γn = αn = βn = 0, then iteration (13) reduces to (2).
(2) If γn = αn = 0, (γn = βn = 0) then iteration (13) reduces to (4).
(3) If βn = 0, then iteration (13) reduces to (6).
(4) If βn + αn = 1, then iteration (13) reduces to (7).
(5) If γn = 1 and βn = 0, then iteration (13) reduces to (8).
(6) If αn = 1 and βn = 0, then iteration (13) reduces to (9).

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X. Let T be a mapping satisfying (11) and {xn} be defined by the
iteration process (13) with sequences {αn}, {βn} and {γn} in [0, 1] such that (αn +
βn) ∈ [0, 1] satisfying

∑∞
n=0(an + bn) =∞. Then {xn} converges strongly to a unique

fixed point of T.

Proof. To start with, we will establish that limn→ xn = x∗. Using (13), we have

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖
= (1− γn)‖xn − x∗‖+ γn‖Tx∗ − Txn‖
≤ (1− γn)‖xn − x∗‖+ γnδ‖x∗ − xn‖+ γnξ(‖x∗ − Tx∗‖)
= (1− (1− δ)γn)‖xn − x∗‖. (14)

Using (13) and (14), we also have

‖yn − x∗‖ ≤ (1− αn − βn)‖zn − x∗‖+ αn‖Tzn − x∗‖+ βn‖Txn − x∗‖
= (αnδ + 1− αn − βn)‖zn − x∗‖+ βnδ‖xn − x∗‖
≤ [(αnδ + 1− αn − βn)(1− (1− δ)γn) + βnδ]‖xn − x∗‖
= [1− αn − βn + αnδ + βnδ − (1− δ)γn(1 + αnδ − αn − βn)]‖xn − x∗‖
≤ [1− αn − βn + αnδ + βnδ]‖xn − x∗‖
= (1− (1− δ)(αn + βn))‖xn − x∗‖. (15)

Using (13) and (15), we have

‖xn+1 − x∗‖ ≤ ‖Tyn − x∗‖
≤ δ‖yn − x∗‖
≤ δ(1− (1− δ)(αn + βn))‖xn − x∗‖. (16)
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From (16), we have

‖xn+1 − x∗‖ ≤ δ(1− (1− δ)(αn + βn))‖xn − x∗‖
‖xn − x∗‖ ≤ δ(1− (1− δ)(αn−1 + βn−1))‖xn−1 − x∗‖

...

‖x1 − x∗‖ ≤ δ(1− (1− δ)(α0 + β0))‖xn − x∗‖. (17)

From (17), we have that

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖δn+1
n∏

m=0

(1− (1− δ)(αm + βm)). (18)

Since {αn}, {βn}, {γn}, δ and (αn + βn) are in [0, 1], we have (1− (1− δ)(αn + βn)) ∈
(0, 1). We recall the inequality 1− x ≤ e−x for all x ∈ [0, 1], thus from (18), we have

‖xn+1 − x∗‖ ≤
δn+1‖x0 − x∗‖

e(1−δ)
∑n

m=0(αm+βm)
.

Taking the limit of both sides of the above inequalities, we have limn→∞ ‖xn−x∗‖ = 0.

We now establish that x∗ is unique. Let x∗, x∗2 ∈ F (T ), such that x∗ 6= x∗2, using the
definition of T, we have

‖x∗ − x∗2‖ = ‖Tx∗ − Tx∗2‖ ≤ δ‖x∗ − x∗2‖ ≤ ‖x∗ − x∗2‖
⇒ ‖x∗ − x∗2‖ ≤ ‖x∗ − x∗2‖.

Clearly, we have that ‖x∗−x∗2‖ = ‖x∗−x∗2‖, if not we get a contradiction ‖x∗−x∗2‖ <
‖x∗ − x∗2‖. Hence, we have that x∗ = x∗2. Thus the proof is complete. �

Remark 3.2. We note that using similar approach as in Theorem 3.1 with some
conditions, it is easy to see that iterative process (3), (4), (5), (6), (7), (8) and (9)
converges to a unique fixed point of T.

Theorem 3.2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T be a mapping satisfying (11). Let {xn} be defined by the
iteration process (13) with the sequences {γn}, {αn}{βn},
{an}, {bn}, {cn} in [0, 1] such that (an + bn) ∈ [0, 1], satisfying α+ β ≤ αn + βn ≤ 1,
for all n ∈ N and some α, β ∈ (0, 1). Then {xn} converges faster to x∗ than iteration
processes (3) and (5).

Proof. From (18) in Theorem 3.1, and using the assumption, we have that

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖δn+1
n∏

m=0

(1− (1− δ)(αm + βm))

= ‖x0 − x∗‖δn+1[(1− (1− δ)(αm + βm))]n+1

≤ ‖x0 − x∗‖δn+1[(1− (1− δ)(α+ β))]n+1.
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Using similar argument as in Theorem 3.1, and our assumption, it is easy to see that
the iteration process (3) takes the form

‖un+1 − x∗‖ ≤ ‖u0 − x∗‖
n∏

m=0

(1− (1− δ)(αm + βm))

= ‖u0 − x∗‖[(1− (1− δ)(αm + βm))]n+1

≤ ‖u0 − x∗‖[(1− (1− δ)(α+ β))]n+1.

Using similar argument as in Theorem 3.1, and our assumption, it is easy to see that
the iteration process (5) takes the form

‖qn+1 − x∗‖ ≤ ‖q0 − x∗‖
n∏

m=0

(1− (1− δ)(αm + βm))

= ‖q0 − x∗‖[(1− (1− δ)(αm + βm))]n+1

≤ ‖q0 − x∗‖[(1− (1− δ)(α+ β))]n+1.

Now, let

an = ‖x0 − x∗‖δn+1[(1− (1− δ)(α+ β))]n+1

bn = ‖u0 − x∗‖[(1− (1− δ)(α+ β))]n+1

cn = ‖q0 − x∗‖[(1− (1− δ)(α+ β))]n+1

and

Ψn =
an
bn

=
δn+1‖x0 − x∗‖[(1− (1− δ)(α+ β))]n+1

‖u0 − x∗‖[(1− (1− δ)(α+ β))]n+1
→ 0 as n→ 0,

φn =
an
cn

=
δn+1‖x0 − x∗‖[(1− (1− δ)(α+ β))]n+1

‖q0 − x∗‖[(1− (1− δ)(α+ β))]n+1
→ 0 as n→ 0.

Thus, the proof is complete. �

Theorem 3.3. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T be a mapping satisfying (11). Let {un} be the Mann iteration
defined in [20] and {xn} be defined by the iteration process (13) with {αn}, {βn}, {γn} ∈
[0, 1] and

∑∞
n=0(αn + βn) =

∑∞
n=0 αn =∞. Then the following are equivalent:

(1) the Mann iteration converges to the fixed point x∗ of T ;
(2) Our iteration scheme (13) converges to the fixed point x∗ of T.

Proof. We start by showing that (1)⇒ (2). Suppose that the Mann iterative process
converges to the fixed point x∗, that is limn→∞ ‖un − x∗‖ = 0. Using (13), Mann
iteration and the fact that x∗ = Tx∗, we have

‖xn+1 − un+1‖ ≤ (1− αn)‖Tyn − un‖+ αn‖Tyn − Tun‖
≤ (1− αn)‖Tun − Tyn‖+ (1− αn)‖Tun − un‖+ αn‖Tyn − Tun‖
= ‖Tun − Tyn‖+ (1− αn)‖Tun − un‖
≤ δ‖un − yn‖+ ξ(‖un − Tun‖) + (1− αn)‖Tun − un‖. (19)
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Now, observe that

‖un − yn‖ ≤ (1− αn − βn)‖un − zn‖+ αn‖un − Tzn‖+ βn‖un − Txn‖
≤ (1− αn − βn)‖un − zn‖+ αn‖un − Tun‖+ αn‖Tun − Tzn‖
+ βn‖un − Tun‖+ βn‖Tun − Txn‖
≤ (1− αn − βn + αnδ)‖un − zn‖+ (αn + βn)‖un − Tun‖
+ (αn + βn)ξ(‖un − Tun‖) + βnδ‖un − xn‖,

also,

‖un − zn‖ ≤ (1− γn)‖un − xn‖+ γn‖un − Txn‖
≤ (1− γn)‖un − xn‖+ γn‖un − Tun‖+ γn‖Tun − Txn‖
≤ (1− (1− δ)γ)‖un − xn‖+ γn‖un − Tun‖+ γnξ(‖un − Tun‖).

We then have

‖un − yn‖ ≤
≤ [(1− αn − βn + αnδ)(1− (1− δ)γn) + βnδ]‖un − xn‖+ [(1− αn − βn + αnδ)γn

+ (αn + βn)]ξ(‖un − Tun‖) + [(1− αn − βn + αnδ)γn + (αn + βn)]‖un − Tun‖
≤ (1− (1− δ)(αn + βn))‖un − xn‖+ [(1− αn − βn + αnδ)γn

+ (αn + βn)]ξ(‖un − Tun‖) + [(1− αn − βn + αnδ)γn + (αn + βn)]‖un − Tun‖.

Substituting the above into (19), we have

‖xn+1 − un+1‖ ≤ (1− (1− δ)(αn + βn))‖un − xn‖+ [(1− αn − βn + αnδ)γn

+ (αn + βn) + 1]ξ(‖un − Tun‖) + [(1− αn − βn + αnδ)γn + (αn + βn)

+ (1− αn)]‖un − Tun‖
= (1− (1− δ)(αn + βn))‖un − xn‖+An. (20)

where

An = [(1− αn − βn + αnδ)γn + (αn + βn) + 1]ξ(‖un − Tun‖)
+ [(1− αn − βn + αnδ)γn + (αn + βn) + (1− αn)]‖un − Tun‖.

Note that

‖Tun − un‖ ≤ ‖Tun − Tx∗‖+ ‖x∗ − un‖ ≤ (1 + δ)‖un − x∗‖ → 0 as n→∞.

More so, limn→∞ ‖Tun − un‖ = ξ(limn→∞ ‖Tun − un‖) = 0. It follows that An → 0
as n → ∞. From (20), using Lemma 2.3, we have that ‖xn − un‖ → 0 as n → ∞.
Therefore, we have

‖xn − x∗‖ ≤ ‖xn − un‖+ ‖un − x∗‖ → 0 as n→∞.

Hence limn→∞ ‖xn − x∗‖ = 0. That is iteration (13) converges to the fixed point x∗

of T.

We now show that (2) ⇒ (1). Suppose that iterative process (13) converges to the
fixed point x∗, that is limn→∞ ‖xn−x∗‖ = 0. Using (13), Mann iteration and the fact
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that x∗ = Tx∗, we have

‖xn+1 − un+1‖ ≤ (1− αn)‖Tyn − un‖+ αn‖Tyn − Tun‖
≤ (1− αn)‖Tyn − yn‖+ (1− αn)‖yn − un‖+ αnδ‖yn − un‖
+ αnξ(‖yn − Tyn‖)
≤ (1− (1− δ)αn)‖yn − un‖+ (1− αn)‖Tyn − yn‖+ αnξ(‖yn − Tyn‖).

(21)

Now, observe that

‖yn − un‖ ≤ (1− αn − βn)‖zn − un‖+ αn‖Tzn − un‖+ βn‖Txn − un‖
≤ (1− αn − βn)‖zn − un‖+ αn‖Tzn − zn‖+ αn‖zn − un‖
+ βn‖Txn − xn‖+ βn‖xn − un‖
= (1− βn)‖zn − un‖+ αn‖Tzn − zn‖+ βn‖Txn − xn‖+ βn‖xn − un‖,

‖zn − un‖ ≤ (1− γn)‖xn − un‖+ γn‖Txn − un‖
≤ (1− γn)‖xn − un‖+ γn‖Txn − xn‖+ γn‖xn − un‖
= ‖xn − un‖+ γn‖Txn − xn‖.

Therefore, we have

‖yn − un‖ ≤ ‖xn − un‖+ ((1− βn)γn + βn)‖Txn − xn‖+ αn‖Tzn − zn‖.

Substituting the above into (21), we have

‖xn+1 − un+1‖ ≤ (1− (1− δ)αn)‖xn − un‖+ (1− (1− δ)αn)((1− βn)γn

+ βn)‖Txn − xn‖+ (1− (1− δ)αn)αn‖Tzn − zn‖
+ (1− αn)‖Tyn − yn‖+ αnξ(‖Tyn − yn‖)
= (1− (1− δ)αn)‖xn − un‖+An, (22)

where

An = (1− (1− δ)αn)((1− βn)γn + βn)‖Txn − xn‖
+ (1− (1− δ)αn)αn‖Tzn − zn‖+ (1− αn)‖Tyn − yn‖+ αnξ(‖Tyn − yn‖).

Note that

‖Txn − xn‖ ≤ ‖Txn − Tx∗‖+ ‖x∗ − xn‖ ≤ (1 + δ)‖xn − x∗‖ → 0 as n→∞,
‖Tyn − yn‖ ≤ ‖Tyn − Tx∗‖+ ‖x∗ − yn‖ ≤ (1 + δ)‖yn − x∗‖

≤ (1 + δ)(1− (1− δ)(αn + βn))‖xn − x∗‖ → 0 as n→∞,
‖Tzn − zn‖ ≤ ‖Tzn − Tx∗‖+ ‖x∗ − zn‖ ≤ (1 + δ)‖zn − x∗‖

≤ (1 + δ)(1− (1− δ)γn)‖xn − x∗‖ → 0 as n→∞.

More so, limn→∞ ‖Tyn − yn‖ = ξ(limn→∞ ‖Tyn − yn‖) = 0. It follows that An → 0
as n → ∞. From (22), using Lemma 2.3, we have that ‖xn − un‖ → 0 as n → ∞.
Therefore, we have

‖un − x∗‖ ≤ ‖xn − un‖+ ‖xn − x∗‖ → 0 as n→∞.

Hence limn→∞ ‖un−x∗‖ = 0. That is the Mann iteration converges to the fixed point
x∗ of T. �
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Theorem 3.4. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T be a mapping satisfying (11). Let {xn} be defined by the
iteration process (13) such that

∑∞
n=0(αn + βn) =∞. Then the iterative scheme (13)

is T− stable.

Proof. Let {tn} ⊂ X be any arbitrary sequence in C and suppose that the sequence
generated by (13) is xn+1 = f(T, xn) converging to a unique fixed point x∗ and that
εn = ‖tn+1−f(T, tn)‖. To show that T is stable, we need to prove that limn→∞ εn = 0
if and only if limn→∞ tn = x∗.
Suppose that limn→∞ εn = 0. Using triangular inequality and (16), we have that

‖tn+1 − x∗‖ ≤ ‖tn+1 − f(T, tn)‖+ ‖f(T, tn)− x∗‖
= εn + ‖T ((1− αn − βn)(1− γn)tn

+ (1− αn − βn)γnTtn + αnT ((1− γn)tn + γnTtn) + βnTtn)− x∗‖
≤ εn + δ(1− (1− δ)(αn + βn))‖tn − x∗‖
≤ εn + (1− (1− δ)(αn + βn))‖tn − x∗‖.

Let Ψn = ‖tn − x∗‖, φn = (1− δ)(αn + βn) ∈ (0, 1) and Φn = εn. By our hypothesis
that, limn→∞ εn = 0, it follows that limn→∞

εn
(1−δ)(αn+βn) = limn→∞

Φn

φn
= 0. Using

Lemma (2.3), we have that limn→∞ tn = x∗.
Conversely, suppose that limn→∞ tn = x∗. We have that

εn = ‖tn+1 − f(T, tn)‖
≤ ‖tn+1 − x∗‖+ ‖x∗ − f(T, tn)‖
≤ ‖tn+1 − x∗‖+ (1− (1− δ)(αn + βn))‖tn − x∗‖.

Using our hypothesis that limn→∞ tn = x∗, we then have that limn→∞ εn = 0.
Hence, iteration (13) is stable with respect to T. �

Theorem 3.5. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T be a mapping satisfying (11). Let {xn} be defined by the
iteration process (13). Then the iteration (13) is weak w2-stable with respect to T.

Proof. Let {pn} ⊂ C be an equivalent sequence of {xn} and suppose that εn = ‖pn+1−
Trn‖, where rn = (1− αn − βn)qn + αnTqn + βnTpn and qn = (1− γn)pn + γnTpn.
Let limn→∞ εn = 0, using triangular inequality and (13), we have

‖pn+1 − x∗‖ ≤ ‖pn+1 − xn+1‖+ ‖xn+1 − x∗‖
≤ ‖pn+1 − Trn‖+ ‖Trn − Tyn‖+ ‖xn+1 − x∗‖
= εn + ‖Tyn − Trn‖+ ‖xn+1 − x∗‖
≤ εn + δ‖yn − rn‖+ ξ(‖yn − Tyn‖) + ‖xn+1 − x∗‖.

Now, observe that

‖yn − rn‖ =≤ (1− αn − βn)‖zn − qn‖+ αn‖Tzn − Tqn‖+ βn‖Txn − Tpn‖
≤ (1− αn − βn)‖zn − qn‖+ αnδ‖zn − qn‖+ αnξ(‖zn − Tzn‖)
+ βnδ‖xn − pn‖+ βnξ(‖xn − Txn‖)
= (1− αn − βn + αnδ)‖zn − qn‖+ αnξ(‖zn − Tzn‖)
+ βnδ‖xn − pn‖+ βnξ(‖xn − Txn‖)



310 A. A. MEBAWONDU AND O. T. MEWOMO

also, we have

‖zn − qn‖ ≤ (1− γn)‖xn − pn‖+ γn‖Txn − Tpn‖
≤ (1− γn)‖xn − pn‖+ γnδ‖xn − pn‖+ γnξ(‖xn − Txn‖)
= (1− (1− δ)γn)‖xn − pn‖+ γnξ(‖xn − Txn‖).

We then have that

‖yn − rn‖ ≤ (1− αn − βn + αnδ)(1− (1− δ)γn)‖xn − pn‖
+ (1− αn − bn + αnδ)γnξ(‖xn − Txn‖) + αnξ(‖zn − Tzn‖)
+ βnδ‖xn − pn‖+ βnξ(‖xn − Txn‖).

Therefore, we have that

‖pn+1 − x∗‖ ≤ εn + [δ(1− αn − βn + αnδ)(1− (1− δ)γn) + βnδ
2]‖xn − pn‖

+ δ(1− αn − βn + αnδ)γnξ(‖xn − Txn‖)
+ αnδξ(‖zn − Tzn‖) + βnδξ(‖xn − Txn‖) + ξ(‖yn − Tyn‖) + ‖xn+1 − x∗‖.

We have established in Theorem 3.1 that limn→∞ ‖xn − x∗‖ = 0, consequently
limn→∞ ‖xn+1−x∗‖ = 0 and since {xn} and {pn} are equivalent, we have limn→∞ ‖xn−
pn‖ = 0. It also follows that

‖xn − Txn‖ ≤ ‖xn − x∗‖+ ‖Tx∗ − Txn‖
≤ (1 + δ)‖xn − x∗‖ → 0, as n→∞.

Using similar approach, we can show that limn→∞ ‖zn−Tzn‖ = limn→∞ ‖yn−Tyn‖ =
0.
Since, limn→∞ ‖yn − Tyn‖ = ξ(limn→∞ ‖yn − Tyn‖) = 0. Similar argument holds for
others. Thus, we have limn→∞ ‖pn+1−x∗‖ = 0 and consequently limn→∞ ‖pn−x∗‖ =
0. Thus, {xn} is weak w2-stable with respect to T. �

Example 3.1. Let C = [0, 1] and Tx = x
4 . Clearly, zero is the fixed point of T. We

need to show that T satisfy (11). To do this, with δ = 1
4 and for any increasing

function ξ with ξ(0) = 0. We have

‖Tx− Ty‖ − δ‖x− y‖ − ξ(‖x− Tx‖) =
1

4
|x− y| − 1

4
|x− y| − ξ(|x− x

4
|)

= −ξ(3x

4
) ≤ 0.

Let αn = βn = γn = 1
n+2 and x0 ∈ [0, 1]. It follows that

zn =

(
1− 1

n+ 2
+

1

4(n+ 2)
)xn =

(
1− 3

4(n+ 2)

)
xn

yn =

(
1− 9

4(n+ 2)
+

21

42(n+ 2)2

)
xn

xn+1 =
1

4

(
1− 9

4(n+ 2)
+

21

42(n+ 2)2

)
xn =

(
1−

(
3

4
+

9

42(n+ 2)
− 21

43(n+ 2)2

))
xn.

Let tn = 3
4 + 9

42(n+2) −
21

43(n+2)2 . Clearly, tn ∈ (0, 1) for all n ∈ N and
∑∞
n=0 tn =∞.

Using Lemma 2.3, we have limn→∞ xn = 0. Let pn = 1
n+3 . We now establish that 13
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is stable, with respect to T.

εn = |pn+1 − f(T, pn)|

=

∣∣∣∣pn+1 −
(

1

4
− 9

42(n+ 2)
+

21

43(n+ 2)2

)
pn

∣∣∣∣
=

∣∣∣∣ 1

n+ 4
− 1

4(n+ 3)
+

9

42(n+ 2)(n+ 3)
− 21

43(n+ 2)2(n+ 3)

∣∣∣∣.
Clearly, limn→∞ εn = 0.

Theorem 3.6. Let T be an approximate operator of a mapping T satisfying (11). Let
{xn} be an iterative sequence generated by (13) for T and define an iterative scheme
{xn} as follows: 

zn = (1− γn)xn + γnTxn

yn = (1− αn − βn)zn + αnTzn + βnTxn

xn+1 = Tyn n ≥ 1,

(23)

where {αn}, {βn} and {γn} are sequences in (0, 1) and 1
2 ≤ (αn + βn) for all n ∈ N

such that
∑∞
n=0(αn+βn) =∞. If Tx∗ = x∗ and Tx∗ = x∗ such that limn→∞ xn = x∗,

then we have

d(x∗, x∗) ≤ 5ε

1− k
,

where ε > 0 is a fixed number.

Proof. Using (13) and (23), we have

‖zn − zn‖ ≤ (1− γn)‖xn − xn‖+ γn‖Txn − Txn‖
≤ (1− γn)‖xn − xn‖+ γn‖Txn − Txn‖+ γn‖Txn − Txn‖
≤ (1− γn)‖xn − xn‖+ γnδ‖xn − xn‖+ γnξ(‖xn − Txn‖) + γnε

= (1− (1− δ)γn)‖xn − xn‖+ γnξ(‖xn − Txn‖) + γnε. (24)

Using (13), (23) and (24), we have

‖yn − yn‖ ≤ (1− αn − βn)‖zn − zn‖+ αn‖Tzn − Tzn‖+ βn‖Txn − Txn‖
≤ (1− αn − βn)‖zn − zn‖+ αn‖Tzn − Tzn‖+ αn‖Tzn − Tzn‖
+ βn‖Txn − Txn‖+ βn‖Txn − Txn‖
≤ (αnδ + 1− αn − βn)‖zn − zn‖+ βnξ(‖xn − Txn‖) + αnξ(‖zn − Tzn‖)

+ βnδ‖xn − xn‖+ αnε+ βnε

≤ [(αnδ + 1− αn − βn)(1− (1− δ)γn) + βnδ]‖xn − xn‖
+ [(αnδ + 1− αn − βn)γn + βn]ξ(‖xn − Txn‖)

+ αnξ(‖zn − Tzn‖) + (αnδ + 1− αn − βn)γnε+ αnε+ βnε. (25)
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Using (13), (23) and (25), we have

‖xn+1 − xn+1‖ ≤
≤ ‖Tyn − Tyn‖
≤ ‖Tyn − Tyn‖+ ‖Tyn − Tyn‖
≤ δ‖yn − yn‖+ ξ(‖yn − Tyn‖) + ε

≤ δ{[(αnδ + 1− αn − βn)(1− (1− δ)γn) + βnδ]‖xn − xn‖
+ [(αnδ + 1− αn − βn)γn + βn]ξ(‖xn − Txn‖)
+ αnξ(‖zn − Tzn‖) + (αnδ + 1− αn − βn)γnε+ αnε+ βnε}+ ξ(‖yn − Tyn‖) + ε

≤ (1− (1− δ)(αn + βn))‖xn − xn‖+ [(αnδ + 1− αn − βn)γn + βn]ξ(‖xn − Txn‖)
+ αnξ(‖zn − Tzn‖) + (αn + βn)ε+ ξ(‖yn − Tyn‖) + 2ε.

Using our assumption that 1
2 ≤ (αn + βn), we have

1− (αn + βn) ≤ (αn + βn)

⇒ 1 = 1− (αn + βn) + (αn + βn) ≤ (αn + βn) + (αn + βn) = 2(αn + βn).

Therefore, we have that

‖xn+1 − xn+1‖ ≤ (1− (1− δ)(αn + βn))‖xn − xn‖+ 2(αn + βn)ξ(‖xn − Txn‖)
+ 2(αn + βn)αnξ(‖zn − Tzn‖) + (αn + βn)ε

+ 2(αn + βn)ξ(‖yn − Tyn‖) + 4(αn + βn)ε

= 1− (1− δ)(αn + βn))‖xn − xn‖+ (αn + βn)(1− δ)×

× 2ξ(‖xn − Txn‖) + 2αnξ(‖zn − Tzn‖) + 2ξ(‖yn − Tyn‖) + 5ε

(1− δ)
Let

Ψn = ‖xn − xn‖, φn = (1− δ)(αn + βn)

and

Φn =
2ξ(‖xn − Txn‖) + 2αnξ(‖zn − Tzn‖) + 2ξ(‖yn − Tyn‖) + 5ε

1− δ
.

From Theorem 3.1, we have that limn→∞ ‖xn − x∗‖ = 0. Also, observe that

‖xn − Txn‖ ≤ ‖xn − x∗‖+ ‖Tx∗ − Tn‖
≤ (1 + δ)‖xn − x∗‖ → 0 as n→∞.

Using similar approach, we have that limn→∞ ‖yn−Tyn‖ = limn→∞ ‖zn−Tzn‖ = 0.
More so, we have that

lim
n→∞

ξ(‖yn − Tyn‖) = ξ( lim
n→∞

‖yn − Tyn‖) = 0.

The same argument holds for others. Using Lemma 2.4, we have that

0 ≤ lim sup
n→∞

‖xn − xn‖ ≤ lim sup
n→∞

5ε

1− δ
. (26)

Using our hypothesis that limn→∞ xn = x∗, (26) and from Theorem 3.1, we conclude
that

‖x∗ − x∗‖ ≤ 5ε

1− δ
.
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Hence, the proof is complete. �

4. Convergence result

In this section, we establish some convergence results for Suzuki generalized nonex-
pansive mapping. We recall from [28] that, a mapping T : C → C is said to be Suzuki
generalized nonexpansive if for all x, y ∈ C, we have

1

2
‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Let C be a nonempty closed and convex subset of a uniformly convex Banach space
X and T : C → C be a Suzuki generalized nonexpansive mapping. Let {xn} be the
sequence defined in (13).
We first state and prove the following lemmas which will be needed in the proof of
our main theorems. Now, observe that for all x∗ ∈ F (T ), we have

1

2
‖x∗ − Tx∗‖ =

1

2
‖x∗ − x∗‖ ≤ ‖x∗ − zn‖,

1

2
‖x∗ − Tx∗‖ =

1

2
‖x∗ − x∗‖ ≤ ‖x∗ − xn‖ and

1

2
‖x∗ − Tx∗‖ =

1

2
‖x∗ − x∗‖ ≤ ‖x∗ − yn‖, (27)

which implies that

‖Tx∗ − Tzn‖ ≤ ‖x∗ − zn‖
‖Tx∗ − Txn‖ ≤ ‖x∗ − xn‖ and

‖Tx∗ − Tyn‖ ≤ ‖x∗ − yn‖. (28)

Lemma 4.1. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X. Let T : C → C be a Suzuki generalized nonexpansive mapping with
F (T ) 6= ∅. Suppose that {xn} is defined by (13), where {βn}, {γn} and {αn} are
sequences in [0, 1] with (αn + βn) ∈ [0, 1]. Then the following hold:
(i) {xn} is bounded.

(ii) limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ).

Proof. Using (13) and Proposition 2.8, we have

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖
≤ (1− γn)‖xn − x∗‖+ γn‖xn − x∗‖
≤ ‖xn − x∗‖. (29)

Using (13), (29) and Proposition 2.8, we have

‖yn − x∗‖ ≤ (1− αn − βn)‖zn − x∗‖+ αn‖Tzn − x∗‖+ βn‖Txn − x∗‖
≤ (1− αn − βn)‖zn − x∗‖+ αn‖zn − x∗‖+ βn‖xn − x∗‖
= (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖
≤ (1− βn)‖xn − x∗‖+ βn‖xn − x∗‖
= ‖xn − x∗‖. (30)
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Using (13), (30) and Proposition 2.8, we have

‖xn+1 − x∗‖ = ‖Tyn − x∗‖
≤ ‖yn − x∗‖
≤ ‖xn − x∗‖. (31)

This shows that {‖xn−x∗‖} is bounded and non-decreasing for all x∗ ∈ F (T ). Thus,
limn→∞ ‖xn − x∗‖ exists. �

Lemma 4.2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X. Let T : C → C be a Suzuki generalized nonexpansive mapping with
F (T ) 6= ∅. Suppose that {xn} is defined by (13), where {βn}, {γn} and {αn} are
sequences in [0, 1], with (αn + βn) ∈ [0, 1], then limn→∞ ‖Txn − xn‖ = 0.

Proof. Since F (T ) 6= ∅, then we can find x∗ ∈ F (T ). We have established in Lemma
4.1 that {xn} is bounded and limn→∞ ‖xn − x∗‖ exists. Suppose that limn→∞ ‖xn −
x∗‖ = c. If we take c = 0, then we are done. Thus, we consider the case where c > 0.
From (29), we have ‖zn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖zn − x∗‖ ≤ c. (32)

Also, using Proposition 2.8, we have ‖Txn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖Txn − x∗‖ ≤ c. (33)

Using (30) and (31), we have

‖xn+1 − x∗‖ ≤ ‖yn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖.

Taking the lim infn→∞ of both sides and rearranging the inequalities, we have

c ≤ lim inf
n→∞

‖zn − x∗‖. (34)

From (32) and (34), we obtain that limn→∞ ‖zn − x∗‖ = c. That is,

lim
n→∞

‖(1− γn)xn + γnTxn − x∗‖ = c.

Thus, by Lemma 2.5, we have

lim
n→∞

‖xn − Txn‖ = 0.

�

Theorem 4.3. Let X be a uniformly convex Banach space which satisfies the Opial’s
condition and C a nonempty closed convex subset of X. Let T : C → C be a Suzuki
generalized nonexpansive mapping with F (T ) 6= ∅ and {xn} be a sequence defined by
iteration (13). Then {xn} converges weakly to a fixed point of T.

Proof. In Lemma 4.1, we established that limn→∞ ‖xn − x∗‖ exists and that {xn} is
bounded. Now, since X is uniformly convex, we can find a subsequence say {xni

}
of {xn} that converges weakly in C. We now establish that {xn} has a unique weak
subsequential limit in F (T ). Let u and v be weak limits of the subsequences {xnk

} and
{xnj} of {xn} respectively. By Theorem 4.2, we have that limn→∞ ‖xn − Txn‖ = 0
and I − T is demiclosed with respect to zero by Proposition 2.6, we therefore have
that Tu = u. Using similar approach, we can show that v = Tv. In what follows, we
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establish uniqueness. From Lemma 4.1, we have that limn→∞ ‖xn − v‖ exists. Now,
suppose that u 6= v, then by Opial’s condition,

lim
n→∞

‖xn − u‖ = lim
k→∞

‖xnk
− u‖ < lim

k→∞
‖xnk

− v‖

= lim
n→∞

‖xn − v‖ = lim
j→∞

‖xnj
− v‖

< lim
j→∞

‖xnj − u‖ = lim
n→∞

‖xn − u‖.

This is a contradiction, so u = v. Hence, {xn} converges weakly to a fixed point of
F (T ) and this completes the proof. �

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. Let T be a Suzuki generalized nonexpansive mapping on C, {xn}
defined by (13) and F (T ) 6= ∅. Then {xn} converges strongly to a point of F (T ) if
and only if lim infn→∞ d(xn, F (T )) = 0 where d(x, F (T )) = inf ‖x− x∗‖ : x∗ ∈ F (T ).

Proof. Suppose that {xn} converges to a fixed point, say x∗ of T.
Then limn→∞ d(xn, x

∗) = 0, and since 0 ≤ d(xn, F (T )) ≤ d(xn, x
∗), it follows that

limn→∞ d(xn, F (T )) = 0. Therefore, lim infn→∞ d(xn, F (T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. From Lemma 4.1, we have
that limn→∞ ‖xn − x∗‖ exists and that limn→∞ d(xn, F (T )) exists for all x∗ ∈ F (T ).
By our hypothesis, lim infn→∞ d(xn, F (T )) = 0, so for any give ε > 0, there exists
n0 ∈ N, such that for all n ≥ n0, we have d(xn, F (T )) ≤ ε. We now show that {xn}
is a Cauchy sequence in C. Since, limn→∞ d(xn, F (T )) = 0, for any give ε > 0, there
exist n0 ∈ N such that for n,m ≥ n0, we have

d(xm, F (T )) ≤ ε

2
,

d(xn, F (T )) ≤ ε

2
.

Therefore, we have

‖xm − xn‖ ≤ ‖xm − x∗‖+ ‖xn − x∗‖
≤ d(xm, F (T )) + d(xn, F (T ))

≤ ε

2
+
ε

2
= ε.

Hence, {xn} is a Cauchy sequence in C. Since C is closed, then there exists a point
x1 ∈ C such that limn→∞ xn = x1. Since limn→∞ d(xn, F (T )) = 0, it follows that
limn→∞ d(x1, F (T )) = 0. Since, F (T ) is closed, x1 ∈ F (T ). �

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. Let T be a Suzuki generalized nonexpansive mapping, {xn} defined
by (13) and F (T ) 6= ∅. Let T satisfy condition (A), then {xn} converges strongly to a
fixed point of T.

Proof. From Lemma 4.1, we have limn→∞ ‖xn − F (T )‖ exists and by Theorem 4.2,
we have limn→∞ ‖xn − Txn‖ = 0. Using the fact that

0 ≤ lim
n→∞

f(d(x, F (T )) ≤ lim
n→∞

‖xn − Txn‖ = 0 ∀x ∈ C,
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we have that limn→∞ f(d(xn, F (T ))) = 0. Since f is nondecreasing with f(0) = 0
and f(t) > 0 for t ∈ (0,∞), it then follows that limn→∞ d(xn, F (T )) = 0. Hence, by
Theorem 4.4 {xn} converges strongly to x∗ ∈ F (T ). �

5. Numerical examples

In this section, we present an example of Suzuki generalized nonexpansive mapping,
which is not a nonexpansive mapping. Using this example, we compare our iterative
process with two other iterative processes in the literature.

Example 5.1. Define a mapping T : [0, 1]→ [0, 1] as

Tx =

{
1− x if x ∈ [0, 1/5),
x+4

5 if x ∈ [1/5, 1].
(35)

Then T is a Suzuki generalized nonexpansive mapping but not nonexpansive mapping.

Proof. To establish this, we consider the following cases:

Case 1: Let x ∈ [0, 1
5 ), as such we have that 1

2‖x − Tx‖ = 1−2x
2 ∈ ( 3

10 ,
1
2 ]. By

definition, for 1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that y ≥ 1

2 , that is y ∈ [ 1
2 , 1]. And

so, we obtain that

‖Tx− Ty‖ =

∣∣∣∣5x+ y − 1

5

∣∣∣∣ < 1

5

and

‖x− y‖ = |x− y| >
∣∣∣∣15 − 1

2

∣∣∣∣ =
3

10
.

Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2: Let x ∈ [ 1
5 , 1], as such we have that 1

2‖x−Tx‖ = 2−2x
5 ∈ [0, 4

5 ]. By definition,

for 1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that 2−2x

5 ≤ |x− y|. Due to |x− y|, we have
two possibilities.
Case 2a: If x < y, we have that 2−2x

5 < y − x, as such we must have that 2+3x
5 ≤

y ⇒ y ∈ [ 13
25 , 1] ⊂ [ 1

5 , 1]. And so, we obtain that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− y + 4

5

∣∣∣∣ =
1

5
|x− y| ≤ ‖x− y‖.

Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2b: If x ≥ y, we have that 2−2x
5 ≤ x−y, as such we must have that y ≤ 7x−2

5 ⇒
y ∈ [−3

25 , 1]. We only need to consider the case in which y ∈ [0, 1]. For y ≤ 7x−2
5 , we

obtain that x ≥ 5y+2
7 , which implies that x ∈ [ 2

7 , 1], as such we going to consider

x ∈ [ 2
7 , 1] and y ∈ [0, 1]. For x ∈ [ 2

7 , 1] and y ∈ [ 1
5 , 1] have been considered in case

2a. So, we consider x ∈ [ 2
7 , 1] and y ∈ [0, 1

5 ). To start with suppose x ∈ [ 2
7 ,

2
5 ] and

y ∈ [0, 1
5 ), we therefore have that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− (1− y)

∣∣∣∣ =

∣∣∣∣x+ 5y − 1

5

∣∣∣∣ ≤ 2

25
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and

‖x− y‖ = |x− y| >
∣∣∣∣27 − 1

5

∣∣∣∣ =
3

35
.

Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Also for x ∈ [ 2
5 , 1] and y ∈ [0, 1

5 ), we therefore have that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− (1− y)

∣∣∣∣ =

∣∣∣∣x+ 5y − 1

5

∣∣∣∣ ≤ 1

5

and

‖x− y‖ = |x− y| >
∣∣∣∣25 − 1

5

∣∣∣∣ =
1

5
.

Thus, we have that 1
2‖x−Tx‖ ≤ ‖x−y‖ ⇒ ‖Tx−Ty‖ ≤ ‖x−y‖. Hence T is a Suzuki

generalized nonexpansive mapping. However to show that T is not nonexpansive, we
take x = 3

16 and y = 1
5 , we then have that

‖Tx− Ty‖ =

∣∣∣∣1− 3

16
− 21

25

∣∣∣∣ =
11

400
>

1

80
=

∣∣∣∣ 3

16
− 1

5

∣∣∣∣ = ‖x− y‖.

Thus T is not a nonexpansive mapping.
In what follows, we numerically compare our new iteration process with two existing
iteration processes. We take αn = βn = an = bn = 1√

5n+1
, γn = cn = 1√

n+1
and

x0 = 0.8. The comparison of the iterative schemes are shown below.

Step Our Algorithm Karakaya et al. Suntai
0 0.8 0.8 0.8
1 0.9921276 0.9824707 0.9512980
2 0.9995176 0.9969754 0.9776478
3 0.9999633 0.9992771 0.9875051
4 0.9999968 0.9997894 0.9922617
5 0.9999997 0.9999297 0.9948881
6 1.0000000 0.9999741 0.9964674
7 1.0000000 0.9999897 0.9974752
8 1.0000000 0.9999956 0.9981475
9 1.0000000 0.9999980 0.9986116
10 1.0000000 0.9999991 0.9989411
11 1.0000000 0.9999996 0.9991802
12 1.0000000 0.9999998 0.9993572
13 1.0000000 0.9999999 0.9994904
14 1.0000000 1.0000000 0.9995920
15 1.0000000 1.0000000 0.9996705

The comparison shows that, our newly proposed iterative scheme converges faster than
the other iterative schemes. We have shown that our newly proposed iterative process
is more efficient and converges faster than some iterative processes in literature. �
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