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On cyclic (¢ —¢)-Kannan and (¢ — ¢)-Chatterjea contractions
in metric spaces

MOHAMMAD AL-KHALEEL AND SHARIFA AL-SHARIF

ABSTRACT. We use in this paper the concept of cyclic (¢ — 1»)-Kannan and (¢ — 1)-Chatterjea
contractions to study new extensions of the Kannan and Chatterjea fixed point theorems. We
give some generalized versions of the fixed point results proved in the literature. The analysis
and theory are illustrated by some examples.
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1. Introduction and preliminaries

In [1], Kannan successfully proved that if X is complete, then every what is so-
called Kannan contraction 7" has a unique fixed point which extends the well-known
Banach’s contraction principle [2]. The definition that was introduced by Kannan is
stated below.

Definition 1.1 (See [1]). A mapping T : X — X, where (X, d) is a metric space, is
said to be a Kannan contraction if there exists a € [0, %) such that for all z,y € X,
the inequality

d(Tz,Ty) < ald(x, Tx) + d(y,Ty)],
holds.

Another definition which is a sort of dual of Kannan contraction, is presented by
Chatterjea [3] as follows.

Definition 1.2 (See [3]). A mapping T : X — X, where (X, d) is a metric space, is
said to be a Chatterjea contraction if there exists a € [0, %) such that for all z,y € X,
the inequality

d(Tz,Ty) < ald(z, Ty) +d(y, Tz)],
holds.

Chatterjea [3] also proved using his new definition that if X is complete, then every
Chatterjea contraction has a unique fixed point. In 1972, Zamfirescu [4] introduced
a very interesting fixed point theorem which combines the contractive conditions of
Banach, of Kannan, and of Chatterjea.
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Theorem 1.1 (See [4]). Let (X,d) be a complete metric space and T : X — X a map
for which there exist the real numbers «, B, and vy satisfying 0 < a < 1,0 < 8,7 < %,
such that for x,y € X at least one of the following is true.

(i) d(Tz,Ty) < ad (z,y),

(if) d(T2,Ty) < Bld (2, Tx) +d(y,Ty)],
(iii) d (T, Ty) < ~[d(w, Ty) +d (y, Ta)).
Then T has a unique fized point p and the Picard iteration {x,}52, defined by Tpi1 =
Tx,, n=0,1,2,... converges to p for any xg € X.

The cyclical extensions for these fixed point theorems were obtained at a later

time, by considering non-empty closed subsets {Ai}le of a complete metric space X

and a cyclical operator T : LpJ A, — O A;, i.e., satisfies T (A;) C A, for all i €
i=1 i=1

{1,2,...,p}. In [5], Rus presented the cyclical extension for the Kannan’s theorem,
and Petric in [6] presented cyclical extensions for Chatterjea and Zamfirescu theorems
using fixed point structure arguments. The cyclic contractive mappings type has been
widely considered by many researchers, for a recent work one can see for example
[7, 8] and references therein. Redefining the concept of Chatterjea contraction was
introduced by Choudhury in [9] as follows.

Definition 1.3 (See [9]). A mapping T : X — X, where (X, d) is a metric space, is
said to be a weak Chatterjea contraction if for all z,y € X, the inequality

d(Txz, Ty) < % [d(xz, Ty) +d(y, Tx)] = ¢ (d(2,Ty),d(y, Tx)),

holds, where ¢ : [0,00)° — [0,00) is a continuous function such that ¢ (z,y) = 0 if
and only if x =y = 0.

Choudhury [9] proved the following theorem.

Theorem 1.2 (See [9]). If (X,d) is a complete metric space, then every weak Chat-
terjea contraction T has a unique fixed point.

The concept of a control function in terms of altering distances was addressed by
Khan et. al. [10] which lead to a new category of fixed point problems. Altering
distances have been used in metric fixed point theory in many papers, see for exam-
ple [11]-[13] and references therein. We define in what follows, an altering distance
function which will be used throughout the paper.

Definition 1.4. The function ¢ : [0,00) — [0,00) is called an altering distance
function, if the following properties are satisfied.

(i) ¢ is continuous and nondecreasing,

(ii) ¢(t) = 0if and only if ¢t = 0.

In this paper, we study new extensions of the Kannan and Chatterjea fixed point
theorems. We give some generalized versions of the fixed point results proved in the
literature. In particular, we present some generalized versions of fixed point theorems
of cyclic nonlinear contractions type by the use of the continuous function ¥ given
in Definition 1.3 and the altering distance function ¢ given in Definition 1.4. The
analysis and theory are illustrated by some examples.
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2. Main results

We begin this section by giving definitions of what we call a cyclic (¢ — 1)-Kannan
contraction and a cyclic (¢ — 1)-Chatterjea contraction.

Definition 2.1. Let {4}, be non-empty closed subsets of a metric space (X, d),

and suppose T : U A — U A; is a cyclical operator. Then T is said to be a
i=1
cyclic (¢ — v)-Kannan contractlon if there exists constants o, 8 with 0 < 8 < 1 and

0 < a4+ <1, such that for any = € A;,y € A;41,5=1,2,...,p, we have
¢ (d(Tz,Ty)) < ¢ (ad (2, Tx) + Bd (y, Ty)) — ¢ (d (2, Tx),d(y, Ty)),

and T is said to be a cyclic (¢ — ¥)-Chatterjea contraction if there exists constants «, 3
with 0 < a < % and 0 < a+ 8 < 1, such that for any z € A;,y € A;41,i=1,2,...,p,
we have

¢ (d(Tz,Ty)) < ¢ (ad (2, Ty) + Bd (y, Tx)) — ¢ (d (2, Ty),d(y, Tx)),

where ¢ : [0,00) — [0,00) is an altering distance function, and 1 : [0, 00)> — [0, )
is a continuous function with 1 (¢,s) = 0 if and only if t = s = 0.

Theorem 2.1. Let {4; }f 1 be non-empty closed subsets of a complete metric space

(X,d) and T : U A — U A; be at least one of the following.
i=1 i=1
e a cyclic (¢p —¥)-Kannan contraction,

e a cyclic (¢ — v)-Chatterjea contraction,
P
then T has a unique fized point z € [ A;.

i=1
Proof. Take ¢y € X and consider the sequence given by z,+1 = Tz,,n > 0. If
there exists ng € N such that z,,41 = x,,, then the point of existence of the fixed
point is proved. So, suppose that x,,+1 # x, for any n = 0,1,.... Then there exists
in € {1,...,p} such that z,_; € A;, and z, € A;,,,. Now, assume first that 7" is a
cyclic (¢ — ¢)-Kannan contraction. Then, we have

¢ (d (mm xn+1)) = ¢(d (Txnflv Txn))

< ¢(ad(zp_1,Trn_1)+ Bd(xy, Txy))

— Y (d(vp_1,TTn_1),d(xn, T2y))
< ¢(ad(zp—1,2n) + Bd (Tn, Tni1))

—p (d(Tp_1,%n),d(Tn, Tni1))
< d(ad(zp-1,2n) + Bd(Tn, Tni1)) .

Since ¢ is a nondecreasing function, we get
d (Zl'n, xn+1) S ad (wnfla xn) + Bd (xna anrl) )

which implies

d(@n, Tn1) < %d(%_l,xn) V. (1)



CYCLIC CONTRACTIONS IN METRIC SPACES 323

Since 0 < o+ B < 1, we get that d (x,, z,+1) IS a nonincreasing sequence of nonneg-
ative real numbers. Hence, there is » > 0 such that

lim d(xp, Zpe1) =1
n—oo

Using the continuity of ¢ and v, we get
¢(r) < o(la+p)r)—v(rr)
< o) —v (),
which implies that ¢ (r,7) = 0, and hence, r = 0.
Similarly, if 7" is a cyclic (¢ — ¢)-Chatterjea contraction, then we have
¢ (d(@n,Tns1)) = ¢(d(Trp-1,Tzs))
< ¢(ad(zp—1,Txy) + Bd(xn, Txp—1))
¢ (d(Tp-1,T2n),d(xn, Txp_1))
o (ad (xp—1,Tpn+1) + Bd (T, Ty))
—(d(Tn-1,Tn41) s d (Tn, Tn))
< ¢(ad(@p-1,2p41)) -

Since, ¢ is a nondecreasing function, we get

IA

d(mna$n+1) S Oéd (mnflaanrl) ) (2)

and by triangular inequality, we have
d($n7xn+1) S Oéd (l‘n—hxn—i-l)
S Oé[d (J/'n,hl'n) +d(xn7xn+1)] )
which implies
o

11—«
Since 0 < a0 < %, we get that {d (zn, Zn+1)} is a nonincreasing sequence of nonnegative
real numbers. Hence, there is r > 0 such that

d(Tp,Tnt1) < d(zp—1,2n). (3)

nler;od(xn,xn+1) =r.

Now, if @ = 0, then clearly, r = 0, and if 0 < a < %, then %~ < 1, and by induction,
we have
Q

d(Tn, Tny1) < ( )nd(xovfcl)v

and hence, r = 0. Now, if a = %, then from (2), we have

l—«

d (xnfly anrl) Z 2d ((Eny anrl) )

and hence,

lim d(xp—1,Tny1) > 2r,
n— oo

but,
d (xn—la xn—i—l) <d (xn—h xn) +d (xna xn—&-l) )
and as n — oo, we have

lim d(zp—1,2n41) < 2r.
n—oo
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Therefore, lim d(x,—1,%nt1) = 2r. Using the continuity of ¢ and ¢, we get
n—oo

¢ (r)

IN

¢ <;27’> — 4 (2r,0)

= ¢(r)—¢(2r,0),

which implies that ¢ (2r,0) = 0, and hence, r = 0.

In the sequel, we show that {x,,} is a Cauchy sequence in (X, d). To do so, we need
to prove first, the claim that for every € > 0, there exists n € N such that if p,¢g > n
with p — ¢ = 1(m), then d (zp,2,) < €. Suppose the contrary case, i.e., there exists
€ > 0 such that for any n € N, we can find p,, > ¢, > n with p,, —¢,, = 1 (m) satisfying
d(zp,,zq,) > €. Now, we take n > 2m. Then corresponding to g, > n, we can choose
pr in such a way that it is the smallest integer with p,, > ¢, satisfying p,, — ¢, = 1 (m)
and d (z,,,2q,) > €. Therefore, d (zq,,p,_,,) < €. Using the triangular inequality,

m m
e <d(mp,,xq,) <d (fqupnfm) + Zd (acpnfi,:tpnfiﬂ) <e+ Zd (xpnfi,:vpnfiﬂ) .
i=1 =1

Letting n — oo in the last inequality, and taking into account that lim d (2, Zn41) =
n—oo

0, we obtain lim d(xp,,24,) = €. Again, by triangle inequality, we have
n—oo

€ d(zq,, Tp,)

(g, Tgpiy) + ATgpirs Tpoyy) + d(Tp, 5 Tp,,)

d(@q,, Tgnyr) + ATguiys Tg,) + d(Tg,, p,) + AT, Tp,y) + A(Tp, 15 Tp,)
2d(2q,, Tgni1) + d(2g,, Tp,) + 2d(@p, , Tp,,.)-

Taking the limit as n — oo, and taking into account that lim d(z,,n4+1) = 0, we
n— o0

VAN VAN VAN VA

get lim d (an 19 Ty, +1) = €. Since xp, and x4, lie in different adjacently labelled
n—oo
sets A; and A;1 for certain 1 <4 < m, assuming that T is a cyclic (¢ — ¢)-Kannan
contraction, we have
¢ (d (xQn+l7xpn+1)) = d)(d (qun’Tmpn))
S (b (ad (mq" ’ T‘T(IN) + /Bd (xp7z ’ Tl‘pn))
¥ (d(2q,,Txq,),d(xp,, Txp,)) -
Letting n — oo in the last inequality, we obtain
¢ (€) <¢(0) = (0,0) =0.

Therefore, we get € = 0 which is a contradiction.
Similarly, assuming that T is a cyclic (¢ — ¢)-Chatterjea contraction, we have

¢ (d (xQn+l7xpn+1)) = d)(d (TxQnaTan))
S (b (ad (an ? Txpn) + ﬂd (mp'rﬂ qun))
= (d(2q,,T2p,),d(Tp,, T2y,)) -
Letting n — oo in the last inequality, we obtain
¢ (e) < d((a+Be) = (e e).

Therefore, since 0 < a + 8 < 1, we get ¢ (¢,¢) = 0, and hence, ¢ = 0, which is a
contradiction.
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From the above proved claim for both cases, i.e., the case when T is a cyclic (¢ — 1)-
Kannan contraction and the case when T is a cyclic (¢ — 1)-Chatterjea contraction,
and for arbitrary € > 0, we can find ng € N such that if p, g > ng with p — ¢ = 1(m),
then d (zp,24) < €. Since nll)rréo d(xy, Tnt1) = 0, we can find n; € N such that

€
d(xp, Tpt1) < — for n > n.
Now, for 7,8 > max{ng,n1} and s > r, there exists k € {1,2,...,m} such that
s —r = k(m). Therefore, s —r + j = 1(m) for j = m — k4 1. So, we have
d(z,,zs) < d(x,, $s+j) + d($s+j’ xs+j71) +o A d(Teg, x).
This implies
€ m
d(xr,xs) < e+ EZ 1=2e.
Jj=1
P
Thus, {z,} is a Cauchy sequence in |J A;. Consequently, {z,} converges to some
i=1

P
z € |J A;. However, in view of cyclical condition, the sequence {z,} has an infinite
i=1

P
number of terms in each A4;, for ¢ = 1,2,...,p. Therefore, z € [ A;.
i=1
Now, we will prove that z is a fixed point of T'. Suppose z € A;, Tz € A;4+1, and

we take a subsequence x,, of {z,} with z,, € A;_1. Then, assuming that 7" is a
cyclic (¢ — ¢)-Kannan contraction, we have

) (d (xnkH,Tz)) = ¢(d(Txn,,T2))
< ¢(ad(xn,, Ta,, )+ Bd(2,T2))
— (d(xn,, TTn,),d(2,T%))
¢ (ad (Tn,, TTyn,) + 0d(2,Tz)).

IN

Letting & — oo, we have
6(d(2T2)) < 6 (ad (2,2) + Bd (2,T2)),
and since ¢ is a nondecreasing function, we get
d(z,Tz) < pd(z,Tz).
Thus, since 0 < 8 < 1, we have d (z,7z) = 0, and hence, z = T'z.

Similarly, assuming that T is a cyclic (¢ — ¢)-Chatterjea contraction, then we have
¢ (d (xnk+1,Tz)) ¢ (d(Txy,,Tz))
¢ (ad(Tn,,Tz)+ pd(z,Tan,)) — Y (d(zn,,T2),d(z,Tay,))
¢ (ad(xn,,Tz)+ pd(z,Tay,)) .
Letting k — oo, we have
6(d(2T2)) < 6 (ad (2, T2) + Bd (2, 2))
since ¢ is a nondecreasing function, we get
d(2,Tz) < ad(z,Tz).

Thus, since 0 < a < %, we have d (z,Tz) = 0, and hence, z = T'z. O

IN A I
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Remark 2.1. Results in Theorem 2.1 are generalized versions of the fixed point
theorems of cyclic nonlinear contractions in the sense that many other theorems in
the literature are special cases of them. For example, if one takes ¢(t) = ¢, ¥(t) =0,
and o = f in Theorem 2.1, then we get a well-known theorem given by Theorem 3
in [6]. Also, if one takes & = 8 = % in Theorem 2.1, then we have the two theorems
given by Theorem 2.1 and Theorem 2.2 in [14], and many others.

3. Examples and applications

We give below two examples in order to validate the proved result.
Example 3.1. Let X be a complete metric space, m positive integer, Aq,...,A4,,
m
non-empty closed subsets of X, and X = |J A;. Let T : X — X be an operator such
i=1

1=

that

m
a) X = |J A; is a cyclic representation of X with respect to T
i=1
b) for any x € A;, y € A;j11, i =1,2,...,m, where A,,11 = A; and p : [0,00) —

[0,00) is a Lebesgue integrable mapping satisfies fg p(s) ds > 0 for t > 0, we
have one of the following:

d(Tz,Ty) ad(z,Tz)+pd(y,Ty)
/ p(t) dt < / o(t) dt,
0 0

d(Tz,Ty) ad(Tz,y)+Bd(Ty,z)
[ i< | p(t) dt.
0 0

or

Then T has a unique fixed point z € [ A;.
i=1
In order to see this, one might let ¢ : [0, 00) — [0, 00) be defined as ¢(t) = fot p(s) ds >
0. Then ¢ is alternating distance function, and by taking ¥ (t) = 0, we get the result.

Example 3.2. Let X = [-1,1] C R with d(z,y) = |z —y|. Let T : [-1,1] — [-1,1]
be given by
—%xe_ﬁ, x € (0,1],
T(x)=<{ 0, x =0,
—%meiﬁ, z € [-1,0).
By taking ©(t) =0, ¢(t) = ¢, and = € [0,1], y € [—1,0], we have

1

‘ — %xefﬁ + %yeil.ﬂ
3lzl+ 3yl
1 1.~ TaT| o 1 L, Tol
?|x—|— sxe | 4 S|y + sye” |
31T — |+ 3|Ty — yl,

T2 — Tyl

A IA

which implies that T has a unique fixed point in [—1,0] N [0, 1] which is z = 0.
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