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On supporting cancer grading based on histological slides
using a limited number of features
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Abstract. A computer assisted cancer diagnosis approach based on histopathological images

is outlined in the current study. It mainly detects the lighter components that appear in

each slide and computes simple morphological features for them, as well as basic statistic
about these. This relatively short numerical data set is subsequently fed to a classifier for

learning the correspondence between the features and their classes. The classification accuracy
reaches outputs similar to other more complex methodologies and therefore encourages future

investigation.
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1. Introduction

There are more and more frequent computational applications that put forward
decision making algorithms meant to assist automated diagnosis or prognosis predic-
tion in medicine [6], [10], [14], [15], [25], [28], [29]. The diagnosis of cancer makes
no exception, especially as this is a disease that can be cured only through early
identification.

Histology (also called microscopic anatomy) is the study of the form or structures
obtained from tissues seen under a light or electron microscope. Biopsies presume the
extraction of tissue from a patient’s body for examination to determine if it is healthy
or the degree of extent of a disease. After it had been removed, the tissue is treated
using chemicals in order to prevent decay, then it is placed under the microscope,
where an image of it is captured, resulting in a histological image [9]. Examination of
histological images represents the current usual practice in establishing an accurate
diagnosis for cancer.

Colorectal cancer is the third most commonly diagnosed malignancy and the fourth
leading cause of death in the world [1], [8]. Age and family history are primary risk
factors, hence periodical screening for persons past certain age, depending on the
cancer type, is recommended by medical professionals. This occurs because the re-
covery, treatment procedure and survival chances heavily depend on the development
stage of the disease [4]. Considering that roughly a third of the population in the US
is over 50, the number of screenings produced per year ends up being substantially
high, even if not all people actually do yearly medical examinations [5], [36]. This
leads to acknowledging the economical significance of a potential digital pathology
type of application which can rapidly diagnose a patient, saving thus valuable time
for both the patient and the pathologist in the short term and providing noticeable
cost savings in the long term [12]. Therefore, if this type of diagnostic assistance were
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used at least for identifying the healthy tissues, it could give the pathologist time to
focus on the more complicated samples.

The goal of the current research is to investigate whether a minimalistic feature
extraction procedure that uses only a limited amount of morphological features, taking
into account only lighter spots (glands, adipose tissue) based on the intensity of the
pixels, and further employs a support vector machine (SVM) classifier is able to
achieve accurate results. A methodology applied for the same data set that extracts
significantly more features [26] is used for comparison.

2. Data Set

The data set used [24] for learning in this research is extracted from a set of
digitalized histopathological slides of healthy tissue and diseased tissue, separated in
grades 1, 2 and 3. The images are at 10x magnification level with a 800x600 resolution
and are obtained from the Emergency County Hospital of Craiova, Romania. The
healthy tissue is further refered as G0, and G1, G2 and G3 are stages of cancer ordered
by severity. There are 357 images in total, with 62 healthy tissue images and 96 or
more records for each of the three grades of cancer.

Figure 1 shows pairs of initial images and the same samples with contours for each
of the four classes in turn.

3. State of the Art

There are numerous research efforts to sustain cancer diagnosis by means of mi-
croscopical image analysis [2], [3], [19], [30].

The traditional methodologies comprise the following stages [7], [11], [16]:

(1) Preprocessing. This regards the sampling of the slides and also color and
illumination normalization. This way, corrections can be added to the initial
images prior to the identification of the important components.

(2) Segmentation. It refers to the identification of the main components that
are usually studied within the histological images, i.e. nuclei and glands. The
identification is based either on region or on boundary of the components.

(3) Feature extraction and feature selection. Various attributes are ex-
tracted from the segmented components like morphological ones, textural,
fractal, topological or based on intensity. As usually this leads to a very high
number of attributes, feature selection techniques are applied to reduce the
dimensionality.

(4) Diagnosis. A classifier is employed to deal with the numerical data set. It
is usually an algorithm from the supervised learning class, but it can be also
unsupervised or semi-supervised.

More recently, deep learning algorithms, such as convolutional neural network,
start the analysis from feature extraction [22]. Moreover, the features are learned
solely from data and not handcrafted based on general human knowledge. However,
although this class of methods is generally significantly more accurate, it needs a large
amount of data to train on and the sizes of the images have to remain low. Addition-
ally, they require large computational power even for low resolution images, which,
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Figure 1. Samples for healthy tissue and each of the G1-G3 grades
in the left column and their detected contours on the right column.

naturally, cannot contain all the details necessary to distinguish between classes, at
least for the human experts.
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4. Proposed Methodology

A limited number of attributes are extracted from the histological slides and ma-
chine learning techniques are applied in order to classify them. The components
that are analysed are represented only by glands. Contours for them are found us-
ing thresholding. The used morphological features are the perimeter and area of the
found contours and for each slide statistics like the minimum, maximum, average and
standard deviation for both measures are computed. This leads to a number of 8
numerical attributes for each image.

The task can be expressed in the form of a supervised learning problem, with each
image assigned to a class. The data set is separated into training and test sets. The
classifier learns the correspondence from the training samples and their classes and is
subsequently applied to identify the outputs for the test images.

The data collection process starts by finding the appropriate thresholding param-
eters which offered the clearest contours for the images. Afterwards measures about
every contour in each image such as perimeter and area are gathered. Relevant infor-
mation such as the highest and lowest values for area and perimeter as well as their
mean and standard deviation are preserved.

The procedure for collecting data from an image works in the following manner:

(1) The image is transformed in grayscale format.
(2) A thresholding procedure is applied to the resulted image. This highlights

key features in the reached image depending on the values for the parameters
used in the thresholding.

(3) The contours in the thresholded image are found and the area and perimeter
are calculated and stored for each one to be used in creating the statistical
information described above.

Although SVM are known to deal well with a high number of attributes [13],
in the current work we keep the number of features low, referring only those that
are considered to be essential, as others might add noise to the numerical data set.
Additionally, the number of contours found was added, but the pre-experimental
results showed that the results were not significantly improved.

When extracting features from the dataset, special attention is set on fine tuning
the thresholding weight so the glaring differences between grades are visible, especially
as concerns the extracted numerical data. This allows the SVM algorithm to more
easily find the differences for classification.

5. Experimental Results

The current section begins with the setup of the experiments, then shows the main
results and is followed by a subsection where the outputs are discussed.

5.1. Experimental setup. The training data represents two thirds of the entire
data set and the last third is used for prediction. Each setting is validated in 30
repeated runs. The separation into the training/test sets is made randomly in every
repetition. The random sampling will minimize the bias that could appear during
testing. The average accuracy is obtained by calculating the accuracy over the 30
repetitions of the application of the SVM.
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Various parameters will be tweaked or changed during testing in order to find the
best ones, namely all the SVM kernels are tested along with various values for cost and
gamma. The parameter tuning is made both manually and automatically with similar
results. Another parameter outside of the learning function that will be tested is the
thresholding value, specifically values between 100 and 230 will be tested in order to
transform the input image into a binary one.

The approach for finding the best parameters in this case was both trial and error
and making use of the tools in R designed for fine tuning. The optimal parameters
were manually found to be a radial kernel, a cost of 10 and a gamma value of 0.1. The
automated tune function which has a brute force attempt to find the best parameter
in the given range - in this case between 1-15 for cost, incrementing with .5 for each
attempt, and 0.1 and 2.0 for gamma, incrementing with .1 per cycle - found different
parameters to be optimal. However, after testing those parameters, the accuracy
values were not visibly different from the ones found manually.

5.2. Results and Visualization. Figure 2 shows the importance of every attribute
with respect to each class, as discovered by a random forest model.

Figure 3 illustrates the classification test accuracy for the SVM with default pa-
rameters and with tuned ones when the thresholding value is varied from 100 to 230.
As observed, more intermediary steps are tried where the best results are achieved.

Tables 1 and 2, as well as Figure 4, show various statistics computed per class.

Class Sensitivity Specificity Precision F1 Balanced Acc.
G0 0.889 0.961 0.800 0.842 0.925
G1 0.727 0.955 0.857 0.787 0.841
G2 0.909 0.886 0.750 0.822 0.898
G3 0.865 0.988 0.970 0.914 0.926

Table 1. Statistical values computed per class.

Class Neg Pred Value Prevalence Detection Rate Detection Prev.
G0 0.980 0.149 0.132 0.165
G1 0.903 0.273 0.198 0.231
G2 0.963 0.273 0.248 0.331
G3 0.943 0.306 0.264 0.273

Table 2. Secondary table of statistical measures.

5.3. Observations and Discussions. Initially the thresholding parameter was in-
cremented by 10 for each collection. After finding the sweet spot between 200-230,
smaller increments were made in that interval until the best parameter for collecting
data was found at 217. This is more visually apparent in Figure 3.

Beside considering all found contours, a couple of other contour detection types
were attempted, like considering only the exterior ones, or going only two levels deep
(i.e. ignoring all contours that were below the second level). However, the results were
not affected to a large extent by these changes, only showing a moderate decrease in
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Figure 2. The level of importance for every attribute for each class
as found by a random forest model.

accuracy for some threshold values, while remaining unchanged for the remaining
majority.

Another attempt to add more information to the numerical data collection was to
combine two types of results into one and have that submitted for classification with
SVM. For instance adding a dataset obtained through the custom method described
earlier to another dataset collected in the standard manner was tried. This effectively
doubled the amount of attributes for each observation, but this had no significant
effect on the results in either direction.

Besides the vertical enlargement (doubling the number of attributes), horizontal
addition was also tried, specifically doubling the amount of observations without
success as concerns the increase in the test classification accuracy. The total number
of contours per image was also considered as attribute, but without improving the
accuracy, so it was set aside.

Figure 2 is the result of an analysis that was made using a random forest model to
investigate the effect of the set of parameters that achieved the highest accuracy. The
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Figure 3. Classification accuracy for various values of the threshold parameter.

most important attributes for each class are found through the use of the R package
caret [17]. This led to interesting findings concerning how each class is differently
affected by them. While the average perimeter seems to have a consistent influence
on each class, other attributes importance varies significantly depending on grade.

After covering the data processing and analysis, the SVM function becomes the
next object to test upon. After the pre-experimental phase phase, the best kernel for
this dataset proved itself to be the radial one, while the worst one by a large margin
was the sigmoid kernel, outputting significantly worse numbers, namely between 25%
and 46% . The polynomial and linear kernels were closer to the radial one but
offered still unsatisfactory results, up to 65% for the linear one and up to 68% for the
polynomial kernel.

Since establishing that the radial kernel offers the best results, the most natural
course of action is to focus on finding the best parameters for it. The key parameters
here proved themselves to be the cost and gamma. After observing an increase and
decrease in accuracy depending on the value of these parameters, a trial and error
approach was taken in order to find the best one for this dataset. After multiple runs
with various combinations, the limit of improvement from this method was reached
at a value of 83.97% accuracy with a cost value of 9 and gamma at 0.1. Naturally,
more complex methods for this task like a multimodal optimizer could be employed
[21], [23], but that would complicate the methodology and is outside the scope of this
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Figure 4. Statistical measures computed for each class in turn.

article. These parameters were also tested with the datasets with different threshold-
ing values and showed a major increase in accuracy at around 10% across the board,
as pointed out in Figure 3. A notable observation is individual accuracies over 90%,
which could point to more potential ways of increasing precision.

Relatively similar approaches that involve the segmentation of the structures in
the histological images, feature extraction followed by classification for the same data
set are introduced in [25] and [26], which are derived from the study in [31]. How-
ever, these procedures assume the specific identification of glands and of nuclei and
extract around 80 features from them, that is 10 times more than in the current
work. Additionally, they use feature selection and reach accuracies of nearly 80% and
84%, respectively. To give them justice, it has to be mentioned that in these works
no special attention was paid to the parameter setting of the classifier, but rather
default settings were kept. Nevertheless, the results are very similar to these achieved
in the current work, but with less computational effort herein. On a different level, a
convolutional neural network is applied in [20] which reached up to 91.44%, further
enhanced to reach 92% in [33], and a combination of classifiers in Mathematica [27]
applied directly on the images as well achieved the top performance so far of 95.65%.
Note however that neither of the latter two approaches do not extract features and
are very expensive regarding the computational costs.

Tables 1 and 2, as well as Figure 4, illustrate that the classes that are most ac-
curately classified are G0 and G3, e.g. see F1 and balanced accuracy. The accurate
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results are encouraging and push the methodology as a relevant one able to pro-
vide a second opinion for the medical experts that need to distinguish between the
histological slides.

6. Conclusions

The current work puts forward a methodology that makes use of a very limited
amount of morphological features that are not directly connected to components like
nuclei or glands in the histological images, but rather only to the existing lighter
components using intensity-based thresholding. Surprisingly, some simple statistics
about the perimeters and areas of those contours, aligned to a proper fine tuning of
the classifier, leads to results similar to those of more complex approaches that extract
larger amounts of features and are even endowed with feature selection to keep only
the most relevant attributes for the classification step.

Besides traditional SVM, other classifiers could be employed in future work for
the discrimination between classes based on the extracted features. Among them,
an evolutionary algorithm for the optimization of the SVM was illustrated to work
well in [32], [34], but an ensemble of different classifiers [18], [35] might also lead to
significant improvements in results.
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