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The second order abstract Cauchy problem and integrated
semigroups generated by matrix pseudo-differential operators

Viorel Catană

Abstract. The main aim of this paper is to indicate how integrated semigroups and spectral
properties of some classes of pseudo-differential operators can be used studying second order
abstract Cauchy problems

u′′(t)−Apu(t) = 0, u(0) = u0, u′(0) = u1

or
u′′(t)−Aq

pu′(t)− (aA2q
p + bAq

p + cI)u(t) = 0, u(0) = u0, u′(0) = u1,

for every initial values (u0, u1) ∈ D(AM
p )×D(AN

p ). Here Ap : D(Ap) ⊂ Lp(Rn) → Lp(Rn) is

a closed extension of a pseudo-differential operator A : S(Rn) ⊂ Lp(Rn) → S(Rn) ⊂ Lp(Rn),

Au(x) = (2x)−n

∫

Rn
ei<x,ξ>a(ξ)û(ξ)dξ

to the space Lp(Rn).
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1. Introduction

We study the second order abstract Cauchy problems (ACP2):

u′′(t) = Apu(t), t > 0, u(0) = u0, u′(0) = u1, (1)

u′′(t)−Aq
pu
′(t)− (aA2q

p + bAq
p + cI)u(t) = 0, t > 0,

u(0) = u0, u′(0) = u1, q ∈ N∗ , a, b, c ∈ R,
(2)

where Ap : D(Ap) ⊂ Lp(Rn) → Lp(Rn) is a closed extension of a pseudo-differential
operator A : S(Rn) ⊂ Lp(Rn) → S(Rn) ⊂ Lp(Rn) to the space Lp(Rn).

The most natural way to study (ACP2) (1) or (2) is to reduce them to the first
order abstract Cauchy problems (ACPr):

w′(t) = Bpw(t), t > 0, w(0) = (w0, w1) = (u0, u1) (3)
w′(t) = Bp,qw(t), t > 0, w(0) = (w0, w1) = (u0, u1) (4)

where

Bp : D(Ap)× Lp(Rn) → (Lp(Rn))2, Bp =
(

0 I
Ap 0

)
,

Bp,q : D(A2q
p )×D(Aq

p) → (Lp(Rn))2, Bp,q =
(

0 I
aA2q

p + bAq
p + cI Aq

p

)
.
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Here I is the identity operator on Lp(Rn), (w0, w1) ∈ D(AM
p ) × D(AN

p ), M,N ∈
N∗ and (Lp(Rn))2 = Lp(Rn) × Lp(Rn) is endowed with the maximum norm (i.e.
||(w0, w1)|| = max(||w0||p, ||w1||p), where || · ||p denote the normLp(Rn)).

We will also refer to the first order abstract Cauchy problem (ACP):

u′(t) = Apu(t), t > 0, u(0) = u0. (5)
Following F. Neubrauder (see [10]) we will establish the connection between (ACP2)

(1) or (2) and (ACPr) (3) respectively (4).
In particular, we are interested in the connection between the spectral properties

of the operator Ap and the fact that (ACP2) or (ACP) are wellposed in Neubrauder’s
sense (see [3], [7], [8], [10]).

2. Preliminaries and notations

First we shall introduce a few concepts terminologies and recall some notions and
results concerning pseudo-differential operators, integrated semigroups and well posed
abstract Cauchy problem.

Definition 2.1. Let m ∈ R, ρ ∈ (0, 1]. Then we define Sm
ρ,0(R

n) to be the set of
all functions a ∈ C∞(Rn) such that for any multi-index α ∈ Nn there is a positive
constant Cα only depending on α, for which

|Dαa(ξ)| ≤ Cα(1 + |ξ|)m−ρ|α| for all ξ ∈ Rn. (6)
We call any function a ∈ Sm

ρ,0(R
n) a symbol of order m and of type (ρ, 0).

Definition 2.2. Let a ∈ Sm
ρ,0(R

n) be a symbol. Then the pseudo-differential operator
A = a(D) associated with a is defined by

Au(x) = (2π)−n

∫

Rn
ei<x,ξ>a(ξ)û(ξ)dξ, u ∈ S(Rn), x ∈ Rn. (7)

We denote by Lm
ρ,0(R

n) the class of pseudo-differential operators of order m and
of type (ρ, 0).

Definition 2.3. A symbol a ∈ Sm
ρ,0(R

n) is said to be elliptic iff there exist positive
constants C and R such that

|a(ξ)| ≥ C(1 + |ξ|)m, for all |ξ| ≥ R. (8)
Of course, a pseudo-differential operator A ∈ Lm

ρ,0(R
n) is said to be elliptic iff its

symbol is elliptic.

Definition 2.4. A symbol a ∈ Sm
ρ,0(R

n) is said to be strongly Carleman iff there exist
positive numbers b, L and C, such that

|a(ξ)| ≥ C(1 + |ξ|)b, for all |ξ| ≥ L. (9)
Suppose now we give A ∈ Lm

ρ,0(R
n). Then for each 1 ≤ p < ∞, Ap : S(Rn) ⊂

Lp(Rn) → Lp(Rn) is a closable operator on Lp(Rn) and we shall denote its closure on
Lp(Rn) by Ap : D(Ap) ⊂ Lp(Rn) → Lp(Rn), D(Ap) = {u ∈ Lp(Rn), Au ∈ Lp(Rn)},
Apu = Au (in the distributional sense) for all u ∈ D(Ap).

We shall call Ap the minimal operator associated with A.
Also for the same operator A ∈ Lm

ρ,0(R
n) and for each 1 ≤ p < ∞, we can define

another closed operator
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Ãp : D(Ãp) ⊂ Lp(Rn) → Lp(Rn), where

D(Ãp) = {u ∈ Lp(Rn); (∃)fu ∈ Lp(Rn) s.t. (u,A∗ϕ) = (fu, ϕ), (∀)ϕ ∈ S(Rn)}
(10)

and Ãpu = fu. We shall call Ãp the maximal operator associated with A.

We remark that both operators Ap and Ãp are closed extensions to Lp(Rn) of the
operator A and they really coincide (see [15]). Moreover if A ∈ Lm

ρ,0(R
n) is an elliptic

operator of order m ≥ 0, then D(Ap) = Hm,p(Rn) the Sobolev space (see [17]).
We can now state some results concerning pseudo-differential operators, integrated

semigroups, well posed Cauchy problems and the connection between them. For
details and proofs see [3], [8], [10].

Theorem 2.1. Let a ∈ Sm
ρ,0(R

n) be a strongly Carleman symbol, where m > 0,
ρ ∈ (0, 1]. Then for each 1 ≤ p < ∞ with ρ(a(D)p) 6= ∅ (the resolvent set of the
operator a(D)p = Ap), we have σ(a(D)p) = a(Rn) (the range of the symbol of the
operator Ap).

The following proposition gives sufficient criteria in order to have the resolvent set
of the operator Ap nonempty.

Proposition 2.1. Let a ∈ Sm
ρ,0(R

n) be a strongly Carleman symbol, where m > 0,
ρ ∈ (0, 1] and the coercivity constant is b > 0. Then for each p ∈ (1,∞) the following
assertions hold.

(i) If n|1/2− 1/p|(m + 1− ρ− b)/b < 1, then

ρ(Ap) 6= ∅ ⇔ a(Rn) 6= C,

where a(Rn) = {a(ξ); ξ ∈ Rn}.
Moreover, if b > n(m + 1− ρ)/(n + 2), then

ρ(Ap) 6= ∅ ⇔ a(Rn) 6= C for all p ∈ (1,∞);
(ii) If there exist constants s, C such that s ≤ 1, C > 0,

n|1/2− 1/p|/b < 1 and
|Dαa(ξ)|
|a(ξ)| ≤ C(1 + |ξ|)−s|α|, (∀)ξ ∈ Rn,

(∀)|α| ≤ 1 + [n|1/2 − 1/p|] (where [·] denotes the integer part of a real number),
then

ρ(Ap) 6= ∅ ⇔ a(Rn) 6= C;
(iii) If b > m/2 and n(1− ρ)|1/2− 1/p|/(2b−m) < 1, then

ρ(Ap) 6= ∅ ⇔ a(Rn) 6= C;
(iv) If p = 1 and if there exist constants s, C such that s ∈ [0, 1], b > n + s − ns,

|Dαa(ξ)/a(ξ)| ≤ C(1 + |ξ|)−s|α|, (∀)ξ ∈ Rn, (∀)|α| ≤ 1 + [n|1/2− 1/p|], then

ρ(A1) 6= ∅ ⇔ a(Rn) 6= C.

In particular, if we moreover suppose that b > (m+1−ρ−b)(n−1)+1, b ≥ m−ρ,
then the same conclusion still holds.

(v) We suppose, in particular, that a ∈ Sm
ρ,0(R

n) is an elliptic symbol. Then for

each p ∈ (1,∞) and m ≥ 1
2
(n− nρ) it follows that ρ(Ap) 6= ∅ ⇔ a(Rn) 6= C.
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Again, for p = 1 and m > n + ρ− nρ, we obtain the same conclusion.
(vi) If p = 2 and |a(ξ)| → ∞ when |ξ| → ∞, ξ ∈ Rn (in particular, a is a strongly

Carleman symbol), then

ρ(A2) 6= ∅ ⇔ a(Rn) 6= C. (11)

Remark 2.1. If ρ = 1 and a ∈ Sm
1,0(R

n) is a polynomial then the assertions (i), (ii)
of Proposition 2.1 yield statements (i), (ii) of Proposition 5.3 in M. Hieber ([7]).

N-times integrated exponentially bounded semigroups (S(t))t≥0 of linear operators
on a Banach space E(N ∈ N) were introduced by Arendt [2] and studied by Arendt,
Kelerman, Hieber, Neubrander, Thieme and many others ([1], [2], [4], [5], [6], [10],
[12]).

The goal of the theory of integrated semigroups is the analysis of an abstract
Cauchy problem as that in (5).

Definition 2.5. (F. Neubrander [10]). Let A ∈ L(E) be a linear operator on a
Banach space E. If there exists N ∈ N∗, constants M > 0, ω ∈ R and a strongly
continuous family (S(t))t≥0 in L(E) with ||S(t)|| ≤ Meωt for all t ≥ 0 such that
R(λ,A) = (λI −A)−1 exists and is given by

R(λ,A) = λN

∫ ∞

0

e−λtS(t)dt, (12)

for all λ > ω, then A is called the generator of the N-times integrated semigroup
(S(t))t≥0 (N-t.i.s).

Definition 2.6. (F. Neubrander [10]). Let A ∈ L(E) be a closed linear operator
on a Banach space E. Then the abstract Cauchy problem (ACP) defined by (A, u0),
u0 ∈ E, namely

u′(t) = Au(t), u(0) = u0, t > 0 (13)

is called (N, k)-well posed iff there exist N ∈ N∗, k ∈ N, with 0 ≤ k ≤ N and a
locally bounded function p : [0,∞) → R such that for all u0 ∈ D(AN ), there exists a
unique solution u ∈ C1([0,∞), E) of the (ACP) with

||u(t)|| ≤ p(t)||u0||k for all t ≥ 0,

where

||u0||k := ||u0||+ ||Au0||+ . . . + ||Aku0||.
Here || · ||k is the graph norm of the Banach space [D(Ak)] := (D(Ak), || · ||k).
If, in addition, we can choose p(t) = Meωt, t ≥ 0 then the (ACP) is called expo-

nentially (N, k)-well posed.
The connection between generators of integrated semigroups and exponentially well

posed (ACP) is given by the following theorem (see F. Neubrander [10], th. 4.2).

Theorem 2.2. Let A ∈ L(E) be a linear operator on a Banach space E with nonempty
resolvent set ρ(A). Then the following assertions hold.

(i) If A generates an (N-1)-t.i.s., then (ACP) is exponentially (N,N-1)-well posed.
(ii) If A is densely defined and if (ACP) is exponentially (N, N-1)-well posed then

A generates an (N-1)-t.i.s.
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Theorem 2.3. (see [3], [8]). Let a ∈ Sm
ρ,0(R

n) be a strongly Carleman symbol, where
m > 0, ρ ∈ (0, 1] and 1 ≤ p < ∞. Then the following assertions are equivalent.

(i) ρ(Ap) 6= ∅ and sup
ξ∈Rn

Re a(ξ) ≤ ω for some ω ∈ R;

(ii) There exists N ∈ N such that the operator Ap generates an N-t.i.s on Lp(Rn).

Remark 2.2. From the proof of Theorem 2.3 the estimate: N > n|1/2 − 1/p|(m +
1− ρ)/b follows.

Remark 2.3. The assertions (i), (ii) in Theorem 2.3 are equivalent to (iii) (ACP) is
exponentially (N+1,N)-well posed provided a is elliptic (or, hypoelliptic, of polynomial
function type).

Remark 2.4. If ρ = 1 and if a ∈ Sm
1,0 is a polynomial, then Theorem 2.3 yields

Theorem 5.1 in M. Hieber [7].

Theorem 2.4. (see [3], [8]). Let 1 ≤ p ≤ ∞ and let a ∈ Sm
ρ,0(R

n) be a strongly
Carleman symbol. Then the following assertions are equivalent.

(i) supRe σ(Ap) ∈ R ⇔ (σ(Ap) ⊂ {z ∈ C; Re z ≤ ω} for some ω ∈ R);
(ii) There exists N ∈ N such that Ap generates an N-t.i.s. on Lp(Rn).

Remark 2.5. From Theorems 2.2, 2.3, 2.4 we deduce that the following assertions
are equivalent:

(i) ρ(Ap) 6= ∅ and sup
ξ∈Rn

Re a(ξ) ≤ ω for some ω ∈ R;

(ii) supRe σ(Ap) ∈ R;
(iii) There exists N ∈ N such that Ap generates an N-t.i.s. on Lp(Rn).

Remark 2.6. The previous remark is similar to Theorem 4.6 in M. Hieber [8].

3. The incomplete second order abstract Cauchy problem

Now we turn to the (ACP2) (1). We suppose that one considers those values of
1 ≤ p < ∞ for which ρ(Ap) 6= ∅ (see for example Proposition 2.1 in the case of a
strongly Carleman symbol).

A function u : [0,∞) → D(Ap), u ∈ C2(R+, Lp(Rn)) will be called a solution of
(ACP2) iff it satisfies (ACP2) (1).

The following lemmas give some connections between (ACP2) (1) and (ACPr) (3)
as well as between the operators Ap and Bp which define this problems.

Lemma 3.1. (ACP2) (1) has a unique solution u ∈ C2(R+, Lp(Rn)) if and only if
(ACPr) (3) has a unique solution w = (u, u′).

Lemma 3.2. Let Ap : D(Ap) ⊂ Lp(Rn) → Lp(Rn) and let Bp : D(Ap)× ×Lp(Rn) →
(Lp(Rn))2, Bp =

(
0 I

Ap 0

)
be the operators which define respectively (ACP2) (1)

and (ACPr) (3). Then the following assertions hold.
(i) Bp is a closed operators on (Lp(Rn))2.
(ii) The resolvent set of Ap, ρ(Ap) 6= ∅ if and only if the resolvent set of Bp,

ρ(Bp) 6= ∅. Moreover, for λ ∈ C, λ2 ∈ ρ(Ap) we have λ ∈ ρ(Bp) and

R(λ,Bp) =

(
λR(λ2, Ap) R(λ2, Ap)

ApR(λ2, Ap) λR(λ2, Ap)

)
.

(iii) D(B2N
p ) = D(AN

p )×D(AN
p ) and for all (u, v) ∈ D(B2N

p ):
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||u||N + ||v||N ≤ 2||(u, v)||Bp

2N ≤ 4(||u||N + ||v||N ),

where || · ||N denotes the graph norm of the Banach space [D(Ap)] = (D(AN
p ), || · ||N )

(i.e. ||u||N = ||u||p + ||Apu||p + . . . + ||AN
p u||p, u ∈ D(AN

p )).
(iv) D(B2N−1

p ) = D(AN
p )×D(AN−1

p ) and for all (u, v) ∈ D(B2N−1
p ) we have

||u||N + ||v||N−1 ≤ 2||(u, v)||Bp

2N−1 ≤ 4(||u||N + ||v||N−1).

The proofs of these lemmas are obvious and are omitted.

Definition 3.1. ([10]). Let A ∈ Lm
ρ,0(R

n), ρ ∈ (0, 1], m > 0, be a pseudo-differential
operator such that his symbol a ∈ Sm

ρ,0(R
n) is a strongly Carleman symbol with coer-

civity constant, b > 0. Moreover, suppose that a(Rn) 6= C and let 1 ≤ p < ∞ satisfy
one of the conditions (i)-(vi) in Proposition 2.1. Then

(i) (ACP2) (1) is 2N -well posed if and only if there exists a locally bounded function
q : R+ → R+ such that (ACP2) has unique solution u ∈ C2(R+, Lp(Rn)) for all
(u0, u1) ∈ D(AN

p )×D(AN
p ), N ≥ 1, satisfying

||u(t)||p ≤ q(t)(||u0||N−1 + ||u1||N−1), t ∈ R+ .

(ii) (ACP2) (1) is (2N + 1)-well posed if and only if there exists a locally bounded
function q : R+ → R+ such that (ACP2) has unique solution u ∈ C2(R+, Lp(Rn))
for all

(u0, u1) ∈ D(AN+1
p )×D(AN

p ) satisfying

||u(t)||p ≤ q(t)(||u0||N + ||u1||N−1), t ∈ R .

If we can choose q(t) = Ceωt, C > 0, ω ∈ R, t ∈ R+ , then (ACP2) will be called
exponentially M-well posed (where M = 2N or M = 2N + 1).

We follow now F. Neubrander’s point of view and can state the following results.

Theorem 3.1. Let A ∈ Lm
ρ,0(R

n) be a pseudo-differential operators as in definition
3.1. Let Ap : D(Ap) ⊂ Lp(Rn) → Lp(Rn) be a closed extension of A to Lp(Rn)

and let Bp : D(Ap) × Lp(Rn) → (Lp(Rn))2, Bp =
(

0 I
Ap 0

)
. Then the following

statements are equivalent:
(i) (ACP2) (1) M -well posed (respectively exponentially M -well posed)
(ii) (ACPr) (3) (M, M − 1)-well posed (respectively exponentially (M, M − 1)-well

posed).

Proof. Suppose (ACP2) (1) is 2N -well posed, i.e. there exists a locally bounded
function q : R+ → R+ such that for all (u0, u1) ∈ D(AN

p )×D(AN
p ) = D(B2N

p ) there
exist unique solution u ∈ C2(R+, Lp(Rn)) satisfying

||u(t)||p ≤ q(t)(||u0||N−1 + ||u1||N−1), t ≥ 0. (14)
By Lemma 3.2 and (14) we obtain

||u(t)||p ≤ q(t)(||u0||N + ||u1||N−1) ≤ 2q(t)||(u0, u1)||Bp

2N−1, t ≥ 0. (15)

We know by Lemma 3.1 that u ∈ C2(R+, Lp(Rn)) is a solution of (ACP2) (1) iff
w = (u, u′) ∈ C1(R+, Lp(Rn))2) is a solution of (ACPr) (3).

Then, combining Lemma 7.7 in [10] and Lemma 3.2 we get
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||u′(t)||p ≤ q(t)(||u0||N + ||u1||N−1) ≤ 2q(t)||(u0, u1)||Bp

2N−1, t ≥ 0. (16)
Therefore by (15), (16) we obtain

||(u(t), u′(t))|| = max(||u(t)||p, ||u′(t)||p) ≤ 2q(t)||(u0, u1)||Bp

2N−1, t ≥ 0, (17)

whence (ACPr) (3) is (2N, 2N−1)-well posed. Conversely let us suppose that (ACPr)
(3) is (2N, 2N − 1)-well posed, i.e. there exists a locally bounded function p : R+ →
R+ such that for all w0 = (u0, u1) ∈ D(B2N

p ) = D(AN
p ) × D(AN

p ) there exist unique
solution w = (u, v) ∈ C1(R+, (Lp(Rn))2) satisfying

||w(t)|| = max(||u(t)||p, ||v(t)||p) ≤ p(t)||(u0, u1)||Bp

2N−1 ≤
≤ 2p(t)(||u0||N−1 + ||u1||N−1), t ≥ 0.

(18)

By Lemma 3.1 and (18) we see that (ACP2) (1) has unique solution
u ∈ C2(R+, Lp(Rn)) with initial values (u0, u1) = w0 ∈ D(AN

p )×D(AN
p ) such that

||u(t)||p ≤ 2p(t)(||u0||N−1 + ||u1||N−1), t ≥ 0. (19)
By (19) we get that (ACP2) (1) is 2N -well posed. The proof in case M = 2N + 1
requires only obvious modifications.

Theorem 3.2. Let A ∈ Lm
ρ,0(R

n), Ap and Bp be as in Theorem 3.1. Then the
following statements are equivalent:

(i) (ACPr) (3) has unique solution for all w = (u, v) ∈ D(BM
p );

(ii) (ACPr) (3) is (M, M − 1) well posed;
(iii) (ACP2) (1) is M -well posed;
(iv) (ACP2) (1) has unique solution for all w = (u, v) ∈ D(AN

p ) × D(AN
p ) (or for

all w = (u, v) ∈ D(AN+1
p )×D(AN

p )).

Proof. (i) ⇒ (iv). This follows by Lemma 3.1.
(iv) ⇒ (iii) We prove this for w = (u, v) ∈ D(AN

p ) × D(AN
p ). The proof for

w = (u, v) = D(AN+1
p )×D(AN

p ) requires only some modifications.
By hypothesis and by Lemma 3.2 the operator Bp has a nonempty resolvent set

and by Lemma 3.1, (ACPr) (3) has unique solution w(t) = (u(t), u′(t)) for all w =
(u, v) = D(B2N

p ) = D(AN
p ) × D(AN

p ). Hence by Theorem 3.1 (iii) (see [10]) and by
Lemma 3.2, there exists a locally bounded function p : R+ → R+ such that

∥∥∥∥
∫ t

0

w(s)ds

∥∥∥∥ = max

(∥∥∥∥
∫ t

0

u(s)ds

∥∥∥∥
p

,

∥∥∥∥
∫ t

0

u′(s)ds

∥∥∥∥
p

)
=

= max

(∥∥∥∥
∫ t

0

u(s)ds

∥∥∥∥
p

, ||u(t)− u||p
)
≤

≤ p(t)||(u, v)||Bp

2N−2 ≤ 2p(t)(||u||N−1 + ||v||N−1)

(20)

By Lemma 3.1 the first coordinate u(t) of the solution w(t) = (u(t), u′(t)) of (ACPr)
(3) is a solution of (ACP2) (1) and by (20) implies that (ACP2) (1) is 2N -well posed.

(iii) ⇒ (ii) This is contained in Theorem 3.1.
(ii) ⇒ (i) This follows from Definition 2.6.

Theorem 3.3. Under the assumptions of Theorem 3.1 the following assertions are
equivalent.
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(i) Bp generates an (M − 1)-t.i.s. on (Lp(Rn))2;
(ii) (ACP2) (1) is exponentially M -well posed.

Proof. By Theorem 2.2, Bp generates an (M − 1)-t.i.s. on (Lp(Rn))2 iff (ACPr)
(3) is exponentially (M,M − 1)-well posed iff (ACP2) (1) is exponentially M -well
posed. The last equivalence holds by Theorem 3.2.

Remark 3.1. All considerations above still hold if we replace (ACP2) (1) by (ACP2):

u′′(t) = (aAp + bI)u(t), u(0) = u0, u′(0) = u1 t > 0, a, b ∈ R, a 6= 0. (21)

4. The complete second order abstract Cauchy
problem

In this section we study (ACP2) (2) by reducing it to (ACPr)

w′(t) = B̃p,qw(t)
w(0) = (w0, w1) = (u0, u1),

(22)

where

B̃p,q : D(B̃p,q) ⊂ (Lp(Rn))2 → (Lp(Rn))2,

B̃p,q =

(
(λ0 −Ap)2q 0

0 (λ0 −Ap)2q

)
×

×
(

0 R(λ0, Ap)2q

(aA2q
p + bAq

p + cI)R(λ0, Ap)2q Aq
pR(λ0, Ap)2q

)
,

D(B̃p,q) =
{
(u, v) ∈ (Lp(Rn))2;

[
(aA2q

p + bAq
p + cI)R(λ0, Ap)2qu + Aq

pR(λ0, Ap)2qv
] ∈ D(A2q

p )
}

and λ0 ∈ ρ(Ap). Remark that B̃p,q is the closure of Bp,q. We see that if u(·) is a
solution of (2) then w(t) = (u(t), u′(t)) is a solution of (22). Conversely, if w(t) =
(u(t), v(t)) is a solution of (22) then the first coordinate u(·) is not necessarily a
solution of (2), but only of

u′′(t)− (λ0 −Ap)2q[Aq
pR(λ0, Ap)2qu′(t)+

+(aA2q
p + bAq

p + cI)R(λ0, Ap)2qu(t)] = 0, u(0) = u0, u
′(0) = u1.

(23)

Hence following F. Neubrander (see [10]) we can give

Definition 4.1. Let λ0 ∈ ρ(Ap). A function u ∈ C2(R+, Lp(Rn)) with

[Aq
pR(λ0, Ap)2qu′(t) + (aA2q

p + bAq
p + cI)R(λ0, Ap)2qu(t)] ∈ D(A2q

p ),
for all t ≥ 0 which satisfy (23) is called a mild solution of (2).

Suppose now that B̃p,q generates an (N − 1)-t.i.s. on Lp(Rn))2. Then (22) has
a unique solutions w(t) = (u(t), u′(t)) for all (u0, u1) ∈ D(B̃N

p,q) which contains

D(A(N+1)q
p ) × D(ANq

p ). Hence u is the unique mild solution of (2) and applying
Theorem 4.5 (d) and Theorem 3.1 (iii) (see [10]), for suitable constants M > 0,
ω ∈ R we get
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||u′(t)||p ≤ max(||u(t)||p, ||u′(t)||p) = ||w(t)|| ≤ Meωt||(u0, u1)||Bp,q

N−1,

||u(t)− u0||p ≤ max

(∥∥∥∥
∫ t

0

u(s)ds

∥∥∥∥
p

,

∥∥∥∥
∫ t

0

u′(s)ds

∥∥∥∥
p

)
=

=
∥∥∥∥
∫ t

0

w(s)ds

∥∥∥∥ ≤ Meωt||(u0, u1)||Bp,q

N−2.

In particular, if (u0, u1) ∈ D(A(N+1)q
p ) × D(ANq

p ) ⊂ D(B̃N
p,q) then it can be easily

seen that there is a constant such that

||u′(t)||p ≤ Meωt||(u0, u1)||Bp,q

N−1 ≤ Ceωt||u0||Nq + ||u1||(N−1)q

||u(t)||p ≤ Meωt||(u0, u1)||Bp,q

N−2 ≤ Ceωt||u0||(N−1)q + ||u1||(N−2)q

(24)

Now we can state

Proposition 4.1. If B̃p,q generates an (N − 1)-t.i.s on (Lp(Rn))2, then (ACP2) (2)
has unique mild solution for (at least) all initial data (u0, u1) ∈ D(A(N+1)q

p )×D(ANq
p ),

which depend continuously on the initial data as it can be seen in (24).

In the sequel we want to know when the resolvent set of B̃p,q is nonempty and then
to determine the resolvent of the operator B̃p,q.

First of all remark that λ ∈ ρ(B̃p,q) iff ζj
k(λ) ∈ ρ(Ap), j = 1, 2, k = 0, 1, . . . , q − 1,

where ζj
k(λ) are the roots of the equations ζq − fj(λ) = 0 and

fj(λ) = {−λ− b± [(1 + 4a)λ2 + 2bλ + b2 − 4ac]1/2}/2a.

Hence if λ ∈ ρ(B̃p,q) then

R(λ, B̃p,q) =

(
(λ−Aq

p)R(λ) R(λ)

(aA2q
p + bAq

p + cI)R(λ) λR(λ)

)
, (25)

where

R(λ) = −
2∏

j=1

q−1∏

k=0

R(ζj
k(λ), Ap)/a = g(λ)

q−1∏

k=0

(R(ζ1
k(λ), Ap)−R(ζ2

k(λ), Ap)),

if we set

g(λ) = −
q−1∏

k=0

(ζ2
k(λ)− ζ1

k(λ))−1/a.

Let Hω = {ζj
k(λ); λ ∈ C, Re λ > ω, j = 1, 2; k = 0, 1, . . . , q − 1}. Then if B̃p,q

is the generator of an integrated semigroup it is necessary that there is a ω > 0 such
that Hω ⊂ ρ(Ap).

Let us suppose that

||R(λ,Ap)|| ≤ p(|λ|), for all λ ∈ Hω, (26)

where p is a polynomial.
Then by (25), (26) it can be seen that there exists a polynomial p̃ such that
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||R(λ, B̃p,q)|| ≤ p̃(|λ|), for all λ ∈ C, Re λ > ω. (27)
Combining Corollary 4.9 and Theorem 4.8 in [10] we obtain

Proposition 4.2. Suppose that there exists ω > 0 such that R(λ,Ap) exists and
satisfies (26) for every λ ∈ Hω. Then there exists N ∈ N∗ such that for all (u0, u1) ∈
D(A(N+1)q

p )×D(ANq
p ), (ACP2) (2) has a unique mild solution satisfying (24).

Remark 4.1. In the case q = 1 we obtain the results given in [10] (section 8).
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