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of non-homogeneous anisotropic difference equation settled in the variable exponent sequence

space lp(k)(Z).
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1. Introduction

We study the following difference equation

−4(a(k − 1,4u(k − 1))) + V (k)|u(k)|p(k)−2u(k) = f(k, u(k)), k ∈ Z (1)

lim
|k|→∞

u(k) = 0 (2)

where 4u(k) = u(k + 1) − u(k) is the forward difference operators; V (k), k ∈ Z, is
a sequence of real numbers and a(k, ·), f(k, ·) : Z × R → R are continuous functions
satisfying some assumptions. Since we impose the boundary condition (2), we are
looking for homoclinic solutions of problem (1)-(2).
In case a(k, t) = |t|p(k)−2t, (k, t) ∈ Z × R, equation (1) becomes the p(·)-Laplace
difference equation of type

−42
p(k−1)u(k − 1) + V (k)|u(k)|p(k)−2u(k) = f(k, u(k)),

where 42
p(·) stands for the p(·)-Laplace difference operator defined as

−42
p(k−1)u(k − 1) = |4u(k)|p(k)−24u(k)− |4u(k − 1)|p(k−1)−24u(k − 1), k ∈ Z.

Additionally, when a(k, t) = |t|p(k)−2t, (k, t) ∈ Z × R, equation (1) is the discrete
counterpart of the following nonlinear differential equation

−(|u′|p(x)−2u′)′ + V (x)|u|p(x)−2u = f(x, u), x ∈ I ⊂ R. (3)

Equations of the form (3), as well as their multi-dimensional versions, appear in many
applications, such as fluid dynamics and nonlinear elasticity, to name a few (see, e.g.,
[12, 33] and references therein). In the case when p(x) = 2, (3) becomes the stationary
nonlinear Schrödinger equation (NLS). It has an enormous number of applications,
for instance, in nonlinear optics [27] and condensed matter physics [22].
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As in the case of equation (3), equation (1) reduces to the stationary discrete
nonlinear Schrödinger equation (DNLS) when a(k, t) = |t|p(k)−2t, and p(k) = 2. As
its continuous counterpart, DNLS has many applications in various areas of physics
(see, e.g., [1, 2, 16, 18, 21]). On the other hand, there is a number of rigorous
results about this equation. Here we only mention papers [31, 32, 37, 38] in which
the existence of solutions satisfying (2) is studied by means of critical point theory
and variational methods [3]. There has been an intensive study for the Dirichlet
problems of discrete p-Laplacian and p(k)-Laplacian equations we refer to the papers
[4, 13, 29, 30, 35], where the main tools applied are critical point theory and variational
methods. However, to the best of our knowledge [5, 26], where a(k, t) = |t|p(k)−2t,
and [17] where V (k) = 1, are the only papers dealing with problems (1)-(2).
In [26], for example, the authors deal with the difference non-homogeneous equations
of type

−42
p(k−1)u(k − 1) + V (k)|u(k)|q(k)−2u(k) = f(k, u(k)), k ∈ Z (4)

lim
|k|→∞

u(k) = 0 (5)

where p(·), q(·) : Z → (1,∞) and V (·) : Z → R are T -periodic functions; f(k, t) :
Z×R→ R is a function such that it is continuous in t and T -periodic in k. Applying
variational methods, i.e. the mountain-pass lemma, they obtain nontrivial homoclinic
solutions for problem (4)-(5).

The main result of the present paper concerns the existence of a nontrivial ho-
moclinic solution of problem (1)-(2). To do this, we employ a topological method,
i.e., Theorem 4.1, derived from the Leray-Schauder degree, see, e.g., the papers
[6, 9, 14, 23, 25, 28] and monographs [7, 10, 15, 36], in which important topologi-
cal results were obtained. To the author best knowledge, the results of the present
paper are new and original.

2. Preliminaries

For each p(k) : Z→ (1,∞) such that

p− := inf
k∈Z

p(k) and p+ := sup
k∈Z

p(k),

let us introduce the following variable exponent sequence space

lp(k)(Z) =

{
u = (u(k)) : u : Z→ R,

∑
k∈Z
|u|p(k) <∞

}
.

Equipped with the Luxembourg norm

‖u‖lp(k)(Z) = ‖u‖p(k) = inf

{
λ > 0 :

∑
k∈Z

∣∣∣u
λ

∣∣∣p(k) ≤ 1

}
,

(lp(k)(Z), ‖ · ‖p(k)) is a separable Banach space which is reflexive provided p+ < +∞
([12]).
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The functional ρp(k) : lp(k) (Z) → R defined by ρp(k) (u) :=
∑
k∈Z |u(k)|p(k) is a

convex modular due to the fact that ϕ(k, t) = |t|p(k), (k, t) ∈ Z × R, is a convex
function.

Proposition 2.1. ([12, 17, 24]) If u ∈ lp(k)(Z) and p+ < +∞, then the following
statements hold:
(i) ‖u‖p(k) < 1(= 1, > 1)⇐⇒ ρp(k)(u) < 1(= 1, > 1);

(ii) ‖u‖p(k) = a⇐⇒ ρp(k)(
u
a ) = 1 (u 6= 0);

(iii) ‖u‖p(k) ≤ 1 =⇒ ‖u‖p
+

p(k) ≤ ρp(k)(u) ≤ ‖u‖p
−

p(k);

(iv) ‖u‖p(k) ≥ 1 =⇒ ‖u‖p
−

p(k) ≤ ρp(k)(u) ≤ ‖u‖p
+

p(k);

(v) ρp(k)(un − u)→ 0 (→∞) ⇐⇒ ‖un − u‖p(k) → 0 (→∞);

(vi) un → u in lp(k) ⇐⇒ limn→∞ un(k) = u(k) for all k ∈ Z and
limn→∞ ρp(k)(un) = ρp(k)(u).

Furthermore, we introduce the space in which we study problem (1)-(2)

E = {u ∈ lp(k)(Z) : (V 1/p(k)u) ∈ lp(k)(Z)} (6)

endowed with the norm

‖u‖E = inf

{
η > 0 :

∑
n∈Z

V (k)

∣∣∣∣uη
∣∣∣∣p(k) ≤ 1

}
= ‖V 1/p(k)u‖E .

Here V 1/p(k)u stands for the sequence with elements V (k)1/p(k)u(k). Moreover, since
E is isomorphic to lp(k)(Z) via the operator of multiplication by V (k), it is a reflexive
Banach space.

Let us define the functional ρE : E → R by

ρE(u) :=
∑
k∈Z

V (k)|u|p(k).

Then ρE(·) and ‖ · ‖E possess properties similar to those listed in Proposition 2.1.

Proposition 2.2 (Young inequality). Let p(k) > 1 for all k ∈ Z and p−1(k) +
(p′(k))−1 = 1 for all k ∈ Z. Then for all a, b ∈ R we have

|a||b| ≤ p(k)−1|a|p(k) + p′(k)
−1|b|p

′(k).

Proposition 2.3 (Discrete Hölder inequality). Given the functions r1(k), r2(k) : Z→
(1,∞) define s(k) : Z→ (1,∞) by

1

s(k)
=

1

r1(k)
+

1

r2(k)
.

Then there exists a constant K > 0 such that for all u ∈ lr1(k)(Z) and v ∈ lr2(k)(Z),
uv ∈ ls(k)(Z) and ∑

k∈Z
|uv|s(k) ≤ K‖u‖r1(k)‖v‖r2(k).

Proof. If ‖u‖r1(k) = 0 or ‖v‖r2(k) = 0, then uv ≡ 0, hence the proof is clear. Therefore,
we may assume that these quantities are positive. First, we consider the case s(k) = 1.
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Let us choose a = |u|
‖u‖r1(k)

and b = |v|
‖v‖r2(k)

in Young inequality. Then, by Proposition

2.1, it leads∑
k∈Z

|uv|
‖u‖r1(k)‖v‖r2(k)

≤
∑
k∈Z

1

r1(k)

∣∣∣∣ u

‖u‖r1(k)

∣∣∣∣r1(k) +
∑
k∈Z

1

r2(k)

∣∣∣∣ v

‖v‖r2(k)

∣∣∣∣r2(k)
≤ 1

r−1
ρr1(k)

(
u

‖u‖r1(k)

)
+

1

r−2
ρr2(k)

(
v

‖v‖r2(k)

)
or ∑

k∈Z
|uv| ≤

(
1

r−1
+

1

r−2

)
‖u‖r1(k)‖v‖r2(k),

1

r−1
+

1

r−2
= K. (7)

Let us proceed with the case s(k) 6= 1. The rest of the proof is inspired by the proof
of Corollary 2.28 in [11]. For the same reason above, we may assume that ‖u‖r1(k)
and ‖v‖r2(k) are positive; further, by homogeneity we may assume that ‖u‖r1(k) ≤ 1
and ‖v‖r2(k) ≤ 1. Then by Proposition 2.1, ρr1(k)(u) ≤ 1 and ρr2(k)(v) ≤ 1. Let

us consider the relations u ∈ lr1(k)(Z) ⇒ |u|s(k) ∈ lr1(k)/s(k)(Z) and v ∈ lr2(k)(Z) ⇒
|v|s(k) ∈ lr2(k)/s(k)(Z). We may suppose that

‖|u|s(k)‖r1(k)/s(k) ≤ 1 and ‖|v|s(k)‖r2(k)/s(k) ≤ 1. (8)

Indeed, since ρr1(k)(u) ≤ 1, it reads

ρr1(k)/s(k)(|u|
s(k)) =

∑
k∈Z
||u|s(k)|r1(k)/s(k) =

∑
k∈Z
|u|r1(k) ≤ 1,

which means that ‖|u|s(k)‖r1(k)/s(k) ≤ 1. Similarly, ‖|v|s(k)‖r2(k)/s(k) ≤ 1 holds as

well. Then, since 1
r1(k)/s(k)

+ 1
r2(k)/s(k)

= 1, we can use (7) for functions |u|s(k) ∈
lr1(k)/s(k)(Z) and |v|s(k) ∈ lr2(k)/s(k)(Z), that is,

ρs(k)(uv) =
∑
k∈Z
|u|s(k)|v|s(k)

≤ K(s, r1, r2)‖|u|s(k)‖r1(k)/s(k)‖|v|
s(k)‖r2(k)/s(k)

≤ K(s, r1, r2).

Therefore, we have uv ∈ ls(k)(Z) and

‖uv‖s(k) ≤ K(s, r1, r2) = K(s, r1, r2)‖u‖r1(k)‖v‖r2(k),

or ∑
k∈Z
|uv|s(k) ≤ K(s, r1, r2)‖u‖r1(k)‖v‖r2(k). (9)

�

Corollary 2.4. Assume that the functions ri(k) : Z→ (1,∞) satisfy

m∑
i=1

1

ri(k)
= 1.
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Then there exists a constant K = K(ri) > 0 such that for all ui ∈ lri(k)(Z), 1 ≤ i ≤ m
m∑
i=1

|u1u2 · · · um| ≤ K‖u1‖r1(k)‖u2‖r2(k) · · · ‖um‖rm(k).

Proof. By using Proposition 2.3 along with the induction method the result follows
at once. �

Proposition 2.5. Assume that 1 ≤ r1(k) ≤ r2(k) ≤ +∞ for all k ∈ Z. Then, the
embedding lr1(k)(Z) ↪→ lr2(k)(Z) is continuous and

‖u‖r2(k) ≤ C‖u‖r1(k), C > 0.

Proof. Let u ∈ lr1(k)(Z). Then
∑
k∈Z |u|r1(k) < ∞ which means that there exists

N ∈ N such that |u(k)|r1(k) ≤ 1, that is |u(k)| ≤ 1, whenever k > |N |. Therefore,
considering that 1 ≤ r1(k) ≤ r2(k) for all k ∈ Z, it follows

|u(k)|r2(k) ≤ |u(k)|r1(k) whenever |k| > N,

and hence
∑
k∈Z |u|r2(k) < ∞. So we have lr1(k)(Z) ⊂ lr2(k)(Z). Let u ∈ lr1(k)(Z)

such that ‖u‖r1(k) < 1. Thus, by Proposition 2.1,
∑
k∈Z |u|r1(k) < 1. Therefore,

|u|r1(k) < 1 for all k ∈ Z and as a result |u(k)|r2(k) ≤ |u(k)|r1(k) for all k ∈ Z. Then∑
k∈Z
|u(k)|r2(k) ≤

∑
k∈Z
|u(k)|r1(k).

Using by Proposition 2.1 once more, it follows

‖u‖r2(k) ≤ C‖u‖r1(k),

where C = C(r+2 ) is a positive real number. Therefore, the embedding operator is

bounded, that is, lr1(k)(Z) ↪→ lr2(k)(Z) continuously. �

Proposition 2.6. If (V1) holds the embedding E ↪→ lp(k)(Z) is compact.

Proof. Using (V1), Proposition 2.1, and the same arguments applied in the proof of
Proposition 2.5, we obtain that E ⊂ lp(k)(Z), and for any u ∈ E with ‖u‖E < 1, we
have

‖u‖p(k) ≤ V
−1/p+
0 ‖u‖E ,

which means that the embedding operator is bounded, that is, E ↪→ lp(k)(Z) contin-
uously.

Now, consider a sequence (un) ⊂ E such that un ⇀ 0 in E. Then, there exists
a constant M > 0 such that ρE(un) ≤ M for all n, and un(k) → 0 for all k ∈ Z as
n → +∞. Let ε > 0. By assumption (V1) there exists N ∈ N such that V (k) ≥ M

ε
whenever |k| > N . Therefore,∑

n∈Z
|un|p(k) ≤

∑
|k|≤N

|un|p(k) +
ε

M

∑
|k|>N

V (k)|un|p(k) ≤
∑
|k|≤N

|un|p(k) + ε.

Since ε > 0 is arbitrary and the finite sum in the right-hand side converges to 0,
Proposition 2.1 (v) allows us to have un → 0 in lp(k)(Z) as n→ +∞. �
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Proposition 2.7. Assume that X is a compact subset of lp(k)(Z). Then, given any
ε > 0, there is N ∈ N such that for all u ∈ X the following convergence of infinite
sum holds ∑

|k|>N

|u|p(k) < ε.

Proof. Assume by contradiction that there exists a sequence (un) ⊆ X and a real
number ε > 0 such that ∑

|k|>n

|un|p(k) > ε, ∀n ∈ N.

Considering that X is a compact subset of lp(k)(Z), there exists a subsequence, not
relabelled, (un) such that un → u in lp(k)(Z) for some u ∈ X. Thus, there is a N ∈ N
satisfying ∑

|k|>N

|u|p(k) < ε

2
.

Since un → u in lp(k)(Z), ‖un − u‖p(k) < ε
2 whenever n ≥ N . Hence, by Proposition

2.1, we have
∑
|k|>n |un − u|p(k) <

ε
2 for n ≥ N . Therefore, we obtain

ε <
∑
|k|>n

|un|p(k) ≤
∑
|k|>n

|un − u|p(k) +
∑
|k|>n

|u|p(k) ≤ ε

2
+
ε

2
< ε, n ≥ N

which is impossible. �

We suppose that a(k, t) : Z×R→ R is a continuous function in t and there exists
a function A : Z × R → R such that a(k, t) = ∂

∂tA(k, t) for all k ∈ Z. Through this
paper we assume that

p(k), q(k) : Z→ [2,∞) such that q+ < p− ≤ p+ <∞.

We accept the following hypothesis for the functions a,A, V and f :
(V1) The potential sequence V (k) is such that V (k) ≥ V0 > 0 for all k ∈ Z, and
V (k)→ +∞ as |k| → ∞.

(a0) A(k, 0) = 0, for all k ∈ Z.
(a1)(a(k, t)− a(k, s))(t− s) ≥ 0 for all t, s ∈ R and k ∈ Z.
(a2) The following inequality holds

|a(k, t)| ≤ c1(a0(k) + |t|p(k)−1)

for all t ∈ R and k ∈ Z, where c1 is a positive real number and a0 ∈ lp
′(k)(Z) is a

nonnegative function.
(a3) The following inequality holds

a(k, t)t ≥ c2|t|p(k)

for all t ∈ R and k ∈ Z, where c2 is a positive real number.
(f1) f(k, t) : Z × R → R is a continuous function in t; there are functions θ, β :

Z → (0,∞) with θ ∈ lp′(k)(Z) and β ∈ lr(k)(Z), r(k) = p(k)
p(k)−q(k) , and there exists a

real number λ > 0 such that

lim sup
|t|→+∞

|f(k, t)|
θ(k) + β(k)|t|q(k)−1

≤ λ uniformly for k ∈ Z.
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(f2)

lim
t→0

|f(k, t)|
|t|p(k)−1

= 0 uniformly for k ∈ Z.

Definition 2.1. A function u ∈ E is a homoclinic solution for problem (1)-(2) if∑
k∈Z

a(k − 1,4u(k − 1))4v(k − 1) +
∑
k∈Z

V (k)|u|p(k)−2uv −
∑
k∈Z

f(k, u)v = 0 (10)

for all v ∈ E, and lim|k|→∞ u(k) = 0.

Let us define the functionals T, S : E → R, as follows:

T (u) =
∑
k∈Z

A(k − 1,4u(k − 1)) +
∑
k∈Z

V (k)

p(k)
|u|p(k)

and

S(u) =
∑
n∈Z

F (k, u),

where F (k, t) =
∫ t
0
f(k, s)ds.

Proposition 2.8. Under assumptions (V1), (a2) and (f2) the functionals T and S
are well defined on E and are of the class C1 with the derivatives T ′, S′ : E → E∗

given by

〈T ′(u), v〉 =
∑
k∈Z a(k − 1,4u(k − 1))4v(k − 1) +

∑
k∈Z V (k)|u|p(k)−2uv, (11)

〈S′(u), v〉 =
∑
k∈Z f(k, u)v,

for all u, v ∈ E, respectively, where 〈·, ·〉 = 〈·, ·〉E∗×E stands for the duality pairing.

Proof. By (f2) there exists δ > 0 such that

|f(k, t)| ≤ |t|p(k)−1, for all k ∈ Z and |t| ≤ δ. (12)

Therefore, |F (k, t)| ≤ 1
p(k) |t|

p(k) for all k ∈ Z and |t| ≤ δ. Moreover, for any u ∈ E
there exist N ∈ N such that |u(k)| ≤ δ for all |k| > N . Using this information, we
have

|S(u)| ≤
∑
k∈Z
|F (k, u)| ≤

∑
|k|≤N

|F (k, u)|+ 1

p−

∑
|k|>N

|u|p(k) <∞. (13)

On the other hand, from the definition of A, we obtain

A(k, ξ) =

∫ 1

0

d

dt
A(k, tξ)dt =

∫ 1

0

a(k, tξ)ξdt.

Then, using (a2) and above information we have

|A(k, ξ)| ≤
∫ 1

0

|a(k, ξ)||ξ|dt ≤ c1(a0(k)|ξ|+ |ξ|p(k)). (14)

Therefore, using the inequality

|4u(k − 1)|p(k−1) = |u(k)− u(k − 1)|p(k−1)

≤ 2p
+−1(|u(k)|p(k−1) + |u(k − 1)|p(k−1)),∀|k| ≤ N
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or

∑
k∈Z
|4u(k − 1)|p(k−1) ≤ 2p

+−1

(∑
k∈Z
|u(k)|p(k) +

∑
k∈Z
|u(k)|p(k)

)
(15)

≤ 2p
+ ∑
k∈Z
|u(k)|p(k) ≤ 2p

+

‖u‖γp(k), γ ∈ [p−, p+]

along with the Young inequality and the embedding E ↪→ lp(k)(Z), it leads to

|T (u)| ≤
∑
k∈Z
|A(k − 1,4u(k − 1))|+

∑
k∈Z

V (k)

p(k)
|u|p(k)

≤
∑
k∈Z

c1(a0(k − 1)|4u(k − 1)|+ |4u(k − 1)|p(k−1)) + ‖u‖γE

≤ c1
∑
k∈Z

p(k − 1)− 1

p(k − 1)
|a0|

p(k−1)
p(k−1)−1 + c1

∑
k∈Z

1

p(k − 1)
|4u(k − 1)|p(k−1)

+
∑
k∈Z
|4u(k − 1)|p(k−1) + ‖u‖γE

≤ c2‖a0‖p′(k) + (1 + c32p
+

)‖u‖γE <∞.

Therefore, T is well defined on E.
For fixed u, v ∈ E and t ∈ (0, 1), using (14)-(15) and the Young inequality several
times, we have∑
k∈Z
|A(k − 1,4u(k − 1) + t4v(k − 1))| ≤ c1

∑
k∈Z

a0(k − 1)|4u(k − 1) + t4v(k − 1))|

+c1
∑
k∈Z
|4u(k − 1) + t4v(k − 1))|p(k−1)

≤ 2p
+

C(‖u‖γE , ‖v‖
γ
E) <∞

and∑
k∈Z
|A(k − 1,4u(k − 1)| ≤ c1

∑
k∈Z

(a0(k − 1)|4u(k − 1)|+ |4u(k − 1)|p(k−1))

≤ c22p
+

‖u‖γE <∞.

Therefore,

lim
t→0+

∑
k∈Z

A(k − 1,4u(k − 1) + t4v(k − 1))−A(k − 1,4u(k − 1))

t

=
∑
k∈Z

lim
t→0+

A(k − 1,4u(k − 1) + t4v(k − 1))−A(k − 1,4u(k − 1))

t

=
∑
k∈Z

a(k − 1,4u(k − 1))4v(k − 1).
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By an analogous way, we can obtain

lim
t→0+

∑
k∈Z

V (k)

p(k)

|u(k) + t4v(k))|p(k) − |u(k)|p(k)

t

=
∑
k∈Z

lim
t→0+

V (k)

p(k)

|u(k) + t4v(k))|p(k) − |u(k)|p(k)

t
=
∑
k∈Z

V (k)|u|p(k)−2uv.

Thus,

lim
t→0+

∑
k∈Z

T (u+ tv)− T (u)

t
= 〈T ′(u), v〉

=
∑
k∈Z

a(k − 1,4u(k − 1))4v(k − 1) +
∑
k∈Z

V (k)|u|p(k)−2uv. (16)

Since the right-hand side of the above expression, as a function of v, is a continuous
linear functional on E, (16) is the Gateaux differential of T .
Next, we proceed with S. Let us choose fixed functions u, v ∈ E such that (12)
holds and max{|u(k)|, |v(k)|} ≤ δ

2 for all k ∈ Z, |k| > N . Let t be a parameter with
0 < t < 1. Then, given any ε > 0, it holds∑

|k|≤N

∣∣∣∣F (k, u+ tv)− F (k, u)

t
− f(k, u)v

∣∣∣∣ ≤ ε

4p−p+
.

On the other hand, by the mean value theorem, there exists σ ∈ (0, 1) such that

F (k, u+ tv)− F (k, u)

t
= f(k, u+ tσv)v, ∀|k| > N.

Let us define a function w ∈ lp(k)(Z) such that w(k) = 0 for all |k| ≤ N and w(k) =
u(k) + tσv(k) for all |k| > N . Then |w(k)| ≤ δ for all k ∈ Z. Moreover, given any
ε > 0, there exists N ∈ N such that∑

|k|>N

|w|p(k) < ε

4(p+)2
,
∑
|k|>N

|u|p(k) < ε

4(p+)2
,
∑
|k|>N

|v|p(k) < ε

4(p+)2
. (17)

Therefore, by (f2) and (12), the Young inequality, it follows∑
k∈Z

∣∣∣∣F (k, u+ tv)− F (k, u)

t
− f(k, u)v

∣∣∣∣
≤ ε

4p−p+
+
∑
|k|>N

|f(k, u+ tσv)v|+
∑
|k|>N

|f(k, u)v|

≤ ε

4p−p+
+
∑
|k|>N

|w|p(k)−1|v|+
∑
|k|>N

|u|p(k)−1|v|

≤ ε

4p−p+
+

(p+ − 1)

p−

 ∑
|k|>N

(|w|p(k) + |u|p(k))

+
1

p−

∑
|k|>N

|v|p(k)

≤ ε

4p−p+
+
p+

p−

(
ε

4(p+)2
+

ε

4(p+)2

)
+

1

p−
ε

4(p+)2

≤ ε

4p−p+
+

2ε

4p−p+
+

ε

4p−p+
< ε.
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Hence, we have

lim
t→0+

∑
k∈Z

F (k, u+ tv)− F (k, u)

t
=

∑
k∈Z

lim
t→0+

F (k, u+ tv)− F (k, u)

t
(18)

= 〈S′(u), v〉 =
∑
k∈Z

f(k, u)v

and hence (18) is the Gateaux differential of S.
In conclusion, the operator I : E → E∗ defined by

〈I(u), v〉 = 〈T ′(u), v〉 − 〈S′(u), v〉, for all u, v ∈ E (19)

is Gateaux differentiable on E.
Now, we proceed for the continuity of I : E → E∗. To this end, we assume, for a
sequence (un) ⊂ E, that un → u ∈ E, and show that, for all v ∈ E with ‖v‖E ≤ 1,
and given any ε > 0, whenever n > N0 ∈ N, it holds

|〈I(un)− I(u), v〉| ≤
∑
k∈Z
|a(k − 1,4un(k − 1))− a(k − 1,4u(k − 1))||4v(k − 1)|

+
∑
k∈Z

V (k)||un|p(k)−2un − |u|p(k)−2u||v|+
∑
k∈Z
|f(k, un)− f(k, u)||v|

< ε. (20)

Since un → u ∈ E, by Proposition (2.7) and (15), given any ε > 0, there is a N ∈ N
such that

∑
|k|>N

|4un(k − 1)|p(k) < ε

7(p+)2
∀n ∈ N,

∑
|k|>N

|4u(k − 1)|p(k) < ε

7(p+)2

and

∑
|k|>N

|4v(k − 1)|p(k) < ε

7(p+)2
,
∑
|k|>N

|a0(k − 1)|p
′(k) <

ε

7(p+)2
.

Moreover, by the continuity of the finite sum when n > max{N,N0}, it satisfies

∑
|k|≤N

|a(k − 1,4un(k − 1))− a(k − 1,4u(k − 1))||4v(k − 1)| < ε

7p−p+
.
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Therefore, using (a2), the Young inequality and the above information lead to∑
k∈Z
|a(k − 1,4un(k − 1))− a(k − 1,4u(k − 1))||4v(k − 1)| ≤ ε

7p−p+

+ 2c1
∑
|k|>N

a0(k − 1)|4v(k − 1)|+ c1
∑
|k|>N

|4v(k − 1)||4un(k − 1)|p(k−1)−1

+ c1
∑
|k|>N

|4v(k − 1)||4u(k − 1)|p(k−1)−1

≤ ε

7p−p+
+

(p+ − 1)

p−

( ∑
|k|>N

(|4un(k − 1)|p(k) + |4u(k − 1)|p(k)

+ |a0(k − 1)|p
′(k))

)
+

3

p−

∑
|k|>N

|4v(k − 1)|p(k)

≤ ε

7p−p+
+

3ε

7p−p+
+

3ε

7p−(p+)2
≤ 7ε

7p−p+
<
ε

3
. (21)

Now, we mention the following inequality given in [8]: for 1 < m < ∞ there exist
constants Cm > 0 such that

||ξ|m−2ξ − |ζ|m−2ζ|| ≤ Cm|ξ − ζ|(|ξ|+ |ζ|)m−2, ∀ξ, ζ ∈ R.
Since un → u ∈ E, (un) is bounded and un(k)→ u(k) as n→∞, for all k ∈ Z. Then
considering the inequality given above, it leads∑
k∈Z

V (k)||un|p(k)−2un − |u|p(k)−2u||v| ≤ Cp
∑
k∈Z

V (k)|un − u|(|un|+ |u|)p(k)−2|v| ↘ 0

and hence ∑
k∈Z

V (k)||un|p(k)−2un − |u|p(k)−2u||v| <
ε

3
, ∀n > N0. (22)

On the other hand, since un → u ∈ E, by the compact embedding E ↪→ lp(k)(Z), there
exists ω ∈ lp(k)(Z) such that |un(k)| ≤ ω(k) for all k ∈ Z and for all n ∈ N. Moreover,
since un, u ∈ E there exist δ > 0, N ∈ N such that |un(k)| ≤ δ for all n ∈ N, |k| > N
and |u(k)| ≤ δ for all |k| > N . Additionally, by (f2) we have |f(k, t)| ≤ |t|p(k)−1 for
all k ∈ Z and |t| ≤ δ. Therefore, considering this information along with (17) and the
Young inequality, we have

|〈S′(un)− S′(u), v〉| ≤
∑
|k|≤N

|f(k, un)− f(k, u)| |v|+
∑
|k|>N

|f(k, un)− f(k, u)| |v|

≤ ε

4p−p+
+
∑
|k|>N

|un|p(k)−1|v|+
∑
|k|>N

|u|p(k)−1|v|

≤ ε

4p−p+
+

(p+ − 1)

p−

 ∑
|k|>N

(|ω|p(k) + |u|p(k))

+
1

p−

∑
|k|>N

|v|p(k)

≤ ε

4p−p+
+
p+

p−

(
ε

4(p+)2
+

ε

4(p+)2

)
+

1

p−
ε

4(p+)2

≤ 4ε

4p−p+
<
ε

3
, ∀n > max{N,N0}, (23)
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since by the continuity of the finite sum
∑
|k|≤N |f(k, un)− f(k, u)| |v| < ε

4p−p+ for

all n > max{N,N0}.
Overall, combining (21), (22) and (23), we obtain (20), that is, I : E → E∗ is
continuous. �

3. The auxiliary results

Proposition 3.1.
(i) T ′ is a strictly monotone operator;

(ii) T ′ is of type (S+), that is, if un ⇀ u in E and lim supn→∞〈T ′(un)−T ′(u), un−
u〉 ≤ 0 then un → u in E;

(iii) T ′ is a homeomorphism;
(iv) S′ is compact.

Proof. (i) We make use of the well-known inequality (see [34])

〈|x|r−2x− |y|r−2y, x− y〉 ≥ Cr|x− y|r if r ≥ 2, ∀x, y ∈ R. (24)

Thus, for all u, v ∈ E such that u 6= v, along with (V1),(a1), we obtain

〈T ′(u)− T ′(v), u− v〉
≥

∑
k∈Z

(a(k − 1,4u(k − 1))− a(k,4v(k − 1))) (4u(k − 1)−4v(k − 1))

+
∑
k∈Z

V (k)
(
|u|p(k)−2u− |v|p(k)−2v

)
(u− v) > 0.

Therefore, T ′ is strictly monotone.
(ii) For a sequence (un) ⊂ E assume that un ⇀ u0 ∈ E. Then, (un) is bounded in E,
and hence, there exists a constant M > 0 such that ρE(un) ≤M for all n, and

un(k)→ u0(k) for all k ∈ Z as n→ +∞.

Also assume that

lim sup
n→∞

〈T ′(un)− T ′(u0), un − u0〉 ≤ 0. (25)

Then, considering these information along with strict monotonicity of T ′, we have

lim sup
n→∞

〈T ′(un)− T ′(u0), un − u0〉 = lim
n→∞

〈T ′(un)− T ′(u0), un − u0〉 = 0. (26)

Therefore, using (3.1) and (a1), we have

0 ≤ Cp
∑
k∈Z

V (k)|un − u0|p(k) ≤
∑
k∈Z

V (k)
(
|un|p(k)−2un − |u0|p(k)−2u0

)
(un − u0)

≤ 〈T ′(un)− T ′(u0), un − u0〉.

Taking limit and considering (26) leads us to the inequality

0 ≤ Cp lim
n→∞

∑
k∈Z

V (k)|un − u0|p(k) ≤ lim
n→∞

〈T ′(un)− T ′(u0), un − u0〉 = 0,

which means, by Proposition 2.1, un → u0 in E.
(iii) Since T ′ is continuous due to Proposition 2.8, it is enough to show that T ′ has
a continuous inverse (T ′)−1 : E∗ → E. First, we show that T ′ is coercive. Without
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loss of generality, we may assume that ‖u‖E > 1. Then, by (a3) and Proposition 2.1,
we have

〈T ′(u), u〉 =
∑
k∈Z

a(k − 1,4u(k − 1))4u(k − 1) +
∑
k∈Z

V (k)|u|p(k) ≥ c‖u‖p
−

E

or

〈T ′(u), u〉
‖u‖E

≥ c‖u‖p
−−1
E (27)

which means that T ′ is coercive. Moreover, we know from (i) that T ′ is strictly
monotone, which ensures that T ′ is an injection. By Minty-Browder theorem (see
[36]), we obtain that T ′ is a surjection. As a consequence, T ′ has an inverse mapping
(T ′)−1 : E∗ → E. We now show that (T ′)−1 is continuous. To this end, let (u∗n), u∗ ∈
E∗ with u∗n → u∗, and let (T ′)−1(u∗n) = un, (T

′)−1(u∗) = u. Then, T ′(un) = u∗n
and T ′(u) = u∗ which means, by the coercivity of T ′, that (un) is bounded in E.
Therefore, there exist û ∈ E and a subsequence, not relabelled, (un) ⊂ E such that
un ⇀ û in E. Since the weak limit is unique, we must have un ⇀ u in E. Additionally,
considering that u∗n → u∗ in E∗, we have

lim
n→∞

〈u∗n − u∗, un − u〉 = lim
n→∞

〈T ′(un)− T ′(u), un − u〉 = 0.

Since T ′ is of type (S+), we have un → u in E, that is, (T ′)−1 : E∗ → E is continuous.
Overall, T ′ is a homeomorphism.
(iv) The compactness of S′ follows by Proposition 2.8. Indeed, if we let un ⇀ u in E
and apply the same arguments as we did to obtain (23), we have

lim
n→∞

sup ‖S′(un)− S′(u)‖E∗ = lim
n→∞

sup
‖v‖E≤1

|〈S′(un)− S′(u), v〉| = 0.

Therefore, S′ : E → E∗ is strongly continuous, that is, S′ is compact. �

4. The existence result

First, we would like to remark that, due to (10) and (19), to show that u ∈ E is a
solution to problem (1)-(2) for all v ∈ E is equivalent to show that

T ′u = S′u in E∗. (28)

The following theorem establishes a topological existence result for problem (1)-(2).

Theorem 4.1. Suppose that (V1), (a1)-(a3) and (f1)-(f2) hold. Additionally, assume
that the following conditions are fulfilled:
(i) T ′ is a homeomorphism;
(ii) S′ is compact;
(iii) The mapping T ′ − S′ is coercive.
Then operator equation (28) has a nontrivial solution in E, which in turn becomes a
homoclinic solution to problem (1)-(2).

Proof. Due to Proposition 3.1, we skip (i),(ii) and proceed with (iii). As in Proposition
3.1 (iii), we can obtain that

‖T ′u‖E∗ ≥ c1‖u‖p
−−1
E , for all u ∈ E, ‖u‖E > 1, c1 > 0. (29)
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By (f1), there is M > 0 such that |f(k, t)| ≤ θ(k)+β(k)|t|q(k)−1 for all k ∈ Z, |t| > M .
Using the Hölder inequality and the embeddings, we have

|〈S′(u), v〉| ≤
∑
k∈Z

θ(k)|v|+
∑
k∈Z

β(k)|u|q(k)−1|v|

≤ ‖θ‖p′(k)‖v‖p(k) + ‖β‖r(k)‖|u|q(k)−1‖ p(k)
q(k)−1

‖v‖p(k)

≤ (c2‖u‖α−1E + c3)‖v‖E
and hence

‖S′u‖E∗ ≤ c2‖u‖α−1E + c3, for all u ∈ E, ‖u‖E > 1, α ∈ [q−, q+], c2, c3 > 0. (30)

Then, by (29) and (30), it leads

‖(T ′ − S′)u‖E∗ ≥ ‖T ′u‖E∗ − ‖S′u‖E∗ ≥ c1‖u‖p
−−1
E − c2‖u‖q

+−1
E − c3 (31)

and thus, we obtain coercivity, that is, ‖(T ′−S′)u‖E∗ →∞ as ‖u‖E →∞. Therefore,
there exists a constant R0 > 1 such that

‖(T ′ − S′)u‖E∗ > 1 for all u ∈ E, ‖u‖E ≥ R0. (32)

Since T ′ is a homeomorphism of E onto E∗, (28) can be equivalently written as

u = (T ′)−1(S′u). (33)

Moreover, since compactness is a topological property we can define a compact op-
erator K by K := (T ′)−1(S′) : E → E. Now, we will seek a solution to the operator
equation

u = Ku (34)

that is, we search a fixed point for the operator K. Let us define the set

F = {u ∈ E : u = τ(T ′)−1(S′u) for some τ ∈ [0, 1]}.

To this end, for an u ∈ F\{0}, we have

‖T ′(u
τ

)‖E∗ = ‖S′u‖E∗ . (35)

Then, considering (35) along with (29) and (30), it follows

c1
τp−−1

‖u‖γ−1E ≤ c2‖u‖α−1E + c3 (36)

that is, F is bounded in E, where the exponents γ ∈ [p−, p+] and α ∈ [q−, q+] are
determined according to the ‖u‖E while its value varies in the intervals (0, 1) or [1,∞).
Therefore, there is some constant R1 ≥ R0 such that the inclusion F ⊆ BR1

(0) holds.
Thus, we can write

K : BR1
(0)→ E

where K is still compact. On the other hand, by (32) we have u − Ku 6= 0 for any
u ∈ ∂BR1(0). Otherwise, we would have u = Ku = (T ′)−1(S′u) for any u ∈ ∂BR1(0);
however, this would lead us to (T ′ − S′)u = 0. This can not happen since by (32) we
must have ‖(T ′ − S′)u‖E∗ > 0 for any u ∈ ∂BR1

(0). Therefore, we can associate the
Leray-Schauder degree of mapping, a Z-valued function dLS(I −K, BR1

(0), 0), to K.
Next, let us define the mapping

H(u, t) = u− tKu for u ∈ BR1
(0) and t ∈ [0, 1]. (37)
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Apparently H(u, t) is a continuous mapping on BR1
(0)×[0, 1] such that H(u, t) 6= 0 for

all u ∈ ∂BR1(0) and t ∈ [0, 1]. Assume by contradiction that there exist ũ ∈ ∂BR1(0)
and t̃ ∈ [0, 1] such that

ũ− t̃Kũ = 0. (38)

Then

0 = ‖ũ− t̃Kũ‖E ≥ ‖ũ‖E − t̃‖Kũ‖E ≥ (1− t̃)R1 ≥ 0 (39)

since ‖ũ‖E = R1, and hence, ‖Kũ‖E ≤ R1. Therefore, it must be t̃ = 1. This result
contradicts the fact u−Ku 6= 0 for any u ∈ ∂BR1

(0). Overall,

H(u, t) 6= 0 for u ∈ ∂BR1
(0) and t ∈ [0, 1]. (40)

Therefore, H(·, t) is a homotopy of the mappings I = H(·, 0) and I − K = H(·, 1).
Taking into account the homotopy invariance and normalization properties of degree,
we obtain that

dLS(I −K, BR1(0), 0) = dLS(I,BR1(0), 0) = 1 (41)

which means that K has a fixed point located in BR1(0). In conclusion, there exists
a function u ∈ E such that T ′u = S′u in E∗, that is, u is a nontrivial homoclinic
solution for problem (1)-(2). �
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[12] L. Diening, P. Harjuletho, P. Hästö, M. Růž ička, Lebesgue and Sobolev spaces with variable
exponents, Springer-Verlag, Berlin, 2011.

[13] S. Heidarkhani, G.A. Afrouzi, S. Moradi, G. Caristi, Existence of multiple solutions for a
perturbed discrete anisotropic equation, Journal of Difference Equations and Applications 23
(2017), no. 9, 1491–1507.

[14] G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems
with p-Laplacian, Portugal. Math. 53 (2001), no. 3, 339–377.
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