The second order abstract Cauchy problem and integrated semigroups generated by matrix pseudo-differential operators

VIOREL CATANĂ

ABSTRACT. The main aim of this paper is to indicate how integrated semigroups and spectral properties of some classes of pseudo-differential operators can be used studying second order abstract Cauchy problems

or

 $u''(t) - A_p u(t) = 0, \ u(0) = u_0, \ u'(0) = u_1$ $u''(t) - A_p^q u'(t) - (aA_p^{2q} + bA_p^q + cI)u(t) = 0, \ u(0) = u_0, \ u'(0) = u_1,$

for every initial values $(u_0, u_1) \in \mathcal{D}(A_p^M) \times \mathcal{D}(A_p^N)$. Here $A_p : \mathcal{D}(A_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$ is a closed extension of a pseudo-differential operator $A : \mathcal{S}(\mathbf{R}^n) \subset L^p(\mathbf{R}^n) \to \mathcal{S}(\mathbf{R}^n) \subset L^p(\mathbf{R}^n)$,

$$Au(x) = (2x)^{-n} \int_{\mathbf{R}^n} e^{i\langle x,\xi\rangle} a(\xi)\hat{u}(\xi)d\xi$$

to the space $L^p(\mathbf{R}^n)$.

2000 Mathematics Subject Classification. 37B15, 81T80, 74F05. Key words and phrases. pseudo-differential operators, integrated semigroups, well posed Cauchy problem.

1. Introduction

We study the second order abstract Cauchy problems (ACP_2) :

$$u''(t) = A_p u(t), \ t > 0, \ u(0) = u_0, \ u'(0) = u_1, \tag{1}$$

$$u''(t) - A_p^q u'(t) - (aA_p^{2q} + bA_p^q + cI)u(t) = 0, \ t > 0,$$

$$u(0) = u_0, \ u'(0) = u_1, \ q \in \mathbf{N}^*, \ a, b, c \in \mathbf{R},$$

(2)

where $A_p : \mathcal{D}(A_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$ is a closed extension of a pseudo-differential operator $A : \mathcal{S}(\mathbf{R}^n) \subset L^p(\mathbf{R}^n) \to \mathcal{S}(\mathbf{R}^n) \subset L^p(\mathbf{R}^n)$ to the space $L^p(\mathbf{R}^n)$.

The most natural way to study (ACP_2) (1) or (2) is to reduce them to the first order abstract Cauchy problems (ACP_r) :

$$w'(t) = B_p w(t), \ t > 0, \ w(0) = (w_0, w_1) = (u_0, u_1)$$
(3)

$$w'(t) = B_{p,q}w(t), t > 0, w(0) = (w_0, w_1) = (u_0, u_1)$$
(4)

where

$$B_p: \mathcal{D}(A_p) \times L^p(\mathbf{R}^n) \to (L^p(\mathbf{R}^n))^2, \ B_p = \begin{pmatrix} 0 & I \\ A_p & 0 \end{pmatrix},$$
$$B_{p,q}: \mathcal{D}(A_p^{2q}) \times \mathcal{D}(A_p^q) \to (L^p(\mathbf{R}^n))^2, \ B_{p,q} = \begin{pmatrix} 0 & I \\ aA_p^{2q} + bA_p^q + cI & A_p^q \end{pmatrix}.$$

Received: 11 December 2002.

Here *I* is the identity operator on $L^p(\mathbf{R}^n)$, $(w_0, w_1) \in \mathcal{D}(A_p^M) \times \mathcal{D}(A_p^N)$, $M, N \in \mathbf{N}^*$ and $(L^p(\mathbf{R}^n))^2 = L^p(\mathbf{R}^n) \times L^p(\mathbf{R}^n)$ is endowed with the maximum norm (i.e. $||(w_0, w_1)|| = \max(||w_0||_p, ||w_1||_p)$, where $|| \cdot ||_p$ denote the norm $L^p(\mathbf{R}^n)$).

We will also refer to the first order abstract Cauchy problem (ACP):

$$u'(t) = A_p u(t), \ t > 0, \ u(0) = u_0.$$
(5)

Following F. Neubrauder (see [10]) we will establish the connection between (ACP_2) (1) or (2) and (ACP_r) (3) respectively (4).

In particular, we are interested in the connection between the spectral properties of the operator A_p and the fact that (ACP₂) or (ACP) are wellposed in Neubrauder's sense (see [3], [7], [8], [10]).

2. Preliminaries and notations

First we shall introduce a few concepts terminologies and recall some notions and results concerning pseudo-differential operators, integrated semigroups and well posed abstract Cauchy problem.

Definition 2.1. Let $m \in \mathbf{R}$, $\rho \in (0,1]$. Then we define $S^m_{\rho,0}(\mathbf{R}^n)$ to be the set of all functions $a \in C^{\infty}(\mathbf{R}^n)$ such that for any multi-index $\alpha \in \mathbf{N}^n$ there is a positive constant C_{α} only depending on α , for which

$$|D^{\alpha}a(\xi)| \le C_{\alpha}(1+|\xi|)^{m-\rho|\alpha|} \quad for \ all \quad \xi \in \mathbf{R}^n.$$
(6)

We call any function $a \in S^m_{\rho,0}(\mathbf{R}^n)$ a symbol of order m and of type $(\rho, 0)$.

Definition 2.2. Let $a \in S^m_{\rho,0}(\mathbf{R}^n)$ be a symbol. Then the pseudo-differential operator A = a(D) associated with a is defined by

$$Au(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} e^{i\langle x,\xi\rangle} a(\xi) \hat{u}(\xi) d\xi, \ u \in \mathcal{S}(\mathbf{R}^n), \ x \in \mathbf{R}^n.$$
(7)

We denote by $L^m_{\rho,0}(\mathbf{R}^n)$ the class of pseudo-differential operators of order m and of type $(\rho, 0)$.

Definition 2.3. A symbol $a \in S^m_{\rho,0}(\mathbf{R}^n)$ is said to be elliptic iff there exist positive constants C and R such that

$$|a(\xi)| \ge C(1+|\xi|)^m$$
, for all $|\xi| \ge R$. (8)

Of course, a pseudo-differential operator $A \in L^m_{\rho,0}(\mathbf{R}^n)$ is said to be elliptic iff its symbol is elliptic.

Definition 2.4. A symbol $a \in S^m_{\rho,0}(\mathbb{R}^n)$ is said to be strongly Carleman iff there exist positive numbers b, L and C, such that

$$|a(\xi)| \ge C(1+|\xi|)^{b}, \quad for \ all \quad |\xi| \ge L.$$
 (9)

Suppose now we give $A \in L^m_{p,0}(\mathbf{R}^n)$. Then for each $1 \leq p < \infty$, $A_p : \mathcal{S}(\mathbf{R}^n) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$ is a closable operator on $L^p(\mathbf{R}^n)$ and we shall denote its closure on $L^p(\mathbf{R}^n)$ by $A_p : \mathcal{D}(A_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$, $\mathcal{D}(A_p) = \{u \in L^p(\mathbf{R}^n), Au \in L^p(\mathbf{R}^n)\}, A_pu = Au$ (in the distributional sense) for all $u \in \mathcal{D}(A_p)$.

We shall call A_p the minimal operator associated with A.

Also for the same operator $A \in L^m_{\rho,0}(\mathbf{R}^n)$ and for each $1 \leq p < \infty$, we can define another closed operator

V. CATANĂ

$$\tilde{A}_p: \mathcal{D}(\tilde{A}_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n), \text{ where }$$

$$\mathcal{D}(\tilde{A}_p) = \{ u \in L^p(\mathbf{R}^n); \ (\exists) f_u \in L^p(\mathbf{R}^n) \ s.t. \ (u, A^*\varphi) = (f_u, \varphi), \ (\forall)\varphi \in \mathcal{S}(\mathbf{R}^n) \}$$
(10)

and $\tilde{A}_p u = f_u$. We shall call \tilde{A}_p the maximal operator associated with A.

We remark that both operators A_p and \tilde{A}_p are closed extensions to $L^p(\mathbf{R}^n)$ of the operator A and they really coincide (see [15]). Moreover if $A \in L^m_{\rho,0}(\mathbf{R}^n)$ is an elliptic operator of order $m \ge 0$, then $\mathcal{D}(A_p) = H^{m,p}(\mathbf{R}^n)$ the Sobolev space (see [17]).

We can now state some results concerning pseudo-differential operators, integrated semigroups, well posed Cauchy problems and the connection between them. For details and proofs see [3], [8], [10].

Theorem 2.1. Let $a \in S_{\rho,0}^{m}(\mathbf{R}^{n})$ be a strongly Carleman symbol, where m > 0, $\rho \in (0,1]$. Then for each $1 \leq p < \infty$ with $\rho(a(D)_{p}) \neq \emptyset$ (the resolvent set of the operator $a(D)_{p} = A_{p}$), we have $\sigma(a(D)_{p}) = a(\mathbf{R}^{n})$ (the range of the symbol of the operator A_{p}).

The following proposition gives sufficient criteria in order to have the resolvent set of the operator A_p nonempty.

Proposition 2.1. Let $a \in S^m_{\rho,0}(\mathbf{R}^n)$ be a strongly Carleman symbol, where m > 0, $\rho \in (0,1]$ and the coercivity constant is b > 0. Then for each $p \in (1,\infty)$ the following assertions hold.

(i) If $n|1/2 - 1/p|(m+1-\rho-b)/b < 1$, then

 $\rho(A_p) \neq \emptyset \Leftrightarrow a(\mathbf{R}^n) \neq \mathbf{C},$

where $a(\mathbf{R}^n) = \{a(\xi); \xi \in \mathbf{R}^n\}.$ Moreover, if $b > n(m+1-\rho)/(n+2)$, then

$$\rho(A_p) \neq \emptyset \Leftrightarrow a(\mathbf{R}^n) \neq \mathbf{C} \quad \text{for all} \quad p \in (1,\infty);$$

(ii) If there exist constants s, C such that $s \leq 1, C > 0$,

$$n|1/2 - 1/p|/b < 1 \text{ and } \frac{|D^{\alpha}a(\xi)|}{|a(\xi)|} \le C(1+|\xi|)^{-s|\alpha|}, \ (\forall)\xi \in \mathbf{R}^n,$$

 $(\forall)|\alpha| \leq 1 + [n|1/2 - 1/p|]$ (where $[\cdot]$ denotes the integer part of a real number), then

$$\rho(A_p) \neq \emptyset \Leftrightarrow a(\mathbf{R}^n) \neq \mathbf{C};$$

(iv) If p = 1 and if there exist constants s, C such that $s \in [0, 1]$, b > n + s - ns, $|D^{\alpha}a(\xi)/a(\xi)| \leq C(1 + |\xi|)^{-s|\alpha|}, \ (\forall)\xi \in \mathbf{R}^n, \ (\forall)|\alpha| \leq 1 + [n|1/2 - 1/p|], \ then$

$\rho(A_1) \neq \emptyset \Leftrightarrow a(\mathbf{R}^n) \neq \mathbf{C}.$

In particular, if we moreover suppose that $b > (m+1-\rho-b)(n-1)+1$, $b \ge m-\rho$, then the same conclusion still holds.

(v) We suppose, in particular, that $a \in S^m_{\rho,0}(\mathbf{R}^n)$ is an elliptic symbol. Then for each $p \in (1,\infty)$ and $m \ge \frac{1}{2}(n-n\rho)$ it follows that $\rho(A_p) \ne \emptyset \Leftrightarrow a(\mathbf{R}^n) \ne \mathbf{C}$. Again, for p = 1 and $m > n + \rho - n\rho$, we obtain the same conclusion. (vi) If p = 2 and $|a(\xi)| \to \infty$ when $|\xi| \to \infty$, $\xi \in \mathbf{R}^n$ (in particular, a is a strongly Carleman symbol), then

$$\rho(A_2) \neq \emptyset \Leftrightarrow a(\mathbf{R}^n) \neq \mathbf{C}.$$
(11)

Remark 2.1. If $\rho = 1$ and $a \in S_{1,0}^m(\mathbf{R}^n)$ is a polynomial then the assertions (i), (ii) of Proposition 2.1 yield statements (i), (ii) of Proposition 5.3 in M. Hieber ([7]).

N-times integrated exponentially bounded semigroups $(S(t))_{t\geq 0}$ of linear operators on a Banach space $E(N \in \mathbf{N})$ were introduced by Arendt [2] and studied by Arendt, Kelerman, Hieber, Neubrander, Thieme and many others ([1], [2], [4], [5], [6], [10], [12]).

The goal of the theory of integrated semigroups is the analysis of an abstract Cauchy problem as that in (5).

Definition 2.5. (F. Neubrander [10]). Let $A \in \mathcal{L}(E)$ be a linear operator on a Banach space E. If there exists $N \in \mathbb{N}^*$, constants M > 0, $\omega \in \mathbb{R}$ and a strongly continuous family $(S(t))_{t\geq 0}$ in $\mathcal{L}(E)$ with $||S(t)|| \leq Me^{\omega t}$ for all $t \geq 0$ such that $R(\lambda, A) = (\lambda I - A)^{-1}$ exists and is given by

$$R(\lambda, A) = \lambda^N \int_0^\infty e^{-\lambda t} S(t) dt, \qquad (12)$$

for all $\lambda > \omega$, then A is called the generator of the N-times integrated semigroup $(S(t))_{t>0}$ (N-t.i.s).

Definition 2.6. (F. Neubrander [10]). Let $A \in \mathcal{L}(E)$ be a closed linear operator on a Banach space E. Then the abstract Cauchy problem (ACP) defined by (A, u_0) , $u_0 \in E$, namely

$$u'(t) = Au(t), \ u(0) = u_0, \ t > 0 \tag{13}$$

is called (N, k)-well posed iff there exist $N \in \mathbf{N}^*$, $k \in \mathbf{N}$, with $0 \leq k \leq N$ and a locally bounded function $p : [0, \infty) \to \mathbf{R}$ such that for all $u_0 \in \mathcal{D}(A^N)$, there exists a unique solution $u \in C^1([0, \infty), E)$ of the (ACP) with

$$||u(t)|| \le p(t)||u_0||_k \text{ for all } t \ge 0,$$

where

$$||u_0||_k := ||u_0|| + ||Au_0|| + \ldots + ||A^k u_0||.$$

Here $||\cdot||_k$ is the graph norm of the Banach space $[\mathcal{D}(A^k)] := (\mathcal{D}(A^k), ||\cdot||_k)$.

If, in addition, we can choose $p(t) = Me^{\omega t}$, $t \ge 0$ then the (ACP) is called exponentially (N, k)-well posed.

The connection between generators of integrated semigroups and exponentially well posed (ACP) is given by the following theorem (see F. Neubrander [10], th. 4.2).

Theorem 2.2. Let $A \in \mathcal{L}(E)$ be a linear operator on a Banach space E with nonempty resolvent set $\rho(A)$. Then the following assertions hold.

(i) If A generates an (N-1)-t.i.s., then (ACP) is exponentially (N,N-1)-well posed.
(ii) If A is densely defined and if (ACP) is exponentially (N, N-1)-well posed then A generates an (N-1)-t.i.s.

V. CATANĂ

Theorem 2.3. (see [3], [8]). Let $a \in S^m_{\rho,0}(\mathbf{R}^n)$ be a strongly Carleman symbol, where $m > 0, \rho \in (0, 1]$ and $1 \le p < \infty$. Then the following assertions are equivalent.

(i) $\rho(A_p) \neq \emptyset$ and $\sup_{\xi \in \mathbf{R}^n} \operatorname{Re} a(\xi) \leq \omega$ for some $\omega \in \mathbf{R}$;

(ii) There exists $N \in \mathbf{N}$ such that the operator A_p generates an N-t.i.s on $L^p(\mathbf{R}^n)$.

Remark 2.2. From the proof of Theorem 2.3 the estimate: $N > n|1/2 - 1/p|(m + 1 - \rho)/b$ follows.

Remark 2.3. The assertions (i), (ii) in Theorem 2.3 are equivalent to (iii) (ACP) is exponentially (N+1,N)-well posed provided a is elliptic (or, hypoelliptic, of polynomial function type).

Remark 2.4. If $\rho = 1$ and if $a \in S_{1,0}^m$ is a polynomial, then Theorem 2.3 yields Theorem 5.1 in M. Hieber [7].

Theorem 2.4. (see [3], [8]). Let $1 \leq p \leq \infty$ and let $a \in S^m_{\rho,0}(\mathbf{R}^n)$ be a strongly Carleman symbol. Then the following assertions are equivalent.

(i) sup $\operatorname{Re} \sigma(A_p) \in \mathbf{R} \Leftrightarrow (\sigma(A_p) \subset \{z \in \mathbf{C}; \operatorname{Re} z \leq \omega\}$ for some $\omega \in \mathbf{R}$);

(ii) There exists $N \in \mathbf{N}$ such that A_p generates an N-t.i.s. on $L^p(\mathbf{R}^n)$.

Remark 2.5. From Theorems 2.2, 2.3, 2.4 we deduce that the following assertions are equivalent:

(i) $\rho(A_p) \neq \emptyset$ and $\sup_{\xi \in \mathbf{R}^n} \operatorname{Re} a(\xi) \leq \omega$ for some $\omega \in \mathbf{R}$;

(*ii*) sup $\operatorname{Re} \sigma(A_p) \in \mathbf{R}$;

(iii) There exists $N \in \mathbf{N}$ such that A_p generates an N-t.i.s. on $L^p(\mathbf{R}^n)$.

Remark 2.6. The previous remark is similar to Theorem 4.6 in M. Hieber [8].

3. The incomplete second order abstract Cauchy problem

Now we turn to the (ACP₂) (1). We suppose that one considers those values of $1 \leq p < \infty$ for which $\rho(A_p) \neq \emptyset$ (see for example Proposition 2.1 in the case of a strongly Carleman symbol).

A function $u : [0, \infty) \to \mathcal{D}(A_p), u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ will be called a solution of (ACP_2) iff it satisfies (ACP_2) (1).

The following lemmas give some connections between (ACP_2) (1) and (ACP_r) (3) as well as between the operators A_p and B_p which define this problems.

Lemma 3.1. (ACP_2) (1) has a unique solution $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ if and only if (ACP_r) (3) has a unique solution w = (u, u').

Lemma 3.2. Let $A_p : \mathcal{D}(A_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$ and let $B_p : \mathcal{D}(A_p) \times \times L^p(\mathbf{R}^n) \to (L^p(\mathbf{R}^n))^2$, $B_p = \begin{pmatrix} 0 & I \\ A_p & 0 \end{pmatrix}$ be the operators which define respectively (ACP₂) (1) and (ACP_r) (3). Then the following assertions hold.

(i) B_p is a closed operators on $(L^p(\mathbf{R}^n))^2$.

(ii) The resolvent set of A_p , $\rho(A_p) \neq \emptyset$ if and only if the resolvent set of B_p , $\rho(B_p) \neq \emptyset$. Moreover, for $\lambda \in \mathbf{C}$, $\lambda^2 \in \rho(A_p)$ we have $\lambda \in \rho(B_p)$ and

$$R(\lambda, B_p) = \begin{pmatrix} \lambda R(\lambda^2, A_p) & R(\lambda^2, A_p) \\ A_p R(\lambda^2, A_p) & \lambda R(\lambda^2, A_p) \end{pmatrix}.$$

(iii) $\mathcal{D}(B_p^{2N}) = \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$ and for all $(u, v) \in \mathcal{D}(B_p^{2N})$:

82

 $||u||_{N} + ||v||_{N} \le 2||(u,v)||_{2N}^{B_{p}} \le 4(||u||_{N} + ||v||_{N}),$

where $||\cdot||_N$ denotes the graph norm of the Banach space $[\mathcal{D}(A_p)] = (\mathcal{D}(A_p^N), ||\cdot||_N)$ (*i.e.* $||u||_N = ||u||_p + ||A_pu||_p + \ldots + ||A_p^Nu||_p, u \in \mathcal{D}(A_p^N)).$ (*iv*) $\mathcal{D}(B_p^{2N-1}) = \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^{N-1})$ and for all $(u, v) \in \mathcal{D}(B_p^{2N-1})$ we have

$$||u||_N + ||v||_{N-1} \le 2||(u,v)||_{2N-1}^{B_p} \le 4(||u||_N + ||v||_{N-1}).$$

The proofs of these lemmas are obvious and are omitted.

Definition 3.1. ([10]). Let $A \in L^m_{\rho,0}(\mathbf{R}^n)$, $\rho \in (0,1]$, m > 0, be a pseudo-differential operator such that his symbol $a \in S^m_{\rho,0}(\mathbf{R}^n)$ is a strongly Carleman symbol with coercivity constant, b > 0. Moreover, suppose that $a(\mathbf{R}^n) \neq \mathbf{C}$ and let $1 \leq p < \infty$ satisfy one of the conditions (i)-(vi) in Proposition 2.1. Then

(i) (ACP_2) (1) is 2N-well posed if and only if there exists a locally bounded function $q: \mathbf{R}_+ \to \mathbf{R}_+$ such that (ACP_2) has unique solution $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ for all $(u_0, u_1) \in \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N), N \ge 1, \text{ satisfying}$

$$||u(t)||_p \le q(t)(||u_0||_{N-1} + ||u_1||_{N-1}), \quad t \in \mathbf{R}_+.$$

(ii) (ACP_2) (1) is (2N+1)-well posed if and only if there exists a locally bounded function $q: \mathbf{R}_+ \to \mathbf{R}_+$ such that (ACP_2) has unique solution $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ for all

 $(u_0, u_1) \in \mathcal{D}(A_p^{N+1}) \times \mathcal{D}(A_p^N)$ satisfying

$$||u(t)||_p \le q(t)(||u_0||_N + ||u_1||_{N-1}), \quad t \in \mathbf{R}.$$

If we can choose $q(t) = Ce^{\omega t}$, C > 0, $\omega \in \mathbf{R}$, $t \in \mathbf{R}_+$, then (ACP_2) will be called exponentially M-well posed (where M = 2N or M = 2N + 1).

We follow now F. Neubrander's point of view and can state the following results.

Theorem 3.1. Let $A \in L^m_{\rho,0}(\mathbf{R}^n)$ be a pseudo-differential operators as in definition 3.1. Let $A_p : \mathcal{D}(A_p) \subset L^p(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$ be a closed extension of A to $L^p(\mathbf{R}^n)$ and let $B_p: \mathcal{D}(A_p) \times L^p(\mathbf{R}^n) \to (L^p(\mathbf{R}^n))^2, B_p = \begin{pmatrix} 0 & I \\ A_p & 0 \end{pmatrix}$. Then the following statements are equivalent:

(i) (ACP₂) (1) M-well posed (respectively exponentially M-well posed)

(ii) (ACP_r) (3) (M, M-1)-well posed (respectively exponentially (M, M-1)-well posed).

Proof. Suppose (ACP_2) (1) is 2N-well posed, i.e. there exists a locally bounded function $q: \mathbf{R}_+ \to \mathbf{R}_+$ such that for all $(u_0, u_1) \in \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N) = \mathcal{D}(B_p^{2N})$ there exist unique solution $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ satisfying

$$||u(t)||_{p} \le q(t)(||u_{0}||_{N-1} + ||u_{1}||_{N-1}), \quad t \ge 0.$$
(14)
Lemma 3.2 and (14) we obtain

By Lemma 3.2 and (14) we obtain

$$u(t)||_{p} \le q(t)(||u_{0}||_{N} + ||u_{1}||_{N-1}) \le 2q(t)||(u_{0}, u_{1})||_{2N-1}^{B_{p}}, \quad t \ge 0.$$
(15)

We know by Lemma 3.1 that $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ is a solution of (ACP_2) (1) iff $w = (u, u') \in C^1(\mathbf{R}_+, L^p(\mathbf{R}^n))^2)$ is a solution of (ACP_r) (3).

Then, combining Lemma 7.7 in [10] and Lemma 3.2 we get

V. CATANĂ

 $||u'(t)||_{p} \leq q(t)(||u_{0}||_{N} + ||u_{1}||_{N-1}) \leq 2q(t)||(u_{0}, u_{1})||_{2N-1}^{B_{p}}, \quad t \geq 0.$ (16) Therefore by (15), (16) we obtain

$$||(u(t), u'(t))|| = \max(||u(t)||_p, ||u'(t)||_p) \le 2q(t)||(u_0, u_1)||_{2N-1}^{B_p}, \ t \ge 0,$$
(17)

whence (ACP_r) (3) is (2N, 2N-1)-well posed. Conversely let us suppose that (ACP_r) (3) is (2N, 2N-1)-well posed, i.e. there exists a locally bounded function $p : \mathbf{R}_+ \to \mathbf{R}_+$ such that for all $w^0 = (u_0, u_1) \in \mathcal{D}(B_p^{2N}) = \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$ there exist unique solution $w = (u, v) \in C^1(\mathbf{R}_+, (L^p(\mathbf{R}^n))^2)$ satisfying

$$\begin{aligned} ||w(t)|| &= \max(||u(t)||_{p}, ||v(t)||_{p}) \le p(t)||(u_{0}, u_{1})||_{2N-1}^{B_{p}} \le \\ &\le 2p(t)(||u_{0}||_{N-1} + ||u_{1}||_{N-1}), \ t \ge 0. \end{aligned}$$
(18)

By Lemma 3.1 and (18) we see that (ACP_2) (1) has unique solution $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ with initial values $(u_0, u_1) = w^0 \in \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$ such that

$$||u(t)||_{p} \le 2p(t)(||u_{0}||_{N-1} + ||u_{1}||_{N-1}), \ t \ge 0.$$
(19)

By (19) we get that (ACP_2) (1) is 2N-well posed. The proof in case M = 2N + 1 requires only obvious modifications.

Theorem 3.2. Let $A \in L^m_{\rho,0}(\mathbf{R}^n)$, A_p and B_p be as in Theorem 3.1. Then the following statements are equivalent:

(i) (ACP_r) (3) has unique solution for all $w = (u, v) \in \mathcal{D}(B_p^M)$;

(ii) (ACP_r) (3) is (M, M-1) well posed;

(iii) (ACP_2) (1) is M-well posed;

(iv) (ACP_2) (1) has unique solution for all $w = (u, v) \in \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$ (or for all $w = (u, v) \in \mathcal{D}(A_p^{N+1}) \times \mathcal{D}(A_p^N)$).

Proof. (i) \Rightarrow (iv). This follows by Lemma 3.1.

(iv) \Rightarrow (iii) We prove this for $w = (u, v) \in \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$. The proof for $w = (u, v) = \mathcal{D}(A_p^{N+1}) \times \mathcal{D}(A_p^N)$ requires only some modifications.

By hypothesis and by Lemma 3.2 the operator B_p has a nonempty resolvent set and by Lemma 3.1, (ACP_r) (3) has unique solution w(t) = (u(t), u'(t)) for all $w = (u, v) = \mathcal{D}(B_p^{2N}) = \mathcal{D}(A_p^N) \times \mathcal{D}(A_p^N)$. Hence by Theorem 3.1 (iii) (see [10]) and by Lemma 3.2, there exists a locally bounded function $p : \mathbf{R}_+ \to \mathbf{R}_+$ such that

$$\left\| \int_{0}^{t} w(s)ds \right\| = \max\left(\left\| \int_{0}^{t} u(s)ds \right\|_{p}, \left\| \int_{0}^{t} u'(s)ds \right\|_{p} \right) = \\ = \max\left(\left\| \int_{0}^{t} u(s)ds \right\|_{p}, \left\| u(t) - u \right\|_{p} \right) \leq \\ \leq p(t) \left\| (u,v) \right\|_{2N-2}^{B_{p}} \leq 2p(t)(\left\| u \right\|_{N-1} + \left\| v \right\|_{N-1})$$

$$(20)$$

By Lemma 3.1 the first coordinate u(t) of the solution w(t) = (u(t), u'(t)) of (ACP_r) (3) is a solution of (ACP_2) (1) and by (20) implies that (ACP_2) (1) is 2N-well posed.

(iii) \Rightarrow (ii) This is contained in Theorem 3.1.

(ii) \Rightarrow (i) This follows from Definition 2.6.

Theorem 3.3. Under the assumptions of Theorem 3.1 the following assertions are equivalent.

(i) B_p generates an (M-1)-t.i.s. on $(L^p(\mathbf{R}^n))^2$; (ii) (ACP_2) (1) is exponentially M-well posed.

Proof. By Theorem 2.2, B_p generates an (M-1)-t.i.s. on $(L^p(\mathbf{R}^n))^2$ iff (ACP_r) (3) is exponentially (M, M-1)-well posed iff (ACP_2) (1) is exponentially M-well posed. The last equivalence holds by Theorem 3.2.

Remark 3.1. All considerations above still hold if we replace (ACP_2) (1) by (ACP_2) :

$$u''(t) = (aA_p + bI)u(t), \ u(0) = u_0, \ u'(0) = u_1 \ t > 0, \ a, b \in \mathbf{R}, \ a \neq 0.$$
(21)

4. The complete second order abstract Cauchy problem

In this section we study (ACP_2) (2) by reducing it to (ACP_r)

$$w'(t) = \tilde{B}_{p,q}w(t)$$

$$w(0) = (w_0, w_1) = (u_0, u_1),$$
(22)

where

$$\begin{split} \tilde{B}_{p,q} &: \mathcal{D}(\tilde{B}_{p,q}) \subset (L^{p}(\mathbf{R}^{n}))^{2} \to (L^{p}(\mathbf{R}^{n}))^{2}, \\ \tilde{B}_{p,q} &= \begin{pmatrix} (\lambda_{0} - A_{p})^{2q} & 0\\ 0 & (\lambda_{0} - A_{p})^{2q} \end{pmatrix} \times \\ &\times \begin{pmatrix} 0 & R(\lambda_{0}, A_{p})^{2q}\\ (aA_{p}^{2q} + bA_{p}^{q} + cI)R(\lambda_{0}, A_{p})^{2q} & A_{p}^{q}R(\lambda_{0}, A_{p})^{2q} \end{pmatrix}, \\ &\mathcal{D}(\tilde{B}_{p,q}) = \{(u, v) \in (L^{p}(\mathbf{R}^{n}))^{2}; \end{split}$$

$$\left[(aA_p^{2q} + bA_p^q + cI)R(\lambda_0, A_p)^{2q}u + A_p^qR(\lambda_0, A_p)^{2q}v\right] \in \mathcal{D}(A_p^{2q})\right\}$$

and $\lambda_0 \in \rho(A_p)$. Remark that $\tilde{B}_{p,q}$ is the closure of $B_{p,q}$. We see that if $u(\cdot)$ is a solution of (2) then w(t) = (u(t), u'(t)) is a solution of (22). Conversely, if w(t) = (u(t), v(t)) is a solution of (22) then the first coordinate $u(\cdot)$ is not necessarily a solution of (2), but only of

$$u''(t) - (\lambda_0 - A_p)^{2q} [A_p^q R(\lambda_0, A_p)^{2q} u'(t) + (aA_p^{2q} + bA_p^q + cI)R(\lambda_0, A_p)^{2q} u(t)] = 0, \ u(0) = u_0, u'(0) = u_1.$$

$$(23)$$

Hence following F. Neubrander (see [10]) we can give

Definition 4.1. Let $\lambda_0 \in \rho(A_p)$. A function $u \in C^2(\mathbf{R}_+, L^p(\mathbf{R}^n))$ with

$$[A_p^q R(\lambda_0, A_p)^{2q} u'(t) + (aA_p^{2q} + bA_p^q + cI)R(\lambda_0, A_p)^{2q} u(t)] \in \mathcal{D}(A_p^{2q}),$$

for all $t \ge 0$ which satisfy (23) is called a **mild solution** of (2).

Suppose now that $\tilde{B}_{p,q}$ generates an (N-1)-t.i.s. on $L^p(\mathbf{R}^n))^2$. Then (22) has a unique solutions w(t) = (u(t), u'(t)) for all $(u_0, u_1) \in \mathcal{D}(\tilde{B}_{p,q}^N)$ which contains $\mathcal{D}(A_p^{(N+1)q}) \times \mathcal{D}(A_p^{Nq})$. Hence u is the unique mild solution of (2) and applying Theorem 4.5 (d) and Theorem 3.1 (iii) (see [10]), for suitable constants M > 0, $\omega \in \mathbf{R}$ we get

$$|u'(t)||_{p} \leq \max(||u(t)||_{p}, ||u'(t)||_{p}) = ||w(t)|| \leq Me^{\omega t} ||(u_{0}, u_{1})||_{N-1}^{B_{p,q}},$$
$$||u(t) - u_{0}||_{p} \leq \max\left(\left\|\int_{0}^{t} u(s)ds\right\|_{p}, \left\|\int_{0}^{t} u'(s)ds\right\|_{p}\right) =$$
$$= \left\|\int_{0}^{t} w(s)ds\right\| \leq Me^{\omega t} ||(u_{0}, u_{1})||_{N-2}^{B_{p,q}}.$$

In particular, if $(u_0, u_1) \in \mathcal{D}(A_p^{(N+1)q}) \times \mathcal{D}(A_p^{Nq}) \subset \mathcal{D}(\tilde{B}_{p,q}^N)$ then it can be easily seen that there is a constant such that

$$||u'(t)||_{p} \leq Me^{\omega t}||(u_{0}, u_{1})||_{N-1}^{B_{p,q}} \leq Ce^{\omega t}||u_{0}||_{Nq} + ||u_{1}||_{(N-1)q}$$

$$||u(t)||_{p} \leq Me^{\omega t}||(u_{0}, u_{1})||_{N-2}^{B_{p,q}} \leq Ce^{\omega t}||u_{0}||_{(N-1)q} + ||u_{1}||_{(N-2)q}$$

$$(24)$$

Now we can state

Proposition 4.1. If $\tilde{B}_{p,q}$ generates an (N-1)-t.i.s on $(L^p(\mathbf{R}^n))^2$, then (ACP_2) (2) has unique mild solution for (at least) all initial data $(u_0, u_1) \in \mathcal{D}(A_p^{(N+1)q}) \times \mathcal{D}(A_p^{Nq})$, which depend continuously on the initial data as it can be seen in (24).

In the sequel we want to know when the resolvent set of $\tilde{B}_{p,q}$ is nonempty and then to determine the resolvent of the operator $\tilde{B}_{p,q}$.

First of all remark that $\lambda \in \rho(\tilde{B}_{p,q})$ iff $\zeta_k^j(\lambda) \in \rho(A_p), j = 1, 2, k = 0, 1, \dots, q-1$, where $\zeta_k^j(\lambda)$ are the roots of the equations $\zeta^q - f_j(\lambda) = 0$ and

$$f_j(\lambda) = \{-\lambda - b \pm [(1+4a)\lambda^2 + 2b\lambda + b^2 - 4ac]^{1/2}\}/2a.$$

Hence if $\lambda \in \rho(\tilde{B}_{p,q})$ then

$$R(\lambda, \tilde{B}_{p,q}) = \begin{pmatrix} (\lambda - A_p^q)R(\lambda) & R(\lambda) \\ (aA_p^{2q} + bA_p^q + cI)R(\lambda) & \lambda R(\lambda) \end{pmatrix},$$
(25)

where

$$R(\lambda) = -\prod_{j=1}^{2} \prod_{k=0}^{q-1} R(\zeta_{k}^{j}(\lambda), A_{p})/a = g(\lambda) \prod_{k=0}^{q-1} (R(\zeta_{k}^{1}(\lambda), A_{p}) - R(\zeta_{k}^{2}(\lambda), A_{p})),$$

if we set

$$g(\lambda) = -\prod_{k=0}^{q-1} (\zeta_k^2(\lambda) - \zeta_k^1(\lambda))^{-1}/a.$$

Let $H_{\omega} = \{\zeta_k^j(\lambda); \lambda \in \mathbf{C}, \text{ Re } \lambda > \omega, j = 1, 2; k = 0, 1, \dots, q-1\}$. Then if $\tilde{B}_{p,q}$ is the generator of an integrated semigroup it is necessary that there is a $\omega > 0$ such that $H_{\omega} \subset \rho(A_p)$.

Let us suppose that

$$||R(\lambda, A_p)|| \le p(|\lambda|), \quad \text{for all} \quad \lambda \in H_{\omega}, \tag{26}$$

where p is a polynomial.

Then by (25), (26) it can be seen that there exists a polynomial \tilde{p} such that

 $||R(\lambda, B_{p,q})|| \le \tilde{p}(|\lambda|), \quad \text{for all} \quad \lambda \in \mathbf{C}, \text{ Re } \lambda > \omega.$ Combining Corollary 4.9 and Theorem 4.8 in [10] we obtain (27)

Proposition 4.2. Suppose that there exists $\omega > 0$ such that $R(\lambda, A_p)$ exists and satisfies (26) for every $\lambda \in H_{\omega}$. Then there exists $N \in \mathbb{N}^*$ such that for all $(u_0, u_1) \in \mathcal{D}(A_p^{(N+1)q}) \times \mathcal{D}(A_p^{Nq})$, (ACP₂) (2) has a unique mild solution satisfying (24).

Remark 4.1. In the case q = 1 we obtain the results given in [10] (section 8).

References

- W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., 54(3), 321-349 (1987).
- [2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59, 327-352 (1987).
- [3] V. Catană, Spectral theory of strongly Carleman pseudo-differential operators and Cauchy problems on L^p(**R**ⁿ) spaces, Papaer presented at the 3-rd French-Romanian Colloque, Cluj-Napoca, 23-27 september 1996, 1996.
- [4] M. Hieber, H. Kellerman, Integrated semigroups, J. Funct. Analysis, 84, 160-180 (1989).
- [5] M. Hieber, Integrated semigroups and differential operators on L^p spaces, Math. Ann., 291, 1-16 (1991).
- [6] M. Hieber, Integrated semigroups and the Cauchy problem for systems in L^p spaces, J. Math. Anal. Appl., 162, 300-308 (1991).
- [7] M. Hieber, Spectral theory and Cauchy problems on L^p spaces, Math. Z., 216, 613-628 (1994).
- [8] M. Hieber, L^p spectra of pseudo-differential operators generating integrated semigroups, Trans. Amer. Math. Soc., 347, 4023-4035 (1995).
- [9] M. Mijatović, S. Pilipović, Integrated semigroups and distribution semigroups-Cauchy problem, Mathematica Montisnigri, XI, 43-65 (1999).
- [10] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problems, *Pacific J. Math.*, 135(1), 111-155 (1988).
- [11] F. Neubrander, On the relation between the semigroup and its infinitesimal generator, Proc. Amer. Math. Soc., 100(1), 104-108 (1987).
- [12] H.R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152, 416-447 (1990).
- [13] X. Tijun, L. Jin, Differential operators and C-wellposedness of complete second order abstract Cauchy problems, *Pacific J. Math.*, 186(1), 167-200 (1998).
- [14] M. W. Wong, Spectra of pseudodifferential operators on $L^p(\mathbf{R}^n)$, Comm. Partial Differential Equations, 4, 1389-1401 (1979).
- [15] M. W. Wong, L^p spectra of strongly Carleman pseudodifferential operators, J. Funct. Analysis, 44, 163-173 (1981).
- [16] M. W. Wong, Spectral analysis of strongly Carleman pseudodifferential operators, J. London Math. Soc., 21, 527-540 (1980).
- [17] M. W. Wong, On some spectral properties of elliptic pseudodifferential operators, Proc. Amer. Math. Soc., 99, 683-689 (1987).
- [18] M. W. Wong, Essential spectra of elliptic pseudodifferential operators, Comm. Partial Differential Equations, 13(10), 1209-1221 (1988).

(Viorel Catană) DEPARTMENT OF MATHEMATICS I

UNIVERSITY POLITEHNICA OF BUCHAREST

Splaiul Independenței 313, 77206 Bucharest, Romania

E-mail address: catana@mathem.pub.ro