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A topological result for a class of anisotropic difference
equations
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ABSTRACT. In the present paper, we establish a new topological existence result derived from
the Leray-Schauder degree and show the existence of a nontrivial homoclinic solution for a class
of non-homogeneous anisotropic difference equation settled in the variable exponent sequence
space 1P(K)(Z).
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1. Introduction

We study the following difference equation

—Alalk — 1, Au(k — 1)) + V() |uk) PP 2uE) = f(kulk), keZ (1)
‘kl‘iinoou(k‘) =0 (2)

where Au(k) = u(k + 1) — u(k) is the forward difference operators; V(k), k € Z, is
a sequence of real numbers and a(k,-), f(k, ) : Z x R — R are continuous functions
satisfying some assumptions. Since we impose the boundary condition (2), we are
looking for homoclinic solutions of problem (1)-(2).
In case a(k,t) = [t|P*)=2t, (k,t) € Z x R, equation (1) becomes the p(-)-Laplace
difference equation of type

— A5 nyulk = 1) + V() u(k) " ~2uk) = f(k, u(k)),
where Ag(,) stands for the p(-)-Laplace difference operator defined as

A2 pyulk — 1) = [Auk) PP 2 Auk) — |Auk — DPED2Auk - 1), k€ Z.

Additionally, when a(k,t) = [t[P®®)=2¢, (k,t) € Z x R, equation (1) is the discrete
counterpart of the following nonlinear differential equation

—(Ju/ PO =2y 4V (2)|u|P® 20 = f(z,u), z €T CR. (3)

Equations of the form (3), as well as their multi-dimensional versions, appear in many
applications, such as fluid dynamics and nonlinear elasticity, to name a few (see, e.g.,
[12, 33] and references therein). In the case when p(z) = 2, (3) becomes the stationary
nonlinear Schrédinger equation (NLS). It has an enormous number of applications,
for instance, in nonlinear optics [27] and condensed matter physics [22].
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As in the case of equation (3), equation (1) reduces to the stationary discrete
nonlinear Schrédinger equation (DNLS) when a(k,t) = [t[P*) =2, and p(k) = 2. As
its continuous counterpart, DNLS has many applications in various areas of physics
(see, e.g., [1, 2, 16, 18, 21]). On the other hand, there is a number of rigorous
results about this equation. Here we only mention papers [31, 32, 37, 38] in which
the existence of solutions satisfying (2) is studied by means of critical point theory
and variational methods [3]. There has been an intensive study for the Dirichlet
problems of discrete p-Laplacian and p(k)-Laplacian equations we refer to the papers
[4, 13, 29, 30, 35], where the main tools applied are critical point theory and variational
methods. However, to the best of our knowledge [5, 26], where a(k,t) = [t|P(F)=2¢,
and [17] where V (k) = 1, are the only papers dealing with problems (1)-(2).

In [26], for example, the authors deal with the difference non-homogeneous equations
of type

=2 yu(k = 1) + V (k) u(k) " 2u(k) = f(k,u(k)), k€ Z (4)
A k) =0 (5)

where p(+),q(-) : Z — (1,00) and V(-) : Z — R are T-periodic functions; f(k,t) :
Z x R — R is a function such that it is continuous in ¢ and T-periodic in k. Applying
variational methods, i.e. the mountain-pass lemma, they obtain nontrivial homoclinic
solutions for problem (4)-(5).

The main result of the present paper concerns the existence of a nontrivial ho-
moclinic solution of problem (1)-(2). To do this, we employ a topological method,
i.e., Theorem 4.1, derived from the Leray-Schauder degree, see, e.g., the papers
[6, 9, 14, 23, 25, 28] and monographs [7, 10, 15, 36], in which important topologi-
cal results were obtained. To the author best knowledge, the results of the present
paper are new and original.

2. Preliminaries

For each p(k) : Z — (1, 00) such that

p~=infp(k) and p*i= sup p(k),

let us introduce the following variable exponent sequence space

1P*) (7)) = {u = (u(k) tu:Z >R, Y [uf® < oo} .

keZ

Equipped with the Luxembourg norm
. wu |P(k)
llulliper zy = l|ullpa) = inf {)\ >0: Z ‘X‘ < 1} )
kEZ

(IP®N(Z), || - lpk)) is a separable Banach space which is reflexive provided p* < +o0
([12)).
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The functional pp) : P*) (Z) — R defined by pp (u) == > 4cp lu(k )|p(k) is a
convex modular due to the fact that o(k,t) = [t[P(*), (k:7 t) € Z x R, is a convex
function.

Proposition 2.1. ([12, 17, 24]) If u € I?*)(Z) and pt < +o0, then the following
statements hold:
(() [ullpry < H(=1,>1) <= ppy(u) < 1(=1,>1);

) lullpwy = a <= ppo () =1 (w7 0);

(iii) [Jullpw) <1 = ||“||p(k) < Py (0) < Hu”p(k)’

(V) Nellpy = 1= Nl < ppery () < JullBip s

(V) oy (un —u) = 0 (= 00) <= [Jun — ullp) = 0 (= 00);
)

(Vi) wy — u in P*) = lim,, o u, (k) = u(k) for all k € Z and
limy, oo Pp(k) (un) = Pp(k) (u)

Furthermore, we introduce the space in which we study problem (1)-(2)
E = {ueP®(z): (v/r®y) e pF)(7)} (6)
endowed with the norm

|ul|z = inf {77 >0: ) V(k) 'Z

nez

p(k)
<1% = ||V1/”(k)u||E.

Here V'1/P(F)q stands for the sequence with elements V (k)*/P(*)y(k). Moreover, since
FE is isomorphic to IP(F)(Z) via the operator of multiplication by V'(k), it is a reflexive
Banach space.

Let us define the functional pg : E — R by

Z V (k) P,
kEZ

Then pg(-) and || - ||g possess properties similar to those listed in Proposition 2.1.

Proposition 2.2 (Young inequality). Let p(k) > 1 for all k € Z and p~*(k) +
(p'(k))"t =1 for all k € Z. Then for all a,b € R we have

Jallbl < p(k)~al"™ + p' (k)" B,
Proposition 2.3 (Discrete Holder inequality). Given the functions ri(k),r2(k) : Z —
(1,00) define s(k) : Z — (1,00) by

1 n 1
s(k) (k) ra(k)
Then there exists a constant K > 0 such that for all u € I""F)(Z) and v € 1"2(F)(Z),
uv € 1°F)(Z) and

D uvlP™ < Kl o 10l vy
kEZ

Proof. If ||ul|;, k) = 0 or |[v]|, &) = 0, then uv = 0, hence the proof is clear. Therefore,
we may assume that these quantities are positive. First, we consider the case s(k) = 1.
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Let us choose a = T \ll ul andb— T ” in Young inequality. Then, by Proposition
, it leads
r1 (k) r2 (k)
|uv| < Z 1 u 1 v
2=, lulley oy 101z (k) i ri(k) el i r2(k) [[vllrs i)
< oo () e ()
S =P\ T —Pro() \ T
O Tl /) vy 7 Nlollawy
or
1 1 1 1
Sturl < (5= + 2= ) Bl ol o=+ = = K. @
Ty L) T )

kEZ

Let us proceed with the case s(k) # 1. The rest of the proof is inspired by the proof
of Corollary 2.28 in [11]. For the same reason above, we may assume that |lu||,, &)
and |v]|,, (k) are positive; further, by homogeneity we may assume that |[ul|, &) <1
and ||v[/;,) < 1. Then by Proposition 2.1, p, )(u) < 1 and p,,x)(v) < 1. Let
us consider the relations u € I"®)(Z) = |u[*() € ["1(K)/s(k)(7) and v € 1"2*)(Z) =
lu[5(k) ¢ [m2(k)/s(k)(7Z)). We may suppose that

> s iy oy < 1 and ([0l ™l 508y < 1. (8)

Indeed, since py, (1) (u) <1, it reads

Pro (k) |U|S Z Hu|s ‘m(k)/s(k) _ Z |u‘r1(k) <1,
kEeZ kEZ

which means that [[[u|*®)||,, &)/sx) < 1. Similarly, |[[0]*®)|,, @) sk < 1 holds as

well. Then, since Tl(k)l/s(k) + Tz(k)l/s(k) = 1, we can use (7) for functions |u|**) €
[ (R)/s(k)(Z) and |v]|**) € [m2(R)/s(k)(7Z), that is,

ps(ky(uv) = Z|U|s(k)\'0|s(k)
keZ
K (5,71, r2) | [ul*® |y iy o 0P ® N iy o)
K(s,r1,72).

IN N

Therefore, we have uv € 1°*)(Z) and
luvllsgy < K(s,m1,72) = K (8,71, 72) [ulley ) 0]l )

or

D luo™ < K (s,ra, ) ey o 10l r) - 9)
keZ

Corollary 2.4. Assume that the functions r;(k) : Z — (1,00) satisfy

1
Zr(k) =

i=1 "t
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Then there exists a constant K = K (r;) > 0 such that for allu; € I"F)(Z),1 < i <m
> lurtg - | < Koy iy 2]y i) - < - ]l i) -

Proof. By using Proposition 2.3 along with the induction method the result follows
at once. 0

Proposition 2.5. Assume that 1 < ri(k) < ro(k) < 400 for all k € Z. Then, the
embedding 1" F) (Z) < 1"2(F)(Z) is continuous and

[ullrory < Cllwll, k), € > 0.

Proof. Let u € 1"®)(Z). Then Y, ., |u|"®) < co which means that there exists

N € N such that |u(k)|"*®*) < 1, that is |u(k)| < 1, whenever k > |N|. Therefore,
considering that 1 < ry(k) < ro(k) for all k € Z, it follows

lu(k)|"2®) < |u(k)["**) whenever |k| > N,

and hence Y, _, [u["2*®) < co. So we have (" (*)(Z) C 1"2()(Z). Let u € I"*)(Z)
such that llullr, )y < 1. Thus, by Proposition 2.1, >, lu[1*) < 1. Therefore,
lu["1®*) < 1 for all k € Z and as a result |u(k)|["2*) < |u(k)|"**) for all k € Z. Then

D Juk)[2 0 <> fuk)®.
kEZ keZ

Using by Proposition 2.1 once more, it follows
llrary < Cllullr, ry

where C = C(ry) is a positive real number. Therefore, the embedding operator is
bounded, that is, I"*(*)(Z) < 1"2(*)(Z) continuously. O

Proposition 2.6. If (V1) holds the embedding E < IPF)(Z) is compact.

Proof. Using (V1), Proposition 2.1, and the same arguments applied in the proof of
Proposition 2.5, we obtain that E C IP*)(Z), and for any u € E with |lu||z < 1, we
have

—1/pt
lullpy < Vo 7 Jlulle,

which means that the embedding operator is bounded, that is, E < [P(¥) (Z) contin-
uously.

Now, consider a sequence (u,) C FE such that u, — 0 in E. Then, there exists
a constant M > 0 such that pg(u,) < M for all n, and u,(k) — 0 for all k € Z as
n — +o0o. Let ¢ > 0. By assumption (V1) there exists N € N such that V (k) > &
whenever |k| > N. Therefore,

Sl < 3 b 3 VWl < Sl e
nez |k|<N \k|>N |k|<N

Since € > 0 is arbitrary and the finite sum in the right-hand side converges to 0,
Proposition 2.1 (v) allows us to have u,, — 0 in IP®)(Z) as n — +oc. O
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Proposition 2.7. Assume that X is a compact subset of IP*)(Z). Then, given any
e > 0, there is N € N such that for all w € X the following convergence of infinite

sum holds
Z [uP®) < e
|k|>N

Proof. Assume by contradiction that there exists a sequence (u,) € X and a real
number € > 0 such that

Z |un[P®) > e, ¥neN.

|k|>n
Considering that X is a compact subset of lfg(k)(Z)7 there exists a subsequence, not
relabelled, (u,) such that u, — u in [?*)(Z) for some u € X. Thus, there is a N € N

satisfying

3 Jul® < %

|k|>N
Since u, — u in IP%)(Z), |Ju, — ul|,x)y < § whenever n > N. Hence, by Proposition
2.1, we have 3., [un — u[P®) < £ for n > N. Therefore, we obtain

£ < Z Jun[P) < Z |t — ulP) 4 Z Ju|P(R) §%+% <e n>N
[k|>n |k|>n |k|>n

which is impossible. O

We suppose that a(k,t) : Z x R — R is a continuous function in ¢ and there exists
a function A : Z x R — R such that a(k,t) = %A(k,t) for all k£ € Z. Through this
paper we assume that

p(k),q(k) : Z — [2,00) such that ¢" <p~ < p" < 0.

We accept the following hypothesis for the functions a, A,V and f:
(V1) The potential sequence V (k) is such that V(k) > Vo > 0 for all k € Z, and
V(k) = 400 as |k| = oo.

(a0) A(k,0) =0, for all k € Z.

(al)(a(k,t) —a(k,s))(t—s) >0forallt,s € R and k € Z.

(a2) The following inequality holds

Ja(k, )] < ex(ag(k) + tP*) 1)

for all t € R and k € Z, where ¢, is a positive real number and ag € #' (%) (Z) is a
nonnegative function.
(a3) The following inequality holds

a(k, t)t > cy|t|P®)

for all £ € R and k € Z, where ¢, is a positive real number.

(f1) f(k,t) : Z x R — R is a continuous function in ¢; there are functions 6,0 :
7 — (0,00) with 6 € 1¥'*)(Z) and 8 € I"®)(Z), r(k) = %, and there exists a
real number A > 0 such that

, |/ (k, 1) .
l\ﬁiiuog 80) =+ Bk a1 < A uniformly for £ € Z.
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(f2)
[f (1)l

lim W = 0 uniformly for k£ € Z.
o

Definition 2.1. A function v € E is a homoclinic solution for problem (1)-(2) if

Z (k—1,Au(k —1)Av(k—1)+ ZV ) u|P®) =2y — Zf(k:,u)v =0 (10)

kEZ keZ keZ

for all v € E, and limy| o u(k) = 0.

Let us define the functionals T,S : E — R, as follows:

=Y Ak -1, 8u(k 1))+ > : ufP®)

kEZ keZ

u) = ZF(]C,U),

and

where F(k,t) fo

Proposition 2.8. Under assumptions (V1), (a2) and (f2) the functionals T and S
are well defined on E and are of the class C' with the derivatives T',S' : E — E*
given by

(T"(u),v) =Y pepalk — 1, Au(k — 1) Av(k — 1) + 3o V(K [uP® 20w, (11)
(8"(u), v) = Xz f(R,u)o,
for all u,v € E, respectively, where (-,-) = (-,)gpxx g stands for the duality pairing.
Proof. By (£2) there exists 6 > 0 such that
\f(k )] < [¢[PF)~L for all k € Z and |t] < 6. (12)

Therefore, |F(k,t)| < |t|p(k) for all k € Z and |t| < 6. Moreover, for any u € E

there exist N € N such that |u(k)| < § for all |k| > N. Using this information, we
have

Z\Fku|<Z|Fku\+—2|u|p(k)<oo (13)

kEZ |kI<N |k|>N

On the other hand, from the definition of A, we obtain

1 d 1
Ak = [ Gk = [ alk o)

Then, using (a2) and above information we have

1
\M&Mg/meMﬂgm%wm+mWU (14)
0
Therefore, using the inequality
[Aulk = DPED = fu(k) — ulk = 1)PED
27" = (Ju(k)[PFY) - fu(k — 1)[PED), vk < N

IN
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or

S lau(k - Pt < - <Z|u P+ fulk) ) (15)

kEZL kEZ keZ

2 Y uk)P® < 20 fulf]
kezZ

IN

pk)y Y € [p_7p+]

along with the Young inequality and the embedding E < [P(F)(Z), it leads to

k
@] < > JAGk =1, Au(k - 1)) |+Z fuf )

kez kez P
< ch(ao(k = Dl Auk = 1) + | Aulk = DPFE) + [Jull
keZ
< o Z p(k ‘ao‘pw D +c1 Z |Au — 1)|p=1)
keZ rez P

+ ZIAU ka Yt Jlull
keZ

N
< callaolly k) + (14328 )|ully < oo

Therefore, T is well defined on E.
For fixed u,v € E and t € (0,1), using (14)-(15) and the Young inequality several
times, we have

Z |A(k — 1, Au(k = 1)+ tLho(k—1))] < @ Zao(k —1D|Au(k — 1)+ tAv(k —1))]

kEZ kEZ
+er Y |Au(k — 1) + tAv(k — 1)) PED
kEZ
.
< 27 C(llullg llvlg) < oo
and
SIAG =1, 2utk—1)] < e Y (aolk — D)lAulk - 1)] + [Auk — 1))
kEZ kEZ
< 02 |ul) < o
Therefore,
lim Z Ak =1, Au(k — 1)+ thv(k — 1)) — A(k — 1, Au(k — 1))
t—0+ t
kEZ
B lim Ak =1, Au(k — 1)+ thv(k — 1)) — A(k — 1, Au(k — 1))
N keZt_>0+ t

=3 ak — 1, Au(k — 1)) Ao(k - 1).

kEZ
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By an analogous way, we can obtain

: V (k) |u(k) + tAv(k) PP — [u(k)[P™)
tl—l>r(r)1+ Z p

(k) t
p(k) _ p(k
S AN CRAZO W VT ST
e p(k) t =
Thus,
. T(u+tv) — T(u) ,
1 =
Jim > : (T"(u),v)
keZ
= a(k—1,Au(k — 1)) Av(k — 1)+ Y V(k)[uf® v, (16)
keZ kEZ

Since the right-hand side of the above expression, as a function of v, is a continuous
linear functional on E, (16) is the Gateaux differential of T

Next, we proceed with S. Let us choose fixed functions u,v € E such that (12)
holds and max{|u(k)|, [v(k)|} < & for all k € Z, |k| > N. Let t be a parameter with
0 <t < 1. Then, given any € > 0, it holds

F - F
> (k’u+t1;) (£, u) — fku)o| < 4 = —.
IKI<N bp

On the other hand, by the mean value theorem, there exists o € (0,1) such that
F(k,u+ tv) — F(k,u)
t

Let us define a function w € 1P¥)(Z) such that w(k) = 0 for all |k| < N and w(k) =
u(k) + tov(k) for all |k| > N. Then |w(k)| < § for all k € Z. Moreover, given any
e > 0, there exists N € N such that

>0 P < g 3l < g 3 p® < 5) (17)

|E|>N |k|>N |k|>N

= f(k,u+tov)v, V|k|> N.

Therefore, by (£2) and (12), the Young inequality, it follows
F(k,u+tv) — F(k,u)

Z , — f(k,u)v
k€EZ
< 4pfp+ + Z |f(k,u+ tov)v| + Z |f(k,u)v
[k|>N |k|>N
€
< (k)—1 (k)—1
< prEm S w4+ > [ulr® T |
[k|>N |k|>N
€ (rt -1 k k k
S + wp()+up() _A'_i ,UP()
pr— p= k%:Nﬂ \ |ul k%:Nl |
< € +p+ ( e, _c¢ )+ 1 €
T ApTpt  pm \4(pt)?  4(pt)?)  pA(pt)?
€ 2e €
< + + <e.

dp=pt  dp~pt  4dppt
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Hence, we have

F(k tv) — F(k F(k tv) — F'(k
i 3 FEE Ut) Bw) 5 gy Eut Ut) UL
o0 e kez' 70"
= (S'(w).0) =) f(ku
keZ
and hence (18) is the Gateaux differential of S.
In conclusion, the operator I : E — E* defined by
(I(u),v) = (T"(u),v) — (S"(u),v), forallu,v € FE (19)

is Gateaux differentiable on E.

Now, we proceed for the continuity of I : E — E*. To this end, we assume, for a
sequence (u,) C E, that u, — u € E, and show that, for all v € E with ||v]|g < 1,
and given any € > 0, whenever n > Ny € N, it holds

[(I(un) = I(u),0)] <Y lalk = 1, Aun(k = 1)) = a(k = 1, Au(k — 1))[| Av(k - 1)]

keZ

+ Z V()| [t [P®) =20, — uPF 20| o] + Z |f (B, upn) — f(k,u)||v]
keZ kezZ

<e. (20)

Since u, — u € E, by Proposition (2.7) and (15), given any € > 0, there isa N € N
such that

g
7(pt)?

e

S Btk 1P < o

|| >N

Vn € N, Z |Au(k —1)P%) <
|k|>N

and

Av(k —1)|P*) < c , ao(k — NP < ° .
k%' B kZ>N U Tk

Moreover, by the continuity of the finite sum when n > max{N, Ny}, it satisfies

S Jalk =1, Aug (k= 1)) — a(k — 1, Au(k — 1))|| Av(k - 1)| <

&
o ——
KI<N TP
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Therefore, using (a2), the Young inequality and the above information lead to

S Jatk - 1, Aug(k — 1)) - alk - 1, Au(k - 1)|[Av(k - 1)] < —
Tp~p*
keZ
+201 Y ao(k— D|Av(k = 1) +c1 Y [Av(k = 1)][Auy (k- 1)[PED
|k|>N |k|>N
e Y Ak - 1)][Au(k — 1)1
|k|>N

€ (p* - 1) k
< Aty (k—1)P® 4+ | Au(k — 1) [P
S e — ( > (|Dup(k = 1)PP 4 | Au(k - 1)]

|k|>N
Flagk =P O)) + 2 37 ek - 1P
p |k|>N
<5+36+35<76<3
“Tppt  Tppt  Tp~(pt)? T TpTpt 3
Now, we mention the following inequality given in [8]: for 1 < m < oo there exist
constants C), > 0 such that

€172 — ¢ 2CI] < Crml€ = CI(IEl + 1C1)™ 72, VE,C € R.
Since u, — u € E, (uy) is bounded and wu, (k) — u(k) as n — oo, for all k¥ € Z. Then
considering the inequality given above, it leads

D Va2 — uPB"2uljo] < Cp YV (k) un — ul (Jun| + u])?H 2 [0] N0

kezZ keZ

(21)

and hence

S V) a2, — PO 2uflo] < 2, Vo> N (22)

kEZ 3
On the other hand, since u,, — u € E, by the compact embedding E < (P(¥) (Z), there
exists w € [PF)(Z) such that |u, (k)| < w(k) for all k € Z and for all n € N. Moreover,
since u,,, u € E there exist 6 > 0, N € N such that |u, (k)] < for alln e N, |k| > N
and |u(k)| < § for all |k| > N. Additionally, by (f2) we have |f(k,t)| < [t[?*)=T for
all k € Z and |t| < 6. Therefore, considering this information along with (17) and the
Young inequality, we have

(8 (wn) = S" (), 0)| < D 1f(kyun) = flRyw)l o] + D 1f(k un) = f(k )] [o]

|k|<N |k|>N
< et 2 PO+ 3 P
[k|>N |k|>N

+ 1
=y DS () e s 3 o

= 4p—pt
4p p p |k|>N |k|>N
€ p € € 1 €
Ap—pt 2 T a2 ) T o a2
dp=pt - pm \4(p*)*  4(pT) p~ 4(p*)
4e €
pr— <3 Vn > max{N, Ny}, (23)
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since by the continuity of the finite sum 3, o5 [f(k, un) — f(k,w)| [v| < 755+ for
all n > max{N, No}.

Overall, combining (21), (22) and (23), we obtain (20), that is, I : F — E* is
continuous. O

3. The auxiliary results

Proposition 3.1.
(i) T' is a strictly monotone operator;
(ii) T is of type (S4), that is, if up, — w in E and limsup,,_,  (T'(un) —T'(u), upn —
u) <0 then u, — u in E;

(iii) 7" is a homeomorphism;
(iv) S’ is compact.
Proof. (i) We make use of the well-known inequality (see [34])

(|| 22 — |y|" 2y, —y) > Cplz —y|" if r > 2, Yo,y € R. (24)
Thus, for all u,v € E such that u # v, along with (V1),(al), we obtain

(T'(u) = T'(v),u — v)

> Z (a(k — 1, Au(k — 1)) —a(k, Av(k — 1)) (Au(k — 1) — Av(k — 1))
kEZ
+ Y Vi (\u|p<k> 2y |U|P<k>—%) (u— ) > 0.
kezZ
Therefore, T" is strictly monotone.
(ii) For a sequence (u,) C E assume that u,, — ug € E. Then, (u,) is bounded in E,
and hence, there exists a constant M > 0 such that pg(u,) < M for all n, and

un (k) = uo(k) for all k € Z as n — +o0.

Also assume that
lim sup(T” (1) — T (uo), i — ) < 0. (25)

n—oo

Then, considering these information along with strict monotonicity of 7", we have

limsup(T" (un) — " (o), tun — o) = T (T"(un) — T (i), — o) = 0. (26)

n—oo

Therefore, using (3.1) and (al), we have

0= Cp 3 V(R)un — o™ < 3V R) (JunP ™2y — o P9 2ug) (= o)
keZ keZ

<A(T"(upn) — T'(ug), un, — uo)-
Taking limit and considering (26) leads us to the inequality

0<C, hm ZV Nttn — uo|P®) < lim (T (up) — T (o), tn — uo) = 0,
n—oo
% kez
which means, by Proposition 2.1, u,, — ug in E.
(iii) Since T” is continuous due to Proposition 2.8, it is enough to show that 7" has
a continuous inverse (7”)~! : E* — E. First, we show that 7" is coercive. Without
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loss of generality, we may assume that ||u||g > 1. Then, by (a3) and Proposition 2.1,
we have

(T'(u),u)y = Za(k’ — 1, Au(k —1)Au(k —1) + ZV(k’)\uV’(k) > cllullb,
kEZ kEZ
LR 5 gy (27)
l[ulle

which means that T” is coercive. Moreover, we know from (i) that T is strictly
monotone, which ensures that T” is an injection. By Minty-Browder theorem (see
[36]), we obtain that T” is a surjection. As a consequence, 7" has an inverse mapping
(T')~': E* — E. We now show that (T")~! is continuous. To this end, let (u}),u* €
E* with v — u*, and let (T")"Y(u%) = up, (T") "' (u*) = u. Then, T'(u,) = u},
and 7’(u) = u* which means, by the coercivity of T, that (u,) is bounded in E.
Therefore, there exist & € E and a subsequence, not relabelled, (u,) C E such that
U, — 4 in E. Since the weak limit is unique, we must have u,, — v in E. Additionally,
considering that u;, — u* in E*, we have

: * * o — : ! _ ! _ —
nlgr&(un u*, u, — u) nl;n;(}(T (un) —T"(u), up, — u) = 0.

Since T is of type (S ), we have u,, — w in E, that is, (T")~! : E* — E is continuous.
Overall, T is a homeomorphism.

(iv) The compactness of S’ follows by Proposition 2.8. Indeed, if we let u, — u in E
and apply the same arguments as we did to obtain (23), we have

g+ = lim sup [(S"(un) —S'(u),v)| =0.
n— 5<1

lim sup |9 (u,) — S’ (u)|
n—oo
Therefore, S’ : E — E* is strongly continuous, that is, S’ is compact. (]

4. The existence result

First, we would like to remark that, due to (10) and (19), to show that u € E is a
solution to problem (1)-(2) for all v € E is equivalent to show that

T'u = Su in E*. (28)

The following theorem establishes a topological existence result for problem (1)-(2).

Theorem 4.1. Suppose that (V1), (al)-(a3) and (f1)-(f2) hold. Additionally, assume
that the following conditions are fulfilled:

(i) T" is a homeomorphism;

(ii) S is compact;
(iii) The mapping T' — S’ is coercive.
Then operator equation (28) has a nontrivial solution in E, which in turn becomes a
homoclinic solution to problem (1)-(2).

Proof. Due to Proposition 3.1, we skip (i),(ii) and proceed with (iii). As in Proposition
3.1 (iii), we can obtain that

T ul| = > erlul/®, ~, forall u € B, |jullg >1, ¢; > 0. (29)
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By (1), there is M > 0 such that |f(k,t)| < 6(k)+B(k)[t|9*) =1 for all k € Z, |t| > M.
Using the Holder inequality and the embeddings, we have

(" (), 0) < DBkl + Y BR)|u|" " ol

kEZ keZ

< N8l 1ol + 181 1l 771 09 [llpa)
< (e2llull ™ +es)llvlle
and hence
1S ul|l - < eallul|% + s, forall u€E, ||lullg>1,a€lg,q"], ca,ez > 0. (30)
Then, by (29) and (30), it leads
(T = $"Yullge > | T ull g = 1S ull - > erllullly, ~ = eollullf " = s (31)

and thus, we obtain coercivity, that is, ||(7"—5")u|
there exists a constant Ry > 1 such that

(T" — S")ul||g~ > 1 for all u € E, ||u|lg > Ro. (32)
Since T” is a homeomorphism of F onto E*, (28) can be equivalently written as
u= (T (S"u). (33)

Moreover, since compactness is a topological property we can define a compact op-
erator K by K := (T")~(S") : E — E. Now, we will seek a solution to the operator
equation

g+ — 00 as ||u||g — oo. Therefore,

u=Ku (34)
that is, we search a fixed point for the operator K. Let us define the set
F={ucE: u=7(T")""(Su) for some 7 € [0,1]}.
To this end, for an u € F\{0}, we have

u
1T (Dl = 115"l - (35)
Then, considering (35) along with (29) and (30), it follows
C1 — a—
—llullE < eallull gt e (36)

that is, F is bounded in F, where the exponents v € [p~,p"]| and o € [¢™, ¢*] are
determined according to the ||u|| g while its value varies in the intervals (0,1) or [1, 00).
Therefore, there is some constant Ry > Ry such that the inclusion F C Bg, (0) holds.
Thus, we can write

K: BR1 (0) — F
where K is still compact. On the other hand, by (32) we have u — Ku # 0 for any
u € OBR, (0). Otherwise, we would have u = Ku = (T")~1(S"u) for any u € dBg, (0);
however, this would lead us to (T — S")u = 0. This can not happen since by (32) we
must have ||(T7 — S")u||g~ > 0 for any u € OBpg, (0). Therefore, we can associate the
Leray-Schauder degree of mapping, a Z-valued function drs(I — K, Bg, (0),0), to K.
Next, let us define the mapping

H(u,t) =u—tKu for v € Bg,(0) and t € [0,1]. (37)
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Apparently H (u, t) is a continuous mapping on Bg, (0) %[0, 1] such that H (u,t) # 0 for
all u € 9BR,(0) and t € [0,1]. Assume by contradiction that there exist @ € dBg, (0)
and t € [0,1] such that

@ — tKu = 0. (38)
Then
0= ||a— tKil|p > |lillp — t|Kallp > (1 - )Ry >0 (39)

since ||@|| g = R, and hence, |Kii||g < R;. Therefore, it must be £ = 1. This result
contradicts the fact u — Ku # 0 for any u € 0Bg, (0). Overall,

H(u,t) #0 for u € 0Bg,(0) and t € [0, 1]. (40)

Therefore, H(-,t) is a homotopy of the mappings I = H(-,0) and I — K = H(-,1).
Taking into account the homotopy invariance and normalization properties of degree,
we obtain that

dps(I — K, Bg, (0),0) = dps(I, Bg, (0),0) = 1 (41)

which means that K has a fixed point located in Bg, (0). In conclusion, there exists
a function v € F such that T'u = S’u in E*, that is, u is a nontrivial homoclinic
solution for problem (1)-(2). O
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