A topological result for a class of anisotropic difference equations

Mustafa Avci

Abstract

In the present paper, we establish a new topological existence result derived from the Leray-Schauder degree and show the existence of a nontrivial homoclinic solution for a class of non-homogeneous anisotropic difference equation settled in the variable exponent sequence space $l^{p(k)}(\mathbb{Z})$.

2010 Mathematics Subject Classification. 35A16; 39A12; 39A70; 47 J05.
Key words and phrases. Difference equation, homoclinic solution, topological methods, the Leray-Schauder degree, variable exponent sequence space.

1. Introduction

We study the following difference equation

$$
\begin{gather*}
-\triangle(a(k-1, \triangle u(k-1)))+V(k)|u(k)|^{p(k)-2} u(k)=f(k, u(k)), k \in \mathbb{Z} \tag{1}\\
\lim _{|k| \rightarrow \infty} u(k)=0 \tag{2}
\end{gather*}
$$

where $\triangle u(k)=u(k+1)-u(k)$ is the forward difference operators; $V(k), k \in \mathbb{Z}$, is a sequence of real numbers and $a(k, \cdot), f(k, \cdot): \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying some assumptions. Since we impose the boundary condition (2), we are looking for homoclinic solutions of problem (1)-(2).
In case $a(k, t)=|t|^{p(k)-2} t,(k, t) \in \mathbb{Z} \times \mathbb{R}$, equation (1) becomes the $p(\cdot)$-Laplace difference equation of type

$$
-\triangle_{p(k-1)}^{2} u(k-1)+V(k)|u(k)|^{p(k)-2} u(k)=f(k, u(k)),
$$

where $\triangle_{p(\cdot)}^{2}$ stands for the $p(\cdot)$-Laplace difference operator defined as

$$
-\triangle_{p(k-1)}^{2} u(k-1)=|\triangle u(k)|^{p(k)-2} \triangle u(k)-|\triangle u(k-1)|^{p(k-1)-2} \triangle u(k-1), \quad k \in \mathbb{Z} .
$$

Additionally, when $a(k, t)=|t|^{p(k)-2} t,(k, t) \in \mathbb{Z} \times \mathbb{R}$, equation (1) is the discrete counterpart of the following nonlinear differential equation

$$
\begin{equation*}
-\left(\left|u^{\prime}\right|^{p(x)-2} u^{\prime}\right)^{\prime}+V(x)|u|^{p(x)-2} u=f(x, u), x \in I \subset \mathbb{R} . \tag{3}
\end{equation*}
$$

Equations of the form (3), as well as their multi-dimensional versions, appear in many applications, such as fluid dynamics and nonlinear elasticity, to name a few (see, e.g., $[12,33]$ and references therein). In the case when $p(x)=2$, (3) becomes the stationary nonlinear Schrödinger equation (NLS). It has an enormous number of applications, for instance, in nonlinear optics [27] and condensed matter physics [22].

As in the case of equation (3), equation (1) reduces to the stationary discrete nonlinear Schrödinger equation (DNLS) when $a(k, t)=|t|^{p(k)-2} t$, and $p(k)=2$. As its continuous counterpart, DNLS has many applications in various areas of physics (see, e.g., $[1,2,16,18,21]$). On the other hand, there is a number of rigorous results about this equation. Here we only mention papers [31, 32, 37, 38] in which the existence of solutions satisfying (2) is studied by means of critical point theory and variational methods [3]. There has been an intensive study for the Dirichlet problems of discrete p-Laplacian and $p(k)$-Laplacian equations we refer to the papers [4, 13, 29, 30, 35], where the main tools applied are critical point theory and variational methods. However, to the best of our knowledge [5, 26], where $a(k, t)=|t|^{p(k)-2} t$, and [17] where $V(k)=1$, are the only papers dealing with problems (1)-(2).
In [26], for example, the authors deal with the difference non-homogeneous equations of type

$$
\begin{gather*}
-\triangle_{p(k-1)}^{2} u(k-1)+V(k)|u(k)|^{q(k)-2} u(k)=f(k, u(k)), k \in \mathbb{Z} \tag{4}\\
\lim _{|k| \rightarrow \infty} u(k)=0 \tag{5}
\end{gather*}
$$

where $p(\cdot), q(\cdot): \mathbb{Z} \rightarrow(1, \infty)$ and $V(\cdot): \mathbb{Z} \rightarrow \mathbb{R}$ are T-periodic functions; $f(k, t):$ $\mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that it is continuous in t and T-periodic in k. Applying variational methods, i.e. the mountain-pass lemma, they obtain nontrivial homoclinic solutions for problem (4)-(5).

The main result of the present paper concerns the existence of a nontrivial homoclinic solution of problem (1)-(2). To do this, we employ a topological method, i.e., Theorem 4.1, derived from the Leray-Schauder degree, see, e.g., the papers $[6,9,14,23,25,28]$ and monographs $[7,10,15,36]$, in which important topological results were obtained. To the author best knowledge, the results of the present paper are new and original.

2. Preliminaries

For each $p(k): \mathbb{Z} \rightarrow(1, \infty)$ such that

$$
p^{-}:=\inf _{k \in \mathbb{Z}} p(k) \quad \text { and } \quad p^{+}:=\sup _{k \in \mathbb{Z}} p(k)
$$

let us introduce the following variable exponent sequence space

$$
l^{p(k)}(\mathbb{Z})=\left\{u=(u(k)): u: \mathbb{Z} \rightarrow \mathbb{R}, \quad \sum_{k \in \mathbb{Z}}|u|^{p(k)}<\infty\right\}
$$

Equipped with the Luxembourg norm

$$
\|u\|_{l^{p(k)}(\mathbb{Z})}=\|u\|_{p(k)}=\inf \left\{\lambda>0: \sum_{k \in \mathbb{Z}}\left|\frac{u}{\lambda}\right|^{p(k)} \leq 1\right\}
$$

$\left(l^{p(k)}(\mathbb{Z}),\|\cdot\|_{p(k)}\right)$ is a separable Banach space which is reflexive provided $p^{+}<+\infty$ ([12]).

The functional $\rho_{p(k)}: l^{p(k)}(\mathbb{Z}) \rightarrow \mathbb{R}$ defined by $\rho_{p(k)}(u):=\sum_{k \in \mathbb{Z}}|u(k)|^{p(k)}$ is a convex modular due to the fact that $\varphi(k, t)=|t|^{p(k)},(k, t) \in \mathbb{Z} \times \mathbb{R}$, is a convex function.

Proposition 2.1. ([12, 17, 24]) If $u \in l^{p(k)}(\mathbb{Z})$ and $p^{+}<+\infty$, then the following statements hold:
(i) $\|u\|_{p(k)}<1(=1,>1) \Longleftrightarrow \rho_{p(k)}(u)<1(=1,>1)$;
(ii) $\|u\|_{p(k)}=a \Longleftrightarrow \rho_{p(k)}\left(\frac{u}{a}\right)=1(u \neq 0)$;
(iii) $\|u\|_{p(k)} \leq 1 \Longrightarrow\|u\|_{p(k)}^{p^{+}} \leq \rho_{p(k)}(u) \leq\|u\|_{p(k)}^{p^{-}}$;
(iv) $\|u\|_{p(k)} \geq 1 \Longrightarrow\|u\|_{p(k)}^{p^{-}} \leq \rho_{p(k)}(u) \leq\|u\|_{p(k)}^{p^{+}}$;
(v) $\rho_{p(k)}\left(u_{n}-u\right) \rightarrow 0(\rightarrow \infty) \Longleftrightarrow\left\|u_{n}-u\right\|_{p(k)} \rightarrow 0(\rightarrow \infty)$;
(vi) $u_{n} \rightarrow u$ in $l^{p(k)} \Longleftrightarrow \lim _{n \rightarrow \infty} u_{n}(k)=u(k)$ for all $k \in \mathbb{Z}$ and $\lim _{n \rightarrow \infty} \rho_{p(k)}\left(u_{n}\right)=\rho_{p(k)}(u)$.

Furthermore, we introduce the space in which we study problem (1)-(2)

$$
\begin{equation*}
E=\left\{u \in l^{p(k)}(\mathbb{Z}):\left(V^{1 / p(k)} u\right) \in l^{p(k)}(\mathbb{Z})\right\} \tag{6}
\end{equation*}
$$

endowed with the norm

$$
\|u\|_{E}=\inf \left\{\eta>0: \sum_{n \in \mathbb{Z}} V(k)\left|\frac{u}{\eta}\right|^{p(k)} \leq 1\right\}=\left\|V^{1 / p(k)} u\right\|_{E}
$$

Here $V^{1 / p(k)} u$ stands for the sequence with elements $V(k)^{1 / p(k)} u(k)$. Moreover, since E is isomorphic to $l^{p(k)}(\mathbb{Z})$ via the operator of multiplication by $V(k)$, it is a reflexive Banach space.

Let us define the functional $\rho_{E}: E \rightarrow \mathbb{R}$ by

$$
\rho_{E}(u):=\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)} .
$$

Then $\rho_{E}(\cdot)$ and $\|\cdot\|_{E}$ possess properties similar to those listed in Proposition 2.1.
Proposition 2.2 (Young inequality). Let $p(k)>1$ for all $k \in \mathbb{Z}$ and $p^{-1}(k)+$ $\left(p^{\prime}(k)\right)^{-1}=1$ for all $k \in \mathbb{Z}$. Then for all $a, b \in \mathbb{R}$ we have

$$
|a||b| \leq p(k)^{-1}|a|^{p(k)}+p^{\prime}(k)^{-1}|b|^{p^{\prime}(k)} .
$$

Proposition 2.3 (Discrete Hölder inequality). Given the functions $r_{1}(k), r_{2}(k): \mathbb{Z} \rightarrow$ $(1, \infty)$ define $s(k): \mathbb{Z} \rightarrow(1, \infty)$ by

$$
\frac{1}{s(k)}=\frac{1}{r_{1}(k)}+\frac{1}{r_{2}(k)}
$$

Then there exists a constant $K>0$ such that for all $u \in l^{r_{1}(k)}(\mathbb{Z})$ and $v \in l^{r_{2}(k)}(\mathbb{Z})$, $u v \in l^{s(k)}(\mathbb{Z})$ and

$$
\sum_{k \in \mathbb{Z}}|u v|^{s(k)} \leq K\|u\|_{r_{1}(k)}\|v\|_{r_{2}(k)}
$$

Proof. If $\|u\|_{r_{1}(k)}=0$ or $\|v\|_{r_{2}(k)}=0$, then $u v \equiv 0$, hence the proof is clear. Therefore, we may assume that these quantities are positive. First, we consider the case $s(k)=1$.

Let us choose $a=\frac{|u|}{\|u\|_{r_{1}(k)}}$ and $b=\frac{|v|}{\|v\|_{r_{2}(k)}}$ in Young inequality. Then, by Proposition 2.1, it leads

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \frac{|u v|}{\|u\|_{r_{1}(k)}\|v\|_{r_{2}(k)}} & \leq \sum_{k \in \mathbb{Z}} \frac{1}{r_{1}(k)}\left|\frac{u}{\|u\|_{r_{1}(k)}}\right|^{r_{1}(k)}+\sum_{k \in \mathbb{Z}} \frac{1}{r_{2}(k)}\left|\frac{v}{\|v\|_{r_{2}(k)}}\right|^{r_{2}(k)} \\
& \leq \frac{1}{r_{1}^{-}} \rho_{r_{1}(k)}\left(\frac{u}{\|u\|_{r_{1}(k)}}\right)+\frac{1}{r_{2}^{-}} \rho_{r_{2}(k)}\left(\frac{v}{\|v\|_{r_{2}(k)}}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}|u v| \leq\left(\frac{1}{r_{1}^{-}}+\frac{1}{r_{2}^{-}}\right)\|u\|_{r_{1}(k)}\|v\|_{r_{2}(k)}, \frac{1}{r_{1}^{-}}+\frac{1}{r_{2}^{-}}=K \tag{7}
\end{equation*}
$$

Let us proceed with the case $s(k) \neq 1$. The rest of the proof is inspired by the proof of Corollary 2.28 in [11]. For the same reason above, we may assume that $\|u\|_{r_{1}(k)}$ and $\|v\|_{r_{2}(k)}$ are positive; further, by homogeneity we may assume that $\|u\|_{r_{1}(k)} \leq 1$ and $\|v\|_{r_{2}(k)} \leq 1$. Then by Proposition 2.1, $\rho_{r_{1}(k)}(u) \leq 1$ and $\rho_{r_{2}(k)}(v) \leq 1$. Let us consider the relations $u \in l^{r_{1}(k)}(\mathbb{Z}) \Rightarrow|u|^{s(k)} \in l^{r_{1}(k) / s(k)}(\mathbb{Z})$ and $v \in l^{r_{2}(k)}(\mathbb{Z}) \Rightarrow$ $|v|^{s(k)} \in l^{r_{2}(k) / s(k)}(\mathbb{Z})$. We may suppose that

$$
\begin{equation*}
\left\||u|^{s(k)}\right\|_{r_{1}(k) / s(k)} \leq 1 \text { and }\left\||v|^{s(k)}\right\|_{r_{2}(k) / s(k)} \leq 1 \tag{8}
\end{equation*}
$$

Indeed, since $\rho_{r_{1}(k)}(u) \leq 1$, it reads

$$
\rho_{r_{1}(k) / s(k)}\left(|u|^{s(k)}\right)=\left.\left.\sum_{k \in \mathbb{Z}}| | u\right|^{s(k)}\right|^{r_{1}(k) / s(k)}=\sum_{k \in \mathbb{Z}}|u|^{r_{1}(k)} \leq 1,
$$

which means that $\left\||u|^{s(k)}\right\|_{r_{1}(k) / s(k)} \leq 1$. Similarly, $\left\||v|^{s(k)}\right\|_{r_{2}(k) / s(k)} \leq 1$ holds as well. Then, since $\frac{1}{r_{1}(k) / s(k)}+\frac{1}{r_{2}(k) / s(k)}=1$, we can use (7) for functions $|u|^{s(k)} \in$ $l^{r_{1}(k) / s(k)}(\mathbb{Z})$ and $|v|^{s(k)} \in l^{r_{2}(k) / s(k)}(\mathbb{Z})$, that is,

$$
\begin{aligned}
\rho_{s(k)}(u v) & =\sum_{k \in \mathbb{Z}}|u|^{s(k)}|v|^{s(k)} \\
& \leq K\left(s, r_{1}, r_{2}\right)\left\||u|^{s(k)}\right\|_{r_{1}(k) / s(k)}\left\||v|^{s(k)}\right\|_{r_{2}(k) / s(k)} \\
& \leq K\left(s, r_{1}, r_{2}\right)
\end{aligned}
$$

Therefore, we have $u v \in l^{s(k)}(\mathbb{Z})$ and

$$
\|u v\|_{s(k)} \leq K\left(s, r_{1}, r_{2}\right)=K\left(s, r_{1}, r_{2}\right)\|u\|_{r_{1}(k)}\|v\|_{r_{2}(k)}
$$

or

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}|u v|^{s(k)} \leq K\left(s, r_{1}, r_{2}\right)\|u\|_{r_{1}(k)}\|v\|_{r_{2}(k)} \tag{9}
\end{equation*}
$$

Corollary 2.4. Assume that the functions $r_{i}(k): \mathbb{Z} \rightarrow(1, \infty)$ satisfy

$$
\sum_{i=1}^{m} \frac{1}{r_{i}(k)}=1
$$

Then there exists a constant $K=K\left(r_{i}\right)>0$ such that for all $u_{i} \in l^{r_{i}(k)}(\mathbb{Z}), 1 \leq i \leq m$

$$
\sum_{i=1}^{m}\left|u_{1} u_{2} \cdots u_{m}\right| \leq K\left\|u_{1}\right\|_{r_{1}(k)}\left\|u_{2}\right\|_{r_{2}(k)} \cdots\left\|u_{m}\right\|_{r_{m}(k)}
$$

Proof. By using Proposition 2.3 along with the induction method the result follows at once.

Proposition 2.5. Assume that $1 \leq r_{1}(k) \leq r_{2}(k) \leq+\infty$ for all $k \in \mathbb{Z}$. Then, the embedding $l^{r_{1}(k)}(\mathbb{Z}) \hookrightarrow l^{r_{2}(k)}(\mathbb{Z})$ is continuous and

$$
\|u\|_{r_{2}(k)} \leq C\|u\|_{r_{1}(k)}, \quad C>0
$$

Proof. Let $u \in l^{r_{1}(k)}(\mathbb{Z})$. Then $\sum_{k \in \mathbb{Z}}|u|^{r_{1}(k)}<\infty$ which means that there exists $N \in \mathbb{N}$ such that $|u(k)|^{r_{1}(k)} \leq 1$, that is $|u(k)| \leq 1$, whenever $k>|N|$. Therefore, considering that $1 \leq r_{1}(k) \leq r_{2}(k)$ for all $k \in \mathbb{Z}$, it follows

$$
|u(k)|^{r_{2}(k)} \leq|u(k)|^{r_{1}(k)} \text { whenever }|k|>N,
$$

and hence $\sum_{k \in \mathbb{Z}}|u|^{r_{2}(k)}<\infty$. So we have $l^{r_{1}(k)}(\mathbb{Z}) \subset l^{r_{2}(k)}(\mathbb{Z})$. Let $u \in l^{r_{1}(k)}(\mathbb{Z})$ such that $\|u\|_{r_{1}(k)}<1$. Thus, by Proposition 2.1, $\sum_{k \in \mathbb{Z}}|u|^{r_{1}(k)}<1$. Therefore, $|u|^{r_{1}(k)}<1$ for all $k \in \mathbb{Z}$ and as a result $|u(k)|^{r_{2}(k)} \leq|u(k)|^{r_{1}(k)}$ for all $k \in \mathbb{Z}$. Then

$$
\sum_{k \in \mathbb{Z}}|u(k)|^{r_{2}(k)} \leq \sum_{k \in \mathbb{Z}}|u(k)|^{r_{1}(k)}
$$

Using by Proposition 2.1 once more, it follows

$$
\|u\|_{r_{2}(k)} \leq C\|u\|_{r_{1}(k)}
$$

where $C=C\left(r_{2}^{+}\right)$is a positive real number. Therefore, the embedding operator is bounded, that is, $l^{r_{1}(k)}(\mathbb{Z}) \hookrightarrow l^{r_{2}(k)}(\mathbb{Z})$ continuously.

Proposition 2.6. If (V1) holds the embedding $E \hookrightarrow l^{p(k)}(\mathbb{Z})$ is compact.
Proof. Using (V1), Proposition 2.1, and the same arguments applied in the proof of Proposition 2.5, we obtain that $E \subset l^{p(k)}(\mathbb{Z})$, and for any $u \in E$ with $\|u\|_{E}<1$, we have

$$
\|u\|_{p(k)} \leq V_{0}^{-1 / p^{+}}\|u\|_{E}
$$

which means that the embedding operator is bounded, that is, $E \hookrightarrow l^{p(k)}(\mathbb{Z})$ continuously.

Now, consider a sequence $\left(u_{n}\right) \subset E$ such that $u_{n} \rightharpoonup 0$ in E. Then, there exists a constant $M>0$ such that $\rho_{E}\left(u_{n}\right) \leq M$ for all n, and $u_{n}(k) \rightarrow 0$ for all $k \in \mathbb{Z}$ as $n \rightarrow+\infty$. Let $\varepsilon>0$. By assumption (V1) there exists $N \in \mathbb{N}$ such that $V(k) \geq \frac{M}{\varepsilon}$ whenever $|k|>N$. Therefore,

$$
\sum_{n \in \mathbb{Z}}\left|u_{n}\right|^{p(k)} \leq \sum_{|k| \leq N}\left|u_{n}\right|^{p(k)}+\frac{\varepsilon}{M} \sum_{|k|>N} V(k)\left|u_{n}\right|^{p(k)} \leq \sum_{|k| \leq N}\left|u_{n}\right|^{p(k)}+\varepsilon
$$

Since $\varepsilon>0$ is arbitrary and the finite sum in the right-hand side converges to 0 , Proposition 2.1 (v) allows us to have $u_{n} \rightarrow 0$ in $l^{p(k)}(\mathbb{Z})$ as $n \rightarrow+\infty$.

Proposition 2.7. Assume that X is a compact subset of $l^{p(k)}(\mathbb{Z})$. Then, given any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for all $u \in X$ the following convergence of infinite sum holds

$$
\sum_{|k|>N}|u|^{p(k)}<\varepsilon
$$

Proof. Assume by contradiction that there exists a sequence $\left(u_{n}\right) \subseteq X$ and a real number $\varepsilon>0$ such that

$$
\sum_{|k|>n}\left|u_{n}\right|^{p(k)}>\varepsilon, \quad \forall n \in \mathbb{N} .
$$

Considering that X is a compact subset of $l^{p(k)}(\mathbb{Z})$, there exists a subsequence, not relabelled, $\left(u_{n}\right)$ such that $u_{n} \rightarrow u$ in $l^{p(k)}(\mathbb{Z})$ for some $u \in X$. Thus, there is a $N \in \mathbb{N}$ satisfying

$$
\sum_{|k|>N}|u|^{p(k)}<\frac{\varepsilon}{2}
$$

Since $u_{n} \rightarrow u$ in $l^{p(k)}(\mathbb{Z}),\left\|u_{n}-u\right\|_{p(k)}<\frac{\varepsilon}{2}$ whenever $n \geq N$. Hence, by Proposition 2.1, we have $\sum_{|k|>n}\left|u_{n}-u\right|^{p(k)}<\frac{\varepsilon}{2}$ for $n \geq N$. Therefore, we obtain

$$
\varepsilon<\sum_{|k|>n}\left|u_{n}\right|^{p(k)} \leq \sum_{|k|>n}\left|u_{n}-u\right|^{p(k)}+\sum_{|k|>n}|u|^{p(k)} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}<\varepsilon, \quad n \geq N
$$

which is impossible.
We suppose that $a(k, t): \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function in t and there exists a function $A: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $a(k, t)=\frac{\partial}{\partial t} A(k, t)$ for all $k \in \mathbb{Z}$. Through this paper we assume that

$$
p(k), q(k): \mathbb{Z} \rightarrow[2, \infty) \text { such that } q^{+}<p^{-} \leq p^{+}<\infty
$$

We accept the following hypothesis for the functions a, A, V and f :
(V1) The potential sequence $V(k)$ is such that $V(k) \geq V_{0}>0$ for all $k \in \mathbb{Z}$, and $V(k) \rightarrow+\infty$ as $|k| \rightarrow \infty$.
(a0) $A(k, 0)=0$, for all $k \in \mathbb{Z}$.
(a1) $(a(k, t)-a(k, s))(t-s) \geq 0$ for all $t, s \in \mathbb{R}$ and $k \in \mathbb{Z}$.
(a2) The following inequality holds

$$
|a(k, t)| \leq c_{1}\left(a_{0}(k)+|t|^{p(k)-1}\right)
$$

for all $t \in \mathbb{R}$ and $k \in \mathbb{Z}$, where c_{1} is a positive real number and $a_{0} \in l^{p^{\prime}(k)}(\mathbb{Z})$ is a nonnegative function.
(a3) The following inequality holds

$$
a(k, t) t \geq c_{2}|t|^{p(k)}
$$

for all $t \in \mathbb{R}$ and $k \in \mathbb{Z}$, where c_{2} is a positive real number.
(f1) $f(k, t): \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function in t; there are functions θ, β : $\mathbb{Z} \rightarrow(0, \infty)$ with $\theta \in l^{p^{\prime}(k)}(\mathbb{Z})$ and $\beta \in l^{r(k)}(\mathbb{Z}), r(k)=\frac{p(k)}{p(k)-q(k)}$, and there exists a real number $\lambda>0$ such that

$$
\limsup _{|t| \rightarrow+\infty} \frac{|f(k, t)|}{\theta(k)+\beta(k)|t|^{q(k)-1}} \leq \lambda \text { uniformly for } k \in \mathbb{Z}
$$

(f2)

$$
\lim _{t \rightarrow 0} \frac{|f(k, t)|}{|t|^{p(k)-1}}=0 \text { uniformly for } k \in \mathbb{Z}
$$

Definition 2.1. A function $u \in E$ is a homoclinic solution for problem (1)-(2) if

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} a(k-1, \triangle u(k-1)) \Delta v(k-1)+\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)-2} u v-\sum_{k \in \mathbb{Z}} f(k, u) v=0 \tag{10}
\end{equation*}
$$

for all $v \in E$, and $\lim _{|k| \rightarrow \infty} u(k)=0$.
Let us define the functionals $T, S: E \rightarrow \mathbb{R}$, as follows:

$$
T(u)=\sum_{k \in \mathbb{Z}} A(k-1, \triangle u(k-1))+\sum_{k \in \mathbb{Z}} \frac{V(k)}{p(k)}|u|^{p(k)}
$$

and

$$
S(u)=\sum_{n \in \mathbb{Z}} F(k, u),
$$

where $F(k, t)=\int_{0}^{t} f(k, s) d s$.
Proposition 2.8. Under assumptions (V1), (a2) and (f2) the functionals T and S are well defined on E and are of the class C^{1} with the derivatives $T^{\prime}, S^{\prime}: E \rightarrow E^{*}$ given by

$$
\begin{gather*}
\left\langle T^{\prime}(u), v\right\rangle=\sum_{k \in \mathbb{Z}} a(k-1, \Delta u(k-1)) \Delta v(k-1)+\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)-2} u v, \tag{11}\\
\left\langle S^{\prime}(u), v\right\rangle=\sum_{k \in \mathbb{Z}} f(k, u) v
\end{gather*}
$$

for all $u, v \in E$, respectively, where $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{E^{*} \times E}$ stands for the duality pairing. Proof. By (f2) there exists $\delta>0$ such that

$$
\begin{equation*}
|f(k, t)| \leq|t|^{p(k)-1}, \text { for all } k \in \mathbb{Z} \text { and }|t| \leq \delta \tag{12}
\end{equation*}
$$

Therefore, $|F(k, t)| \leq \frac{1}{p(k)}|t|^{p(k)}$ for all $k \in \mathbb{Z}$ and $|t| \leq \delta$. Moreover, for any $u \in E$ there exist $N \in \mathbb{N}$ such that $|u(k)| \leq \delta$ for all $|k|>N$. Using this information, we have

$$
\begin{equation*}
|S(u)| \leq \sum_{k \in \mathbb{Z}}|F(k, u)| \leq \sum_{|k| \leq N}|F(k, u)|+\frac{1}{p^{-}} \sum_{|k|>N}|u|^{p(k)}<\infty \tag{13}
\end{equation*}
$$

On the other hand, from the definition of A, we obtain

$$
A(k, \xi)=\int_{0}^{1} \frac{d}{d t} A(k, t \xi) d t=\int_{0}^{1} a(k, t \xi) \xi d t
$$

Then, using (a2) and above information we have

$$
\begin{equation*}
|A(k, \xi)| \leq \int_{0}^{1}|a(k, \xi)||\xi| d t \leq c_{1}\left(a_{0}(k)|\xi|+|\xi|^{p(k)}\right) \tag{14}
\end{equation*}
$$

Therefore, using the inequality

$$
\begin{aligned}
|\triangle u(k-1)|^{p(k-1)} & =|u(k)-u(k-1)|^{p(k-1)} \\
& \leq 2^{p^{+}-1}\left(|u(k)|^{p(k-1)}+|u(k-1)|^{p(k-1)}\right), \forall|k| \leq N
\end{aligned}
$$

or

$$
\begin{align*}
\sum_{k \in \mathbb{Z}}|\Delta u(k-1)|^{p(k-1)} & \leq 2^{p^{+}-1}\left(\sum_{k \in \mathbb{Z}}|u(k)|^{p(k)}+\sum_{k \in \mathbb{Z}}|u(k)|^{p(k)}\right) \tag{15}\\
& \leq 2^{p^{+}} \sum_{k \in \mathbb{Z}}|u(k)|^{p(k)} \leq 2^{p^{+}}\|u\|_{p(k)}^{\gamma}, \quad \gamma \in\left[p^{-}, p^{+}\right]
\end{align*}
$$

along with the Young inequality and the embedding $E \hookrightarrow l^{p(k)}(\mathbb{Z})$, it leads to

$$
\begin{aligned}
|T(u)| & \leq \sum_{k \in \mathbb{Z}}|A(k-1, \triangle u(k-1))|+\sum_{k \in \mathbb{Z}} \frac{V(k)}{p(k)}|u|^{p(k)} \\
& \leq \sum_{k \in \mathbb{Z}} c_{1}\left(a_{0}(k-1)|\triangle u(k-1)|+|\triangle u(k-1)|^{p(k-1)}\right)+\|u\|_{E}^{\gamma} \\
& \leq c_{1} \sum_{k \in \mathbb{Z}} \frac{p(k-1)-1}{p(k-1)}\left|a_{0}\right|^{\frac{p(k-1)}{p(k-1)-1}}+c_{1} \sum_{k \in \mathbb{Z}} \frac{1}{p(k-1)}|\triangle u(k-1)|^{p(k-1)} \\
& +\sum_{k \in \mathbb{Z}}|\triangle u(k-1)|^{p(k-1)}+\|u\|_{E}^{\gamma} \\
& \leq c_{2}\left\|a_{0}\right\|_{p^{\prime}(k)}+\left(1+c_{3} 2^{p^{+}}\right)\|u\|_{E}^{\gamma}<\infty .
\end{aligned}
$$

Therefore, T is well defined on E.
For fixed $u, v \in E$ and $t \in(0,1)$, using (14)-(15) and the Young inequality several times, we have

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}}|A(k-1, \triangle u(k-1)+t \triangle v(k-1))| \leq & \left.c_{1} \sum_{k \in \mathbb{Z}} a_{0}(k-1) \mid \triangle u(k-1)+t \triangle v(k-1)\right) \mid \\
& \left.+c_{1} \sum_{k \in \mathbb{Z}} \mid \triangle u(k-1)+t \triangle v(k-1)\right)\left.\right|^{p(k-1)} \\
\leq & 2^{p^{+}} C\left(\|u\|_{E}^{\gamma},\|v\|_{E}^{\gamma}\right)<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \mid A(k-1, \Delta u(k-1) \mid & \leq c_{1} \sum_{k \in \mathbb{Z}}\left(a_{0}(k-1)|\triangle u(k-1)|+|\triangle u(k-1)|^{p(k-1)}\right) \\
& \leq c_{2} 2^{p^{+}}\|u\|_{E}^{\gamma}<\infty
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} & \sum_{k \in \mathbb{Z}} \frac{A(k-1, \Delta u(k-1)+t \triangle v(k-1))-A(k-1, \triangle u(k-1))}{t} \\
& =\sum_{k \in \mathbb{Z}^{t \rightarrow 0^{+}}} \lim _{t} \frac{A(k-1, \triangle u(k-1)+t \Delta v(k-1))-A(k-1, \Delta u(k-1))}{t} \\
& =\sum_{k \in \mathbb{Z}} a(k-1, \Delta u(k-1)) \Delta v(k-1)
\end{aligned}
$$

By an analogous way, we can obtain

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} & \sum_{k \in \mathbb{Z}} \frac{V(k)}{p(k)} \frac{\mid u(k)+t \triangle v(k))\left.\right|^{p(k)}-|u(k)|^{p(k)}}{t} \\
& =\sum_{k \in \mathbb{Z}} \lim _{t \rightarrow 0^{+}} \frac{V(k)}{p(k)} \frac{\mid u(k)+t \triangle v(k))\left.\right|^{p(k)}-|u(k)|^{p(k)}}{t}=\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)-2} u v .
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \lim _{t \rightarrow 0^{+}} \sum_{k \in \mathbb{Z}} \frac{T(u+t v)-T(u)}{t}=\left\langle T^{\prime}(u), v\right\rangle \\
& \quad=\sum_{k \in \mathbb{Z}} a(k-1, \Delta u(k-1)) \triangle v(k-1)+\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)-2} u v . \tag{16}
\end{align*}
$$

Since the right-hand side of the above expression, as a function of v, is a continuous linear functional on $E,(16)$ is the Gateaux differential of T.
Next, we proceed with S. Let us choose fixed functions $u, v \in E$ such that (12) holds and $\max \{|u(k)|,|v(k)|\} \leq \frac{\delta}{2}$ for all $k \in \mathbb{Z},|k|>N$. Let t be a parameter with $0<t<1$. Then, given any $\varepsilon>0$, it holds

$$
\sum_{|k| \leq N}\left|\frac{F(k, u+t v)-F(k, u)}{t}-f(k, u) v\right| \leq \frac{\varepsilon}{4 p^{-} p^{+}}
$$

On the other hand, by the mean value theorem, there exists $\sigma \in(0,1)$ such that

$$
\frac{F(k, u+t v)-F(k, u)}{t}=f(k, u+t \sigma v) v, \quad \forall|k|>N .
$$

Let us define a function $w \in l^{p(k)}(\mathbb{Z})$ such that $w(k)=0$ for all $|k| \leq N$ and $w(k)=$ $u(k)+t \sigma v(k)$ for all $|k|>N$. Then $|w(k)| \leq \delta$ for all $k \in \mathbb{Z}$. Moreover, given any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{|k|>N}|w|^{p(k)}<\frac{\varepsilon}{4\left(p^{+}\right)^{2}}, \sum_{|k|>N}|u|^{p(k)}<\frac{\varepsilon}{4\left(p^{+}\right)^{2}}, \quad \sum_{|k|>N}|v|^{p(k)}<\frac{\varepsilon}{4\left(p^{+}\right)^{2}} \tag{17}
\end{equation*}
$$

Therefore, by (f2) and (12), the Young inequality, it follows

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} & \left|\frac{F(k, u+t v)-F(k, u)}{t}-f(k, u) v\right| \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\sum_{|k|>N}|f(k, u+t \sigma v) v|+\sum_{|k|>N}|f(k, u) v| \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\sum_{|k|>N}|w|^{p(k)-1}|v|+\sum_{|k|>N}|u|^{p(k)-1}|v| \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\frac{\left(p^{+}-1\right)}{p^{-}}\left(\sum_{|k|>N}\left(|w|^{p(k)}+|u|^{p(k)}\right)\right)+\frac{1}{p^{-}} \sum_{|k|>N}|v|^{p(k)} \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\frac{p^{+}}{p^{-}}\left(\frac{\varepsilon}{4\left(p^{+}\right)^{2}}+\frac{\varepsilon}{4\left(p^{+}\right)^{2}}\right)+\frac{1}{p^{-}} \frac{\varepsilon}{4\left(p^{+}\right)^{2}} \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\frac{2 \varepsilon}{4 p^{-} p^{+}}+\frac{\varepsilon}{4 p^{-} p^{+}}<\varepsilon .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
\lim _{t \rightarrow 0^{+}} \sum_{k \in \mathbb{Z}} \frac{F(k, u+t v)-F(k, u)}{t} & =\sum_{k \in \mathbb{Z}} \lim _{t \rightarrow 0^{+}} \frac{F(k, u+t v)-F(k, u)}{t} \tag{18}\\
& =\left\langle S^{\prime}(u), v\right\rangle=\sum_{k \in \mathbb{Z}} f(k, u) v
\end{align*}
$$

and hence (18) is the Gateaux differential of S.
In conclusion, the operator $I: E \rightarrow E^{*}$ defined by

$$
\begin{equation*}
\langle I(u), v\rangle=\left\langle T^{\prime}(u), v\right\rangle-\left\langle S^{\prime}(u), v\right\rangle, \text { for all } u, v \in E \tag{19}
\end{equation*}
$$

is Gateaux differentiable on E.
Now, we proceed for the continuity of $I: E \rightarrow E^{*}$. To this end, we assume, for a sequence $\left(u_{n}\right) \subset E$, that $u_{n} \rightarrow u \in E$, and show that, for all $v \in E$ with $\|v\|_{E} \leq 1$, and given any $\varepsilon>0$, whenever $n>N_{0} \in \mathbb{N}$, it holds

$$
\begin{align*}
\left|\left\langle I\left(u_{n}\right)-I(u), v\right\rangle\right| & \leq \sum_{k \in \mathbb{Z}}\left|a\left(k-1, \Delta u_{n}(k-1)\right)-a(k-1, \Delta u(k-1))\right||\triangle v(k-1)| \\
& +\left.\sum_{k \in \mathbb{Z}} V(k)| | u_{n}\right|^{p(k)-2} u_{n}-|u|^{p(k)-2} u| | v\left|+\sum_{k \in \mathbb{Z}}\right| f\left(k, u_{n}\right)-f(k, u)| | v \mid \\
& <\varepsilon \tag{20}
\end{align*}
$$

Since $u_{n} \rightarrow u \in E$, by Proposition (2.7) and (15), given any $\varepsilon>0$, there is a $N \in \mathbb{N}$ such that

$$
\sum_{|k|>N}\left|\triangle u_{n}(k-1)\right|^{p(k)}<\frac{\varepsilon}{7\left(p^{+}\right)^{2}} \forall n \in \mathbb{N}, \sum_{|k|>N}|\triangle u(k-1)|^{p(k)}<\frac{\varepsilon}{7\left(p^{+}\right)^{2}}
$$

and

$$
\sum_{|k|>N}|\triangle v(k-1)|^{p(k)}<\frac{\varepsilon}{7\left(p^{+}\right)^{2}}, \sum_{|k|>N}\left|a_{0}(k-1)\right|^{p^{\prime}(k)}<\frac{\varepsilon}{7\left(p^{+}\right)^{2}}
$$

Moreover, by the continuity of the finite sum when $n>\max \left\{N, N_{0}\right\}$, it satisfies

$$
\sum_{|k| \leq N}\left|a\left(k-1, \triangle u_{n}(k-1)\right)-a(k-1, \Delta u(k-1)) \| \Delta v(k-1)\right|<\frac{\varepsilon}{7 p^{-} p^{+}}
$$

Therefore, using (a2), the Young inequality and the above information lead to

$$
\begin{align*}
& \sum_{k \in \mathbb{Z}}\left|a\left(k-1, \triangle u_{n}(k-1)\right)-a(k-1, \triangle u(k-1))\right||\triangle v(k-1)| \leq \frac{\varepsilon}{7 p^{-} p^{+}} \\
& \quad+2 c_{1} \sum_{|k|>N} a_{0}(k-1)|\triangle v(k-1)|+c_{1} \sum_{|k|>N}|\triangle v(k-1)|\left|\triangle u_{n}(k-1)\right|^{p(k-1)-1} \\
& \quad+c_{1} \sum_{|k|>N}|\Delta v(k-1)||\triangle u(k-1)|^{p(k-1)-1} \\
& \leq \frac{\varepsilon}{7 p^{-} p^{+}}+\frac{\left(p^{+}-1\right)}{p^{-}}\left(\sum _ { | k | > N } \left(\left|\triangle u_{n}(k-1)\right|^{p(k)}+|\triangle u(k-1)|^{p(k)}\right.\right. \\
& \left.\left.\quad+\left|a_{0}(k-1)\right|^{p^{\prime}(k)}\right)\right)+\frac{3}{p^{-}} \sum_{|k|>N}|\triangle v(k-1)|^{p(k)} \\
& \leq \frac{\varepsilon}{7 p^{-} p^{+}}+\frac{3 \varepsilon}{7 p^{-} p^{+}}+\frac{3 \varepsilon}{7 p^{-}\left(p^{+}\right)^{2}} \leq \frac{7 \varepsilon}{7 p^{-} p^{+}}<\frac{\varepsilon}{3} . \tag{21}
\end{align*}
$$

Now, we mention the following inequality given in [8]: for $1<m<\infty$ there exist constants $C_{m}>0$ such that

$$
\left\|\left.\xi\right|^{m-2} \xi-|\zeta|^{m-2} \zeta\right\| \leq C_{m}|\xi-\zeta|(|\xi|+|\zeta|)^{m-2}, \quad \forall \xi, \zeta \in \mathbb{R}
$$

Since $u_{n} \rightarrow u \in E,\left(u_{n}\right)$ is bounded and $u_{n}(k) \rightarrow u(k)$ as $n \rightarrow \infty$, for all $k \in \mathbb{Z}$. Then considering the inequality given above, it leads

$$
\left.\sum_{k \in \mathbb{Z}} V(k)| | u_{n}\right|^{p(k)-2} u_{n}-|u|^{p(k)-2} u| | v\left|\leq C_{p} \sum_{k \in \mathbb{Z}} V(k)\right| u_{n}-u\left|\left(\left|u_{n}\right|+|u|\right)^{p(k)-2}\right| v \mid \searrow 0
$$

and hence

$$
\begin{equation*}
\left.\sum_{k \in \mathbb{Z}} V(k)| | u_{n}\right|^{p(k)-2} u_{n}-|u|^{p(k)-2} u \| v \left\lvert\,<\frac{\varepsilon}{3}\right., \quad \forall n>N_{0} . \tag{22}
\end{equation*}
$$

On the other hand, since $u_{n} \rightarrow u \in E$, by the compact embedding $E \hookrightarrow l^{p(k)}(\mathbb{Z})$, there exists $\omega \in l^{p(k)}(\mathbb{Z})$ such that $\left|u_{n}(k)\right| \leq \omega(k)$ for all $k \in \mathbb{Z}$ and for all $n \in \mathbb{N}$. Moreover, since $u_{n}, u \in E$ there exist $\delta>0, N \in \mathbb{N}$ such that $\left|u_{n}(k)\right| \leq \delta$ for all $n \in \mathbb{N},|k|>N$ and $|u(k)| \leq \delta$ for all $|k|>N$. Additionally, by (f2) we have $|f(k, t)| \leq|t|^{p(k)-1}$ for all $k \in \mathbb{Z}$ and $|t| \leq \delta$. Therefore, considering this information along with (17) and the Young inequality, we have

$$
\begin{align*}
\left|\left\langle S^{\prime}\left(u_{n}\right)-S^{\prime}(u), v\right\rangle\right| & \leq \sum_{|k| \leq N}\left|f\left(k, u_{n}\right)-f(k, u)\right||v|+\sum_{|k|>N}\left|f\left(k, u_{n}\right)-f(k, u)\right||v| \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\sum_{|k|>N}\left|u_{n}\right|^{p(k)-1}|v|+\sum_{|k|>N}|u|^{p(k)-1}|v| \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\frac{\left(p^{+}-1\right)}{p^{-}}\left(\sum_{|k|>N}\left(|\omega|^{p(k)}+|u|^{p(k)}\right)\right)+\frac{1}{p^{-}} \sum_{|k|>N}|v|^{p(k)} \\
& \leq \frac{\varepsilon}{4 p^{-} p^{+}}+\frac{p^{+}}{p^{-}}\left(\frac{\varepsilon}{4\left(p^{+}\right)^{2}}+\frac{\varepsilon}{4\left(p^{+}\right)^{2}}\right)+\frac{1}{p^{-}} \frac{\varepsilon}{4\left(p^{+}\right)^{2}} \\
& \leq \frac{4 \varepsilon}{4 p^{-} p^{+}}<\frac{\varepsilon}{3}, \quad \forall n>\max \left\{N, N_{0}\right\} \tag{23}
\end{align*}
$$

since by the continuity of the finite sum $\sum_{|k| \leq N}\left|f\left(k, u_{n}\right)-f(k, u)\right||v|<\frac{\varepsilon}{4 p^{-} p^{+}}$for all $n>\max \left\{N, N_{0}\right\}$.
Overall, combining (21), (22) and (23), we obtain (20), that is, $I: E \rightarrow E^{*}$ is continuous.

3. The auxiliary results

Proposition 3.1.

(i) T^{\prime} is a strictly monotone operator;
(ii) T^{\prime} is of type $\left(S_{+}\right)$, that is, if $u_{n} \rightharpoonup u$ in E and $\lim \sup _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}(u), u_{n}-\right.$ $u\rangle \leq 0$ then $u_{n} \rightarrow u$ in E;
(iii) T^{\prime} is a homeomorphism;
(iv) S^{\prime} is compact.

Proof. (i) We make use of the well-known inequality (see [34])

$$
\begin{equation*}
\left.\left.\langle | x\right|^{r-2} x-|y|^{r-2} y, x-y\right\rangle \geq C_{r}|x-y|^{r} \text { if } r \geq 2, \forall x, y \in \mathbb{R} \tag{24}
\end{equation*}
$$

Thus, for all $u, v \in E$ such that $u \neq v$, along with (V1),(a1), we obtain

$$
\begin{aligned}
& \left\langle T^{\prime}(u)-T^{\prime}(v), u-v\right\rangle \\
\geq & \sum_{k \in \mathbb{Z}}(a(k-1, \Delta u(k-1))-a(k, \Delta v(k-1)))(\Delta u(k-1)-\Delta v(k-1)) \\
+ & \sum_{k \in \mathbb{Z}} V(k)\left(|u|^{p(k)-2} u-|v|^{p(k)-2} v\right)(u-v)>0
\end{aligned}
$$

Therefore, T^{\prime} is strictly monotone.
(ii) For a sequence $\left(u_{n}\right) \subset E$ assume that $u_{n} \rightharpoonup u_{0} \in E$. Then, $\left(u_{n}\right)$ is bounded in E, and hence, there exists a constant $M>0$ such that $\rho_{E}\left(u_{n}\right) \leq M$ for all n, and

$$
u_{n}(k) \rightarrow u_{0}(k) \text { for all } k \in \mathbb{Z} \text { as } n \rightarrow+\infty
$$

Also assume that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right\rangle \leq 0 \tag{25}
\end{equation*}
$$

Then, considering these information along with strict monotonicity of T^{\prime}, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right\rangle=\lim _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Therefore, using (3.1) and (a1), we have

$$
\begin{aligned}
0 \leq C_{p} \sum_{k \in \mathbb{Z}} V(k)\left|u_{n}-u_{0}\right|^{p(k)} & \leq \sum_{k \in \mathbb{Z}} V(k)\left(\left|u_{n}\right|^{p(k)-2} u_{n}-\left|u_{0}\right|^{p(k)-2} u_{0}\right)\left(u_{n}-u_{0}\right) \\
& \leq\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right\rangle
\end{aligned}
$$

Taking limit and considering (26) leads us to the inequality

$$
0 \leq C_{p} \lim _{n \rightarrow \infty} \sum_{k \in \mathbb{Z}} V(k)\left|u_{n}-u_{0}\right|^{p(k)} \leq \lim _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right\rangle=0
$$

which means, by Proposition 2.1, $u_{n} \rightarrow u_{0}$ in E.
(iii) Since T^{\prime} is continuous due to Proposition 2.8, it is enough to show that T^{\prime} has a continuous inverse $\left(T^{\prime}\right)^{-1}: E^{*} \rightarrow E$. First, we show that T^{\prime} is coercive. Without
loss of generality, we may assume that $\|u\|_{E}>1$. Then, by (a3) and Proposition 2.1, we have

$$
\left\langle T^{\prime}(u), u\right\rangle=\sum_{k \in \mathbb{Z}} a(k-1, \Delta u(k-1)) \triangle u(k-1)+\sum_{k \in \mathbb{Z}} V(k)|u|^{p(k)} \geq c\|u\|_{E}^{p^{-}}
$$

or

$$
\begin{equation*}
\frac{\left\langle T^{\prime}(u), u\right\rangle}{\|u\|_{E}} \geq c\|u\|_{E}^{p^{--1}} \tag{27}
\end{equation*}
$$

which means that T^{\prime} is coercive. Moreover, we know from (i) that T^{\prime} is strictly monotone, which ensures that T^{\prime} is an injection. By Minty-Browder theorem (see [36]), we obtain that T^{\prime} is a surjection. As a consequence, T^{\prime} has an inverse mapping $\left(T^{\prime}\right)^{-1}: E^{*} \rightarrow E$. We now show that $\left(T^{\prime}\right)^{-1}$ is continuous. To this end, let $\left(u_{n}^{*}\right), u^{*} \in$ E^{*} with $u_{n}^{*} \rightarrow u^{*}$, and let $\left(T^{\prime}\right)^{-1}\left(u_{n}^{*}\right)=u_{n},\left(T^{\prime}\right)^{-1}\left(u^{*}\right)=u$. Then, $T^{\prime}\left(u_{n}\right)=u_{n}^{*}$ and $T^{\prime}(u)=u^{*}$ which means, by the coercivity of T^{\prime}, that $\left(u_{n}\right)$ is bounded in E. Therefore, there exist $\hat{u} \in E$ and a subsequence, not relabelled, $\left(u_{n}\right) \subset E$ such that $u_{n} \rightharpoonup \hat{u}$ in E. Since the weak limit is unique, we must have $u_{n} \rightharpoonup u$ in E. Additionally, considering that $u_{n}^{*} \rightarrow u^{*}$ in E^{*}, we have

$$
\lim _{n \rightarrow \infty}\left\langle u_{n}^{*}-u^{*}, u_{n}-u\right\rangle=\lim _{n \rightarrow \infty}\left\langle T^{\prime}\left(u_{n}\right)-T^{\prime}(u), u_{n}-u\right\rangle=0
$$

Since T^{\prime} is of type (S_{+}), we have $u_{n} \rightarrow u$ in E, that is, $\left(T^{\prime}\right)^{-1}: E^{*} \rightarrow E$ is continuous. Overall, T^{\prime} is a homeomorphism.
(iv) The compactness of S^{\prime} follows by Proposition 2.8. Indeed, if we let $u_{n} \rightharpoonup u$ in E and apply the same arguments as we did to obtain (23), we have

$$
\lim _{n \rightarrow \infty} \sup \left\|S^{\prime}\left(u_{n}\right)-S^{\prime}(u)\right\|_{E^{*}}=\lim _{n \rightarrow \infty} \sup _{\|v\|_{E} \leq 1}\left|\left\langle S^{\prime}\left(u_{n}\right)-S^{\prime}(u), v\right\rangle\right|=0
$$

Therefore, $S^{\prime}: E \rightarrow E^{*}$ is strongly continuous, that is, S^{\prime} is compact.

4. The existence result

First, we would like to remark that, due to (10) and (19), to show that $u \in E$ is a solution to problem (1)-(2) for all $v \in E$ is equivalent to show that

$$
\begin{equation*}
T^{\prime} u=S^{\prime} u \text { in } E^{*} \tag{28}
\end{equation*}
$$

The following theorem establishes a topological existence result for problem (1)-(2).
Theorem 4.1. Suppose that (V1), (a1)-(a3) and (f1)-(f2) hold. Additionally, assume that the following conditions are fulfilled:
(i) T^{\prime} is a homeomorphism;
(ii) S^{\prime} is compact;
(iii) The mapping $T^{\prime}-S^{\prime}$ is coercive.

Then operator equation (28) has a nontrivial solution in E, which in turn becomes a homoclinic solution to problem (1)-(2).

Proof. Due to Proposition 3.1, we skip (i),(ii) and proceed with (iii). As in Proposition 3.1 (iii), we can obtain that

$$
\begin{equation*}
\left\|T^{\prime} u\right\|_{E^{*}} \geq c_{1}\|u\|_{E}^{p^{-}-1}, \text { for all } u \in E,\|u\|_{E}>1, c_{1}>0 \tag{29}
\end{equation*}
$$

By (f1), there is $M>0$ such that $|f(k, t)| \leq \theta(k)+\beta(k)|t|^{q(k)-1}$ for all $k \in \mathbb{Z},|t|>M$. Using the Hölder inequality and the embeddings, we have

$$
\begin{aligned}
\left|\left\langle S^{\prime}(u), v\right\rangle\right| & \leq \sum_{k \in \mathbb{Z}} \theta(k)|v|+\sum_{k \in \mathbb{Z}} \beta(k)|u|^{q(k)-1}|v| \\
& \leq\|\theta\|_{p^{\prime}(k)}\|v\|_{p(k)}+\|\beta\|_{r(k)}\left\||u|^{q(k)-1}\right\|_{\frac{p(k)}{q(k)-1}}\|v\|_{p(k)} \\
& \leq\left(c_{2}\|u\|_{E}^{\alpha-1}+c_{3}\right)\|v\|_{E}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|S^{\prime} u\right\|_{E^{*}} \leq c_{2}\|u\|_{E}^{\alpha-1}+c_{3}, \text { for all } u \in E,\|u\|_{E}>1, \alpha \in\left[q^{-}, q^{+}\right], c_{2}, c_{3}>0 \tag{30}
\end{equation*}
$$

Then, by (29) and (30), it leads

$$
\begin{equation*}
\left\|\left(T^{\prime}-S^{\prime}\right) u\right\|_{E^{*}} \geq\left\|T^{\prime} u\right\|_{E^{*}}-\left\|S^{\prime} u\right\|_{E^{*}} \geq c_{1}\|u\|_{E}^{p^{-}-1}-c_{2}\|u\|_{E}^{q^{+}-1}-c_{3} \tag{31}
\end{equation*}
$$

and thus, we obtain coercivity, that is, $\left\|\left(T^{\prime}-S^{\prime}\right) u\right\|_{E^{*}} \rightarrow \infty$ as $\|u\|_{E} \rightarrow \infty$. Therefore, there exists a constant $R_{0}>1$ such that

$$
\begin{equation*}
\left\|\left(T^{\prime}-S^{\prime}\right) u\right\|_{E^{*}}>1 \text { for all } u \in E,\|u\|_{E} \geq R_{0} \tag{32}
\end{equation*}
$$

Since T^{\prime} is a homeomorphism of E onto E^{*}, (28) can be equivalently written as

$$
\begin{equation*}
u=\left(T^{\prime}\right)^{-1}\left(S^{\prime} u\right) \tag{33}
\end{equation*}
$$

Moreover, since compactness is a topological property we can define a compact operator \mathcal{K} by $\mathcal{K}:=\left(T^{\prime}\right)^{-1}\left(S^{\prime}\right): E \rightarrow E$. Now, we will seek a solution to the operator equation

$$
\begin{equation*}
u=\mathcal{K} u \tag{34}
\end{equation*}
$$

that is, we search a fixed point for the operator \mathcal{K}. Let us define the set

$$
\mathcal{F}=\left\{u \in E: u=\tau\left(T^{\prime}\right)^{-1}\left(S^{\prime} u\right) \text { for some } \tau \in[0,1]\right\}
$$

To this end, for an $u \in \mathcal{F} \backslash\{0\}$, we have

$$
\begin{equation*}
\left\|T^{\prime}\left(\frac{u}{\tau}\right)\right\|_{E^{*}}=\left\|S^{\prime} u\right\|_{E^{*}} \tag{35}
\end{equation*}
$$

Then, considering (35) along with (29) and (30), it follows

$$
\begin{equation*}
\frac{c_{1}}{\tau^{p^{-}-1}}\|u\|_{E}^{\gamma-1} \leq c_{2}\|u\|_{E}^{\alpha-1}+c_{3} \tag{36}
\end{equation*}
$$

that is, \mathcal{F} is bounded in E, where the exponents $\gamma \in\left[p^{-}, p^{+}\right]$and $\alpha \in\left[q^{-}, q^{+}\right]$are determined according to the $\|u\|_{E}$ while its value varies in the intervals $(0,1)$ or $[1, \infty)$. Therefore, there is some constant $R_{1} \geq R_{0}$ such that the inclusion $\mathcal{F} \subseteq B_{R_{1}}(0)$ holds. Thus, we can write

$$
\mathcal{K}: \overline{B_{R_{1}}(0)} \rightarrow E
$$

where \mathcal{K} is still compact. On the other hand, by (32) we have $u-\mathcal{K} u \neq 0$ for any $u \in \partial B_{R_{1}}(0)$. Otherwise, we would have $u=\mathcal{K} u=\left(T^{\prime}\right)^{-1}\left(S^{\prime} u\right)$ for any $u \in \partial B_{R_{1}}(0)$; however, this would lead us to $\left(T^{\prime}-S^{\prime}\right) u=0$. This can not happen since by (32) we must have $\left\|\left(T^{\prime}-S^{\prime}\right) u\right\|_{E^{*}}>0$ for any $u \in \partial B_{R_{1}}(0)$. Therefore, we can associate the Leray-Schauder degree of mapping, a \mathbb{Z}-valued function $d_{L S}\left(I-\mathcal{K}, B_{R_{1}}(0), 0\right)$, to \mathcal{K}. Next, let us define the mapping

$$
\begin{equation*}
H(u, t)=u-t \mathcal{K} u \text { for } u \in \overline{B_{R_{1}}(0)} \text { and } t \in[0,1] . \tag{37}
\end{equation*}
$$

Apparently $H(u, t)$ is a continuous mapping on $\overline{B_{R_{1}}(0)} \times[0,1]$ such that $H(u, t) \neq 0$ for all $u \in \partial B_{R_{1}}(0)$ and $t \in[0,1]$. Assume by contradiction that there exist $\tilde{u} \in \partial B_{R_{1}}(0)$ and $\tilde{t} \in[0,1]$ such that

$$
\begin{equation*}
\tilde{u}-\tilde{t} \mathcal{K} \widetilde{u}=0 \tag{38}
\end{equation*}
$$

Then

$$
\begin{equation*}
0=\|\tilde{u}-\tilde{t} \mathcal{K} \tilde{u}\|_{E} \geq\|\tilde{u}\|_{E}-\tilde{t}\|\mathcal{K} \tilde{u}\|_{E} \geq(1-\tilde{t}) R_{1} \geq 0 \tag{39}
\end{equation*}
$$

since $\|\tilde{u}\|_{E}=R_{1}$, and hence, $\|\mathcal{K} \tilde{u}\|_{E} \leq R_{1}$. Therefore, it must be $\tilde{t}=1$. This result contradicts the fact $u-\mathcal{K} u \neq 0$ for any $u \in \partial B_{R_{1}}(0)$. Overall,

$$
\begin{equation*}
H(u, t) \neq 0 \text { for } u \in \partial B_{R_{1}}(0) \text { and } t \in[0,1] \tag{40}
\end{equation*}
$$

Therefore, $H(\cdot, t)$ is a homotopy of the mappings $I=H(\cdot, 0)$ and $I-\mathcal{K}=H(\cdot, 1)$. Taking into account the homotopy invariance and normalization properties of degree, we obtain that

$$
\begin{equation*}
d_{L S}\left(I-\mathcal{K}, B_{R_{1}}(0), 0\right)=d_{L S}\left(I, B_{R_{1}}(0), 0\right)=1 \tag{41}
\end{equation*}
$$

which means that \mathcal{K} has a fixed point located in $B_{R_{1}}(0)$. In conclusion, there exists a function $u \in E$ such that $T^{\prime} u=S^{\prime} u$ in E^{*}, that is, u is a nontrivial homoclinic solution for problem (1)-(2).

References

[1] C.O. Alves, Existence of standing waves solution for a nonlinear Schrödinger equation in \mathbb{R}^{N}, Journal of Elliptic and Parabolic Equations 1 (2015), no. 2, 231-241.
[2] C.O. Alves, G.M. Figueiredo, M.F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Communications in Partial Differential Equations 36 (2011), 1565-1586.
[3] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Anal. 14 (1973), 349-381.
[4] M. Avci, Existence results for anisotropic discrete boundary value problems, Elec. J. Dif. Equa. 148 (2016), 1-11.
[5] M. Avci, A. Pankov, Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl. 431 (2015), no. 1, 22-33.
[6] L. Boccardo, P. Drábek, D. Giachetti, M. Kućera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. Theory Methods Appl. 10 (1986), 1083-1103.
[7] H. Brezis, Analyse Functionelle, Mason, Paris, 1983.
[8] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag AG, Basel, 2009.
[9] F.E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc. 76 (1970), no. 5, 999-1005.
[10] R. F. Brown, A Topological Introduction to Nonlinear Analysis, Third Edition, Birkhäuser, Basel, 2014.
[11] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, Basel, 2013.
[12] L. Diening, P. Harjuletho, P. Hästö, M. Růž ička, Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, Berlin, 2011.
[13] S. Heidarkhani, G.A. Afrouzi, S. Moradi, G. Caristi, Existence of multiple solutions for a perturbed discrete anisotropic equation, Journal of Difference Equations and Applications 23 (2017), no. 9, 1491-1507.
[14] G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Portugal. Math. 53 (2001), no. 3, 339-377.
[15] P. Drábek, J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations, Second Edition, Birkhäuser, Basel, 2013.
[16] S. Flash, C.R. Willis, Discrete breathers, Phys. Repts. 295 (1998) 181-264.
[17] A. Guiro, B. Kone, S. Ouaro, Weak homoclinic solutions of anisotropic difference equations with variable exponents, Adv. Difference Equa. 154 (2012), 1-12.
[18] D. Hennig, G.P. Tsironis, Wave transmission in non-linear lattices, Phys. Repts. 309 (1999), 333-432.
[19] A. Iannizzotto, S.A. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl. 403 (2013), 173-182.
[20] A. Iannizzotto, V. Rădulescu, Positive homoclinic solutions for the discrete p-Laplacian with a coercive weight function, Differential Integr. Equat. 27 (2014), 35-44.
[21] P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, Springer, Berlin, 2009.
[22] P.G. Kevrekidis, D.J. Frantzeskakis, R. Garretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates, Springer, Berlin, 2008.
[23] J. Leray, J.L. Lions, Quelques résultats de viśk sur les problémes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
[24] P. Matei, On the Fréchet differentiability of Luxemburg norm in the sequence spaces $l^{p(n)}$ with variable exponents, Romanian J. Math. Comp. Sci. 4 (2014), no. 1, 167-179.
[25] J. Mawhin, Leray-Schauder degree: A half century of extensions and applications, Topological Methods in Nonlinear Analysis 14 (1999), 195-228.
[26] M. Mihăilescu, V. Rădulescu, S. Tersian, Homoclinic solutions of difference equations with variable exponents, Topol. Meth. Nonlin. Anal. 38 (2011), 277-289.
[27] D.N. Mills, Nonlinear Optics: Basic Concepts, Springer, Berlin, 1998.
[28] G.J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.
[29] M.K. Moghadam, M. Avci, Existence results to a nonlinear $p(k)$-Laplacian difference equation, J. Difference Equa. App. 23 (2017), no. 10, 1652-1669.
[30] G.M. Bisci, D. Repovs, On sequences of solutions for discrete anisotropic equations, Expo. Math. 32 (2014), 284-295.
[31] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity 19 (2006), 27-40.
[32] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach, Discr. Contin. Dyn. Syst. 19 (2007), no. 2, 419-430.
[33] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.
[34] J. Simon, Régularité de la solution d'une équation nonlinéaire dans \mathbb{R}^{N}, Lecture Notes in Math. 665 (1978), 205-227.
[35] Z. Yucedag, Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Dif. Equa. Appl. 13 (2014), no. 1, 1-15.
[36] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
[37] G. Zhang, A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal. 5 (2008), no. 2, 38-49.
[38] G. Zhang, A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials II, Applicable Anal. 89 (2010), no. 9, 1541-1557.
(Mustafa Avci) Department of Science, Grande Prairie Regional College, Grande
Prairie, AB T8W 0A8, Canada
E-mail address: avcixmustafa@gmail.com, mavci@gprc.ab.ca

