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Dynamics of superior fractals via Jungck SP orbit with
s-convexity
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Abstract. The purpose of this paper is to generate new fractals for complex-valued polyno-
mials via Jungck SP orbit with s-convexity. In this paper, we obtain a new escape algorithm

for quadratic, cubic and higher degree complex valued polynomials to generate fractals. Also,

we provide an algorithm as well as source programs to generate fractals. We have shown that
beautiful graphics can be generated by using new escape algorithm. Our results are the gen-

eralization of corresponding results which is obtained by us [13] via SP orbit with s-convexity
and Kang et al. [15] via Modified Jungck three step orbit.
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1. Introduction

Generally, people believe that the geometry of nature is based on the simple figures
like lines, circles, polygons, spheres, quadratic surfaces and so on. But there are so
many examples in nature which show that the geometry does not depend on simple
figures. Fractal geometry provides a general framework to study such type of figures.
First of all, in 1982, Benoit Mandelbrot introduced the theory of fractals in his book [1]
which consists different fractal shapes existing in the nature. Later on, many other
mathematicians like George Cantor, Giuseppe Peano, David Hilbert, Helge von Koch,
Waclaw Sierpinski etc. gave their contribution in the field of fractals. Fractal is a
rough or fragmented geometric shape that can be subdivided into congruent parts,
each of which is a reduced size copy of the whole.

Historically, different generalizations of fractals have been made. In 1919, French
mathematician Gaston Julia [4] derived the Julia set when he was studying Cayley’s
problem which is related to the behavior of Newton’s method in complex plane. After
this, Mandelbrot extended the work of Julia and introduced Mandelbrot set in his
first book [1]. He studied fractals in Complex plane. Further, some other functions
such as rational [8], trigonometric and exponential [2] etc. were used in the generation
of fractals. Mandelbrot and Julia sets were also extended from the complex numbers
to quaternions [24], bicomplex numbers [23], tricomplex numbers [9] etc. Rani and
Kumar [6, 7] introduced the superior iterate and generated superior Julia and Man-
delbrot sets for quadratic and cubic polynomials. In 2009, D. Rochon [3] studied
generalized Mandelbrot sets in bicomplex plane. Later on, the work of Rochon was
extended by Wang et al. [19–22] and they carried further analysis of generalized Julia
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and Mandelbrot sets. Further, some researchers obtained some fixed point results
in the generation of Julia and Mandelbrot sets with s-convexity (see [5, 16, 17]). Re-
cently, S. Kumari et al. [13] obtained some fixed point results in the generation of
new fractals using SP orbit with s-convexity.

In 2011, Chugh and Kumar [10] introduced Jungck-SP iterative scheme and with
the help of examples, they proved that Jungck-SP iterative scheme converges faster
than that of Jungck-Noor, Jungck-Ishikawa and Jungck-Mann iterative schemes. In
2015, by using Jungck Mann and Jungck Ishikawa orbits, Kang et al. [14] established
the new escape criterion to generate Julia and Mandelbrot sets. In this sequel, they
presented the generalization of Julia sets and Mandelbrot sets for complex-valued
polynomials using Jungck three-step orbit [15]. Recently, authors [12] used SP orbit
to study the chaotic behavior of logistic map.

In this paper, we derive escape criterions to generate new fractals as a beautiful
graphics for quadratic, cubic and nth degree polynomials via Jungck-SP orbit with
s-convexity by using the software Mathematica 11.0.

2. Preliminaries

Definition 2.1. (Orbit) [11]. Let x0 ∈ R, then the orbit of x0 under the mapping F
is defined as the sequence of points

x0, x1 = F (x0), x2 = F 2(x0), ..., xn = Fn(x0), ... .

Definition 2.2. (Julia Set) [4]. The Julia set of a function g is the boundary of the
set of points z ∈ C that escape to infinity under repeated iteration by g(z), i.e. the
Julia set of a function g is defined as

J(g) = ∂{z ∈ C : gn(z)→∞ as n→∞},

where C is the set of complex numbers, gn(z) is nth iterate of function g.

Definition 2.3. (Mandelbrot Set) [1]. The Mandelbrot set M consists of all param-
eters for which the Julia set of g is connected, i.e.,

M = {c ∈ C : J(g) is connected}.

The set M contains a lot of information about the structure of Julia set.
The Mandelbrot set M for the Quadratic function Pc(z) = z2 + c is defined as the
collection of all c ∈ C for which the orbit of the point 0 is bounded, i.e.

M = {c ∈ C : {Pnc (0)}; n = 0, 1, 2, ... is bounded}.

We take the initial point 0 as 0 is the only critical point of Pc(z) (see [11], p. 249).

Definition 2.4. Let (X, d) be a metric space and I = [0, 1]. A mapping ω : X2×I →
X on X is said to be convex structure on X, if for any (x, y, α) ∈ X2 × I and u ∈ X,
the following inequality holds:

d(ω(x, y, α), u) ≤ αsd(x, u) + (1− α)sd(y, u).

The metric space (X, d) with convex structure ω is said to be convex metric space [18].
Moreover, a nonempty subset C of X is said to be convex if ω(x, y, α) ∈ C for all
(x, y, α) ∈ C2 × I.
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Definition 2.5. Let (X, d) be a metric space and I = [0, 1] and {an}, {bn}, {cn} are
real sequences in [0, 1] with an + bn + cn = 1. A mapping ω : X3 × I3 → X is said
to be convex structure on X, if for any (x, y, z, an, bn, cn) ∈ X3 × I3 and u ∈ X, the
following inequality holds:

d(ω(x, y, z, an, bn, cn), u) ≤ (an)sd(x, u) + (bn)sd(y, u) + (cn)sd(z, u).

Moreover, a nonempty subset C of X is said to be convex if ω(x, y, z, an, bn, cn) ∈ C
for all (x, y, z, an, bn, cn) ∈ C3 × I3.

Definition 2.6. Let X be a subset of real complex number and T : X → X. Consider
a sequence {zn} of iterates for initial point z0 ∈ X such that

Szn+1 = (1− αn)sSun + αsnTun,

Sun = (1− βn)sSvn + βsnTvn,

Svn = (1− γn)sSzn + γsnTzn,

where αn, βn, γn are sequences of positive numbers in [0, 1]. Then the above sequence
{zn} of iterates is said to be Jungck SP orbit with s-convexity having six tuples
(T, z0, αn, βn, γn, s).

3. Main results

The escape criterion has an renowned place in the generation of fractals. We
prove following escape criterions for quadratic, cubic and higher degree polynomials in
Jungck SP orbit with s-convexity. Throughout this paper, we assume that z0 = z ∈ C
and αn = α, βn = β, γn = γ, then Jungck SP iteration scheme with s-convexity can
be written in the following manner :

Szn+1 = (1− α)sSun + αsPc(un),

Sun = (1− β)sSvn + βsPc(vn),

Svn = (1− γ)sSzn + γsPc(zn),

where Pc(zn) is a quadratic, cubic or higher degree complex polynomial and 0 <
α, β, γ, s ≤ 1.

3.1. Escape criterion for quadratic polynomials. Let Q(z) = z2 − az + c be a
quadratic complex polynomial. We choose Pc(z) = z2 + c and Sz = az, where a and
c are complex numbers.

Theorem 3.1. Suppose |z| ≥ |c| > 2(1 + |a|)/sα, |z| ≥ |c| > 2(1 + |a|)/sβ and
|z| ≥ |c| > 2(1 + |a|)/sγ, where 0 < α, β, γ, s ≤ 1 and c is a complex number. Define

Sz1 = (1− α)sSu+ αsPc(u)

Sz2 = (1− α)sSu1 + αsPc(u1)

· · ·
· · ·
· · ·

Szn = (1− α)sSun−1 + αsPc(un−1)
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where Pc(z) is a quadratic polynomial in terms of α and n = 1, 2, 3, ..., then |zn| → ∞
as n→∞.
Proof. Consider

|Sv| = |(1− γ)sSz + γsPc(z)|, for Pc(z) = z2 + c

|Sv| = |(1− γ)sSz + γs(z2 + c)|
= |(1− γ)sSz + (1− (1− γ))s(z2 + c)|.

By binomial expansion up to linear terms of γ and (1− γ) , we obtain

|Sv| = |(1− sγ)Sz + (1− s(1− γ))(z2 + c)|
|av| = |(1− sγ)az + (1− s(1− γ))(z2 + c)|

= |(1− sγ)az + (1− s+ sγ)(z2 + c)|
≥ |(1− sγ)az + sγ(z2 + c)|, (∵ 1− s+ sγ ≥ sγ)

≥ |sγz2 + (1− sγ)az| − |sγc|
≥ |sγz2 + (1− sγ)az| − |sγz|, (∵ |z| ≥ |c|)
≥ |sγz2| − |(1− sγ)az| − |sγz|
≥ |sγz2| − |az|+ |sγaz| − |sγz|
≥ |sγz2| − |az| − sγ|z| (∵ |a| ≥ 0)

≥ |sγz2| − |az| − |z| (∵ sγ < 1)

= |sγz2| − |z|(|a|+ 1)

= |z|{sγ|z| − (|a|+ 1)}.

Thus,

|a||v| ≥ |z|{sγ|z| − (|a|+ 1)}
|v| ≥ |z|(1 + 1/|a|){sγ|z|/(|a|+ 1)− 1}

≥ |z|{sγ|z|/(|a|+ 1)− 1},
i.e., |v| ≥ |z|{sγ|z|/(|a|+ 1)− 1}. (1)

Also,

|Su| = |(1− β)sSv + βsPc(v)|, for Pc(v) = v2 + c

|Su| = |(1− β)sSv + βs(v2 + c)|
= |(1− β)sSv + (1− (1− β))s(v2 + c)|.

By binomial expansion up to linear terms of β and (1− β) , we obtain

|Su| = |(1− sβ)Sv + (1− s(1− β))(v2 + c)|
|au| = |(1− sβ)av + (1− s(1− β))(v2 + c)|

= |(1− sβ)av + (1− s+ sβ)(v2 + c)|
≥ |(1− sβ)av + sβ(v2 + c)|, (∵ 1− s+ sβ ≥ sβ)

≥ |(1− sβ)a{|z|(sγ|z|/(|a|+ 1)− 1)}+ sβ[{|z|(sγ|z|/(|a|+ 1)− 1)}2 + c]|
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Since |z| > (2(1 + |a|)/sγ), we have (sγ|z|/(|a|+ 1)− 1) > 1. This gives

|au| ≥ |(1− sβ)a|z|+ sβ(|z|2 + c)|
≥ |sβz2 + (1− sβ)az| − |sβc|
≥ |sβz2 + (1− sβ)az| − |sβz|, (∵ |z| ≥ |c|)
≥ |sβz2| − |(1− sβ)az| − |sβz|
≥ |sβz2| − |az|+ |sβaz| − |sβz|
≥ |sβz2| − |az| − sβ|z| (∵ |a| ≥ 0)

≥ |sβz2| − |az| − |z| (∵ sβ < 1)

= |sβz2| − |z|(|a|+ 1)

= |z|{sβ|z| − (|a|+ 1)}.

Thus,

|a||u| ≥ |z|{sβ|z| − (|a|+ 1)}
|u| ≥ |z|(1 + 1/|a|){sβ|z|/(|a|+ 1)− 1}

≥ |z|{sβ|z|/(|a|+ 1)− 1},
i.e., |u| ≥ |z|{sβ|z|/(|a|+ 1)− 1}. (2)

Now, for Szn = (1− α)sSun−1 + αsPc(un−1), we have

|Sz1| = |(1− α)sSu+ αsPc(u)|
= |(1− α)sSu+ αs(u2 + c)|
= |(1− α)sSu+ (1− (1− α))s(u2 + c)|.

By binomial expansion up to linear terms of α and (1− α) , we obtain

|Sz1| = |(1− sα)Su+ (1− s(1− α))(u2 + c)|
|az1| = |(1− sα)au+ (1− s(1− α))(u2 + c)|

= |(1− sα)au+ (1− s+ sα)(u2 + c)|
≥ |(1− sα)au+ sα(u2 + c)|, (∵ 1− s+ sα ≥ sα)

≥ |(1− sα)a{|z|(sβ|z|/(|a|+ 1)− 1)}+ sα[{|z|(sβ|z|/(|a|+ 1)− 1)}2 + c]|.

Since |z| > (2(1 + |a|)/sβ), we have (sβ|z|/(|a|+ 1)− 1) > 1. This gives

|az1| ≥ |(1− sα)az + sα(z2 + c)|
≥ |sαz2 + (1− sα)az| − |sαz|, (∵ |z| ≥ |c|)
≥ |sαz2| − |(1− sα)az| − |sαz|
≥ |sαz2| − |az|+ |sαaz| − |sαz|
≥ |sαz2| − |az| − sα|z|, (∵ |a| ≥ 0)

≥ |sαz2| − |az| − |z|, (∵ sα < 1)

= |sαz2| − |z|(|a|+ 1)

= |z|{sα|z| − (|a|+ 1)}.
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Thus,

|a||z1| ≥ |z|{sα|z| − (|a|+ 1)}
|z1| ≥ |z|(1 + 1/|a|){sα|z|/(|a|+ 1)− 1}

≥ |z|{sα|z|/(|a|+ 1)− 1},
i.e., |z1| ≥ |z|{sα|z|/(|a|+ 1)− 1}.

Since |z| ≥ |c| > (2(1 + |a|)/sα), |z| ≥ |c| > (2(1 + |a|)/sβ) and |z| ≥ |c| > (2(1 +
|a|)/sγ) exist. Therefore, we have sα|z|/(1 + |a|)− 1 > 1. Hence, there exists a λ > 0
such that sα|z|/(1 + |a|)− 1 > λ+ 1 > 1. Consequently, we have

|z1| > (1 + λ)|z|.
Particularly, |zn| > |z|. So, repeating this process n times we have,

|zn| > (1 + λ)n|z|.
Thus, the orbit of z tends to infinity as n tends to infinity. Hence the result. �

From the above theorem, we obtain the following corollaries:

Corollary 3.2. Let |c| > 2(1 + |a|)/sα, |c| > 2(1 + |a|)/sβ and |c| > 2(1 + |a|)/sγ,
then the orbit of Jungck SP (Q, 0, α, β, γ, s) with s-convexity escapes to infinity.

In the above theorem, the escape criterion proved gives us a little more information.
In the proof, we used the only fact that |z| ≥ |c| and |c| > 2(1 + |a|)/sα, |c| >
2(1 + |a|)/sβ and |c| > 2(1 + |a|)/sγ. Thus, we have the following corollary as a
refinement of the escape criterion:

Corollary 3.3. (Escape Criterion). Suppose |z| > max{|c|, 2(1 + |a|)/sα, 2(1 +
|a|)/sβ, 2(1 + |a|)/sγ}, then |zn| > (1 + λ)n|z| and |zn| → ∞ as n→∞.

We notice that we may apply Corollary 3.3 to |zk| for some k ≥ 0 to have the
following result:

Corollary 3.4. Suppose |zk| > max{|c|, 2(1 + |a|)/sα, 2(1 + |a|)/sβ, 2(1 + |a|)/sγ}
for some k ≥ 0 then |zk+1| > (1 + λ)|zk| and |zk| → ∞ as k →∞.

Using this corollary, we obtain an algorithm to generate connected Julia sets of
quadratic complex polynomials Qc(z) for any number c ∈ C. If for some n, the orbit
of z, i.e. {zn} lies outside the circle of radius max{|c|, 2(1+|a|)/sα, 2(1+|a|)/sβ, 2(1+
|a|)/sγ}, then the orbit escapes to infinity, which means that z does not lie in the
connected Julia set. If {zn} does not exceed this bound, then by definition, z lies in
the connected Julia set and collection of such points is known as Mandelbrot set.

3.2. Escape criterion for cubic polynomials. Now, we prove the following the-
orem for a cubic complex polynomial Qa,c(z) = z3 − az + c, we take Pc(z) = z3 + c
and Sz = az, where a, c are complex numbers, as this polynomial is equivalent to all
other cubic polynomials.

Theorem 3.5. Suppose that |z| ≥ |c| > (2(1 + |a|)/sα)1/2, |z| ≥ |c| > (2(1 +
|a|)/sβ)1/2 and |z| ≥ |c| > (2(1 + |a|)/sγ)1/2, where 0 < α, β, γ, s ≤ 1, and a, c
are complex numbers. Define

Sz1 = (1− α)sSu+ αsPc(u)
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Sz2 = (1− α)sSu1 + αsPc(u1)

· · ·
· · ·
· · ·

Szn = (1− α)sSun−1 + αsPc(un−1), n = 1, 2, 3, ... ,

where Pc(u) is a cubic polynomial in terms of α, then zn →∞ as n→∞.

Proof. Let us consider,

|Sv| = |(1− γ)sSz + γsPc(z)|, for Pc(z) = z3 + c

|Sv| = |(1− γ)sSz + γs(z3 + c)|
= |(1− γ)sSz + (1− (1− γ))s(z3 + c)|.

By binomial expansion up to linear terms of γ and (1− γ) , we obtain

|Sv| = |(1− sγ)Sz + (1− s(1− γ))(z3 + c)|
|av| = |(1− sγ)az + (1− s(1− γ))(z3 + c)|

= |(1− sγ)az + (1− s+ sγ)(z3 + c)|
≥ |(1− sγ)az + sγ(z3 + c)|, (∵ 1− s+ sγ ≥ sγ)

≥ |sγz3 + (1− sγ)az| − |sγc|
≥ |sγz3 + (1− sγ)az| − |sγz|, (∵ |z| ≥ |c|)
≥ |sγz3| − |(1− sγ)az| − |sγz|
≥ |sγz3| − |az|+ |sγaz| − |sγz|
≥ |sγz3| − |az| − sγ|z|, (∵ |a| ≥ 0)

≥ |sγz3| − |az| − |z|, (∵ sγ < 1)

= |sγz3| − |z|(|a|+ 1)

= |z|{sγ|z|2 − (|a|+ 1)}.
Thus,

|a||v| ≥ |z|{sγ|z|2 − (|a|+ 1)}
|v| ≥ |z|(1 + 1/|a|){sγ|z|2/(|a|+ 1)− 1}

≥ |z|{sγ|z2|/(|a|+ 1)− 1},
i.e., |v| ≥ |z|{sγ|z|2/(|a|+ 1)− 1}. (3)

Also,

|Su| = |(1− β)sSv + βsPc(v)|, forPc(v) = v3 + c

|Su| = |(1− β)sSv + βs(v3 + c)|
= |(1− β)sSv + (1− (1− β))s(v3 + c)|.



DYNAMICS OF SUPERIOR FRACTALS VIA JUNGCK SP ORBIT... 351

By binomial expansion up to linear terms of β and (1− β) , we obtain

|Su| = |(1− sβ)Sv + (1− s(1− β))(v3 + c)|
|au| = |(1− sβ)av + (1− s(1− β))(v3 + c)|

= |(1− sβ)av + (1− s+ sβ)(v3 + c)|
≥ |(1− sβ)av + sβ(v3 + c)|, (∵ 1− s+ sβ ≥ sβ)

≥ |(1− sβ)a{|z|(sγ|z|2/(|a|+ 1)− 1)}+ sβ[{|z|(sγ|z|2/(|a|+ 1)− 1)}3 + c]|.
Since |z| > (2(1 + |a|)/sγ)1/2, we have (sγ|z2|/(|a|+ 1)− 1) > 1. This gives

|au| ≥ |(1− sβ)a|z|+ sβ(|z|3 + c)|
≥ |sβz3 + (1− sβ)az| − |sβc|
≥ |sβz3 + (1− sβ)az| − |sβz|, (∵ |z| ≥ |c|)
≥ |sβz3| − |(1− sβ)az| − |sβz|
≥ |sβz3| − |az|+ |sβaz| − |sβz|
≥ |sβz3| − |az| − sβ|z|, (∵ |a| ≥ 0)

≥ |sβz3| − |az| − |z|, (∵ sβ < 1)

= |sβz3| − |z|(|a|+ 1)

= |z|{sβ|z|2 − (|a|+ 1)}.
Thus,

|a||u| ≥ |z|{sβ|z|2 − (|a|+ 1)}
|u| ≥ |z|(1 + 1/|a|){sβ|z|2/(|a|+ 1)− 1}

≥ |z|{sβ|z|2/(|a|+ 1)− 1},
i.e., |u| ≥ |z|{sβ|z|2/(|a|+ 1)− 1}. (4)

Now, for Szn = (1− α)sSun−1 + αsPc(un−1), we have

|Sz1| = |(1− α)sSu+ αsPc(u)|
= |(1− α)sSu+ αs(u3 + c)|
= |(1− α)sSu+ (1− (1− α))s(u3 + c)|.

By binomial expansion up to linear terms of α and (1− α) , we obtain

|Sz1| = |(1− sα)Su+ (1− s(1− α))(u3 + c)|
|az1| = |(1− sα)au+ (1− s(1− α))(u3 + c)|

= |(1− sα)au+ (1− s+ sα)(u3 + c)|
≥ |(1− sα)au+ sα(u3 + c)|, (∵ 1− s+ sα ≥ sα)

≥ |(1− sα)a{|z|(sβ|z|2/(|a|+ 1)− 1)}+ sα[{|z|(sβ|z|2/(|a|+ 1)− 1)}3 + c]|.
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Since |z| > (2(1 + |a|)/sβ)1/2, we have (sβ|z2|/(|a|+ 1)− 1) > 1. This gives

|az1| ≥ |(1− sα)az + sα(z3 + c)|
≥ |sαz3 + (1− sα)az| − |sαz|, (∵ |z| ≥ |c|)
≥ |sαz3| − |(1− sα)az| − |sαz|
≥ |sαz3| − |az|+ |sαaz| − |sαz|
≥ |sαz3| − |az| − sα|z|, (∵ |a| ≥ 0)

≥ |sαz3| − |az| − |z|, (∵ sα < 1)

= |sαz3| − |z|(|a|+ 1)

= |z|{sα|z|2 − (|a|+ 1)}.
Thus,

|a||z1| ≥ |z|{sα|z|2 − (|a|+ 1)}
|z1| ≥ |z|(1 + 1/|a|){sα|z|2/(|a|+ 1)− 1}

≥ |z|{sα|z|2/(|a|+ 1)− 1},
i.e., |z1| ≥ |z|{sα|z|2/(|a|+ 1)− 1}.

Since |z| ≥ |c| > (2(1 + |a|)/sα)1/2, |z| ≥ |c| > (2(1 + |a|)/sβ)1/2 and |z| ≥ |c| >
(2(1 + |a|)/sγ)1/2 exist. Therefore, we have sα|z|2/(1 + |a|) − 1 > 1. Hence, there
exists a λ > 0 such that sα|z|2/(1 + |a|)− 1 > λ+ 1 > 1. Consequently, we have

|z1| > (1 + λ)|z|.
Particularly, |zn| > |z|. So, using the same argument n times, we have

|zn| > (1 + λ)n|z|.
Thus, the orbit of z tends to infinity as n tends to infinity. Hence the result. �

The following corollaries are the consequences of above result:

Corollary 3.6. (Escape Criterion) Let Qa,c(z) = z3− az+ c, where a, c are complex

numbers. If |z| > max{|c|, (|a|+2/sα)1/2, (|a|+2/sβ)1/2, (|a|+2/sγ)1/2}, then |zn| →
∞ as n→∞.
This gives the escape criterion for a cubic polynomial.

Corollary 3.7. For some k ≥ 0, let us assume |zk| > max{|c|, (2(1+|a|)/sα)1/2, (2(1+
|a|)/sβ)1/2, (2(1 + |a|)/sγ)1/2}. Then |zk+1| > λ|zk| and |zk| → ∞ as k →∞.

We see that Corollary 3.7 gives the algorithm to generate fractals for cubic poly-
nomial Qa,c(z).

3.3. A general escape criterion. Now, we find out a general escape criterion for
higher degree polynomials of the form Gc(z) = zn − az+ c, we choose Pc(z) = zn + c
and Sz = az, where a and c are complex numbers and n = 1, 2, 3, ... .

Theorem 3.8. For a general function Pc(z) = zn + c ; n = 1, 2, 3, ..., where 0 <
α, β, γ, s ≤ 1, and c is a complex number. Define

Sz1 = (1− α)sSu+ αsPc(u)

Sz2 = (1− α)sSu1 + αsPc(u1)

· · ·
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· · ·

· · ·

Szn = (1− α)sSun−1 + αsPc(un−1), n = 2, 3, ... .

Then, the general escape criterion is max{|c|, (2(1+|a|)/sα)1/(n−1), (2(1+|a|)/sβ)1/(n−1),
(2(1 + |a|)/sγ)1/(n−1)}.

Proof. We shall prove the theorem by using the method of induction. For n = 1, we
have Pc(z) = z + c and this implies

|z| > max{|c|, 0, 0, 0}.

For n = 2, we have Pc(z) = z2 + c, so by Theorem 3.1, the escape criterion is

|z| > max{|c|, 2(1 + |a|)/sα, 2(1 + |a|)/sβ, 2(1 + |a|)/sγ}.

Similarly, for n=3, we get Pc(z) = z3+c. Then, the escape criterion from the Theorem
3.5 is given by

|z| > max{|c|, (2(1 + |a|)/sα)1/2, (2(1 + |a|)/sβ)1/2, (2(1 + |a|)/sγ)1/2}.

Hence, the theorem is true for n = 1, 2, 3. Now, suppose that theorem is true for any
n. We shall prove that the result holds for n+1. Let us suppose that Pc(z) = zn+1 +c
and |z| ≥ |c| > (2(1 + |a|)/sα)1/n, |z| ≥ |c| > (2(1 + |a|)/sβ)1/n and |z| ≥ |c| >
(2(1 + |a|)/sγ)1/n.

Then, consider

|Sv| = |(1− γ)sSz + γsPc(z)|, for Pc(z) = zn+1 + c

|Sv| = |(1− γ)sSz + γs(zn+1 + c)|
= |(1− γ)sSz + (1− (1− γ))s(zn+1 + c)|.

By binomial expansion up to linear terms of γ and (1− γ) , we obtain

|Sv| = |(1− sγ)Sz + (1− s(1− γ))(zn+1 + c)|
|av| = |(1− sγ)az + (1− s(1− γ))(zn+1 + c)|

= |(1− sγ)az + (1− s+ sγ)(zn+1 + c)|
≥ |(1− sγ)az + sγ(zn+1 + c)|, (∵ 1− s+ sγ ≥ sγ)

≥ |sγzn+1 + (1− sγ)az| − |sγc|
≥ |sγzn+1 + (1− sγ)az| − |sγz|, (∵ |z| ≥ |c|)
≥ |sγzn+1| − |(1− sγ)az| − |sγz|
≥ |sγzn+1| − |az|+ |sγaz| − |sγz|
≥ |sγzn+1| − |az| − sγ|z|, (∵ |a| ≥ 0)

≥ |sγzn+1| − |az| − |z|, (∵ sγ < 1)

= |sγzn+1| − |z|(|a|+ 1)

= |z|{sγ|z|n − (|a|+ 1)}.
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Thus,

|a||v| ≥ |z|{sγ|z|n − (|a|+ 1)}
|v| ≥ |z|(1 + 1/|a|){sγ|z|n/(|a|+ 1)− 1}

≥ |z|{sγ|zn|/(|a|+ 1)− 1},
i.e., |v| ≥ |z|{sγ|z|n/(|a|+ 1)− 1}. (5)

Also,

|Su| = |(1− β)sSv + βsPc(v)|, for Pc(v) = vn+1 + c

|Su| = |(1− β)sSv + βs(vn+1 + c)|
= |(1− β)sSv + (1− (1− β))s(vn+1 + c)|.

By binomial expansion up to linear terms of β and (1− β) , we obtain

|Su| = |(1− sβ)Sv + (1− s(1− β))(vn+1 + c)|
|au| = |(1− sβ)av + (1− s(1− β))(vn+1 + c)|

= |(1− sβ)av + (1− s+ sβ)(vn+1 + c)|
≥ |(1− sβ)av + sβ(vn+1 + c)|, (∵ 1− s+ sβ ≥ sβ)

≥ |(1− sβ)a{|z|(sγ|z|n/(|a|+ 1)− 1)}+ sβ[{|z|(sγ|z|n/(|a|+ 1)− 1)}n+1 + c]|.

Since |z| > (2(1 + |a|)/sγ)1/n, we have (sγ|zn|/(|a|+ 1)− 1) > 1. This gives

|au| ≥ |(1− sβ)a|z|+ sβ(|z|n+1 + c)|
≥ |sβzn+1 + (1− sβ)az| − |sβc|
≥ |sβzn+1 + (1− sβ)az| − |sβz|, (∵ |z| ≥ |c|)
≥ |sβzn+1| − |(1− sβ)az| − |sβz|
≥ |sβzn+1| − |az|+ |sβaz| − |sβz|
≥ |sβzn+1| − |az| − sβ|z|, (∵ |a| ≥ 0)

≥ |sβzn+1| − |az| − |z|, (∵ sβ < 1)

= |sβzn+1| − |z|(|a|+ 1)

= |z|{sβ|z|n − (|a|+ 1)}.

Thus,

|a||u| ≥ |z|{sβ|z|n − (|a|+ 1)}
|u| ≥ |z|(1 + 1/|a|){sβ|z|n/(|a|+ 1)− 1}

≥ |z|{sβ|z|n/(|a|+ 1)− 1},
i.e., |u| ≥ |z|{sβ|z|n/(|a|+ 1)− 1}. (6)

Now, for Szn = (1− α)sSun−1 + αsPc(un−1), we have

|Sz1| = |(1− α)sSu+ αsPc(u)|
= |(1− α)sSu+ αs(un+1 + c)|
= |(1− α)sSu+ (1− (1− α))s(un+1 + c)|
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By binomial expansion up to linear terms of α and (1− α) , we obtain

|Sz1| = |(1− sα)Su+ (1− s(1− α))(un+1 + c)|
|az1| = |(1− sα)au+ (1− s(1− α))(un+1 + c)|

= |(1− sα)au+ (1− s+ sα)(un+1 + c)|
≥ |(1− sα)au+ sα(un+1 + c)|, (∵ 1− s+ sα ≥ sα)

≥ |(1− sα)a{|z|(sβ|z|n/(|a|+ 1)− 1)}+ sα[{|z|(sβ|z|n/(|a|+ 1)− 1)}n+1 + c]|.

Since |z| > (2(1 + |a|)/sβ)1/n, we have (sβ|zn|/(|a|+ 1)− 1) > 1. This gives

|az1| ≥ |(1− sα)az + sα(zn+1c)|
≥ |sαzn+1 + (1− sα)az| − |sαz|, (∵ |z| ≥ |c|)
≥ |sαzn+1| − |(1− sα)az| − |sαz|
≥ |sαzn+1| − |az|+ |sαaz| − |sαz|
≥ |sαzn+1| − |az| − sα|z|, (∵ |a| ≥ 0)

≥ |sαzn+1| − |az| − |z|, (∵ sα < 1)

= |sαzn+1| − |z|(|a|+ 1)

= |z|{sα|z|n − (|a|+ 1)}.

Thus,

|a||z1| ≥ |z|{sα|z|n − (|a|+ 1)}
|z1| ≥ |z|(1 + 1/|a|){sα|z|n/(|a|+ 1)− 1}

≥ |z|{sα|z|n/(|a|+ 1)− 1},
i.e., |z1| ≥ |z|{sα|z|n/(|a|+ 1)− 1}.

Since |z| ≥ |c| > (2(1 + |a|)/sα)1/n, |z| ≥ |c| > (2(1 + |a|)/sβ)1/n and |z| ≥ |c| >
(2(1 + |a|)/sγ)1/n exist. Therefore, we have sα|zn|/(1 + |a|) − 1 > 1. Hence there
exists a λ > 0 such that sα|zn|/(1 + |a|)− 1 > λ+ 1 > 1. Consequently, we have

|z1| > (1 + λ)|z|.

So, applying the same argument n times, we have

|zn| > (1 + λ)n|z|.

Thus, the orbit of z tends to infinity as n tends to infinity. Hence the result. �

Corollary 3.9. Assume that |c| > (2(1 + |a|)/α)1/n−1, |c| > (2(1 + |a|)/β)1/n−1 and
|c| > (2(1 + |a|)/γ)1/n−1 exists. Then, the orbit SP (Pc, 0, α, β, γ, s) tends to infinity.

Corollary 3.10. (Escape Criterion) Let us suppose that for some k ≥ 0, |zk| >
max{|c|, (2(1 + |a|)/sα)1/k−1, (2(1 + |a|)/sβ)1/k−1, (2(1 + |a|)/sγ)1/k−1}, then |zk| >
λ|zk−1| and |zk| → ∞ as k →∞.

Using Corollary 3.10, we obtain an algorithm to generate fractals for the functions
of the type Gc(z) = zn − az + c ; n = 2, 3, ... .
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4. Algorithm for generating Fractals

With the help of general escape criterion, derived in Theorem 3.8, we use the
following algorithm to generate all fractals (Mandelbrot sets and Julia sets):

(1) Setup :
Choose a complex number c = l +mι.
Initialize values to variables α, β, γ, a, s.
Take z0 = x+ yι as first iteration.

(2) Iterate :

Szn+1 = (1− α)sSun + αsGc(un),

Sun = (1− β)sSvn + βsGc(vn),

Svn = (1− γ)sSzn + γsGc(zn),

where Gc(zn) = zn − az + c, n = 2, 3, ... and Sz = az.

(3) Stop :
|zn| > escape radius

= max
{
|c|, (2(1 + |a|)/sα)1/n−1, (2(1 + |a|)/sβ)1/n−1, (2(1 + |a|)/sγ)1/n−1

}
.

(4) Count : number of iterations to escape.

(5) Color : point depends on number of iterations required to escape.

Note: To generate Mandelbrot set, we take z0 = 0 as our first iteration while in case
of Julia set z0 is considered non-zero, i.e., z0 6= 0.

With the help of this algorithm, we make a program in Mathematica 11.0 to gener-
ate fractals. To make source program, firstly we use Block construct. Then, we input
the values of parameters α, β, γ, a, s, l,m ended with semicolons. Iterate the given
nth degree polynomial Qc(z) by implementing the general escape criterion derived in
Theorem 3.8 to generate fractals of nth degree polynomials (n = 2, 3, 4, .... ) using
while loop. In the last, to plot required fractals, we apply DensityPlot which includes
no. of iterations, range of x-axis and y-axis, no. of points and color function.

4.1. Source program to generate Mandelbrot sets using above algorithm.
Here, we provide a source program to obtain Quadratic Mandelbrot set shown in Fig.1.

iter[x,y, lim] := Block[{c, z, ct, α, β, γ, a, s},
c = x+ yI;
z = c;
α = 0.7;
β = 0.2;
γ = 0.4;
a = 3;
s = 0.1;
ct = 0;
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While[
(
Abs[z] < Max

{
Abs[c], 2∗(1+Abs[a])s∗α , 2∗(1+Abs[a])s∗β , 2∗(1+Abs[a])s∗γ

})
&&(ct <= lim),++

ct;
Gc(z) = z2 − az + c;
Sun = (1− α)sz + αsGc(z);
Gc(q) = q2 − aq + c;
Svn = (1− β)sq + βsGc(q);
Gc(p) = p2 − ap+ c;
Swn = (1− γ)sp+ αsGc(p);
return[ct];
]
DensityP lot[−iter[x, y, no.ofiterations], {x, xmin, xmax}, {y, ymin, ymax},
P lotPoints→ 200,Mesh→ False, ColorFunction→ (Hue[1−#]&)]

4.2. Source program to generate Julia sets. We obtain Quadratic Julia set,
shown in Fig.16 by running the following program in the Mathematica 11.0.

iter[x,y, lim] := Block[{c, z, ct, α, β, γ, a, s, l,m},
z = x+ yI;
c = l +mI;
α = 0.7;
β = 0.2;
γ = 0.4;
a = 3;
s = 0.1;
l = 0.5;
m = −0.5;
ct = 0;

While[
(
Abs[z] < Max

{
Abs[c], 2∗(1+Abs[a])s∗α , 2∗(1+Abs[a])s∗β , 2∗(1+Abs[a])s∗γ

})
&&(ct <= lim),++

ct;
Gc(z) = z2 − az + c;
Sun = (1− α)sz + αsGc(z);
Gc(q) = q2 − aq + c;
Svn = (1− β)sq + βsGc(q);
Gc(p) = p2 − ap+ c;
Swn = (1− γ)sp+ αsGc(p);
return[ct];
]
DensityP lot[−iter[x, y, no.ofiterations], {x, xmin, xmax}, {y, ymin, ymax},
P lotPoints→ 200,Mesh→ False, ColorFunction→ (Hue[1−#]&)]

Note: We construct all fractals using the same source program only by changing the
values of parameters as described in the caption of each figure.

5. Generation of Mandelbrot sets in Jungck SP orbit with s-convexity

Using source program given in Section 4.1, we generate following Mandelbrot sets
via Jungck SP orbit with s-convexity by running the program in Mathematica 11.0.



358 S. KUMARI, M. KUMARI, AND R. CHUGH

5.1. Mandelbrot sets for quadratic polynomial.
• We generate Quadratic Mandelbrot sets (shown in Figs.1 and 2) by taking poly-

nomial Qc(z) = z2 − 3z + c and Pc(z) = z2 + c. We choose the parameters
α = 0.7, β = 0.2, γ = 0.4 and vary the value of convex parameter s.

• For the polynomial Qc(z) = z2 − 4z + c and Pc(z) = z2 + c. Take the param-
eters α = β = γ = 0.5 and for different values of s, corresponding Quadratic
Mandelbrot sets are presented by Figs. 3 and 4.

• Now for Qc(z) = z2 − z + c and Pc(z) = z2 + c. The Quadratic Mandelbrot sets
for parameters α = β = γ = 0.5 and for different values of s are shown in Figs.
5 and 6.

Fig. 1. Mandelbrot set for α =
0.7, β = 0.2, γ = 0.4, a = 3, s =
0.1

Fig. 2. Mandelbrot set for α =
0.7, β = 0.2, γ = 0.4, a = 3, s =
0.8

Fig. 3. Mandelbrot set for α =
β = γ = 0.5, a = 4, s = 0.1

Fig. 4. Mandelbrot set for α =
β = γ = 0.5, a = 4, s = 0.7
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Fig. 5. Mandelbrot set for α =
β = γ = 0.5, a = 1, s = 0.3

Fig. 6. Mandelbrot set for α =
β = γ = 0.5, a = 1, s = 0.1

5.2. Mandelbrot sets for higher degree polynomials.
• We suppose Qc(z) = z3 − 3z + c and Pc(z) = z3 + c. The cubic Mandelbrot sets

for parameters α = 0.1, β = 0.9, γ = 0.5 and taking the values of s in ascending
order are presented by Figs. 7, 8 and 9.

• The Mandelbrot sets for fifth degree polynomialQc(z) = z5−3z+c, Pc(z) = z5+c
and for parameters α = 0.1, β = 0.9, γ = 0.5 are shown in Figs. 10 and 11.
For the same values of parameters, Mandelbrot set for tenth degree polynomial
Qc(z) = z10 − 3z + c, Pc(z) = z10 + c is presented by Figure 12.

• We generate Mandelbrot sets for higher values of n (see Figs. 13, 14 and 15) by
choosing parameters α = 0.9, β = 0.1, γ = 0.5 and s = 0.7.

Fig. 7. Mandelbrot set for α = 0.1, β = 0.9, γ = 0.5, s = 0.1, a = 3, n = 3
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Fig. 8. Mandelbrot set for
α = 0.1, β = 0.9, γ = 0.5, s =
0.7, a = 3, n = 3

Fig. 9. Mandelbrot set for
α = 0.1, β = 0.9, γ = 0.5, s =
1, a = 3, n = 3

Fig. 10. Mandelbrot set for
α = 0.1, β = 0.9, γ = 0.5, s =
0.7, a = 3 and n = 5

Fig. 11. Mandelbrot set for
α = 0.1, β = 0.9, γ = 0.5, s =
1, a = 3 and n = 5

Fig. 12. Mandelbrot set for
α = 0.1, β = 0.9, γ = 0.5, s =
1, a = 3 and n = 15

Fig. 13. Mandelbrot set for
α = 0.9, β = 0.1, γ = 0.5, s =
0.7, a = 3 and n = 10
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Fig. 14. Mandelbrot set for
α = 0.9, β = 0.1, γ = 0.5, s =
0.7, a = 3 and n = 30

Fig. 15. Mandelbrot set for
α = 0.9, β = 0.1, γ = 0.5, s =
0.7, a = 3 and n = 50

6. Generation of Julia sets in Jungck SP orbit with s-convexity

By running the source program given in Section 4.2, we generate following Julia sets
via Jungck SP orbit with s-convexity in Mathematica 11.0.

6.1. Julia sets for quadratic polynomial Qc(z) = z2−az+c and Pc(z) = z2+c.
• We generate Quadratic Julia sets for the parameters α = 0.3, β = 0.1, γ =

0.6, c = 0.5 − 0.5ι and a = 1, s = 0.2 (see Fig. 16) and for a = 3, s = 0.8 (Fig.
17).

• By choosing α = 0.2, β = 0.1, γ = 0.9, c = 0.5− 0.2ι and a = 3, Quadratic Julia
sets for different values of s are shown in Figs. 18 and 19.

• Now, for α = 0.1, β = 0.4, γ = 0.9, c = 2.5 − 0.9ι and a = (1 +
√

6). Quadratic
Julia sets for s = 0.2 and s = 0.5 are shown in Figs. 20 and 21 respectively. A
totally disconnected Julia set is presented by Fig. 22 for α = 0.3, β = 0.9, γ =
0.4, c = 2.5− 0.9ι and a = (1 +

√
6).

Fig. 16. Quadratic Julia set for
α = 0.3, β = 0.1, γ = 0.6, c =
0.5− 0.5ι, a = 1, s = 0.2

Fig. 17. Quadratic Julia set for
α = 0.3, β = 0.1, γ = 0.6, c =
0.5− 0.5ι, a = 3, s = 0.8
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Fig. 18. Quadratic Julia set for
α = 0.2, β = 0.1, γ = 0.9, c =
0.5− 0.2ι, a = 3, s = 0.2

Fig. 19. Quadratic Julia set for
α = 0.2, β = 0.1, γ = 0.9, c =
0.5− 0.2ι, a = 3, s = 0.5

Fig. 20. Quadratic Julia set for
α = 0.1, β = 0.4, γ = 0.9, c =

2.5− 0.9ι, a = (1 +
√
6), s = 0.2

Fig. 21. Quadratic Julia set for
α = 0.1, β = 0.4, γ = 0.9, c =

2.5− 0.9ι, a = (1 +
√
6), s = 0.5

Fig. 22. Quadratic Julia set for α = 0.3, β = 0.9, γ = 0.4, c = 2.5− 0.9ι, a = (1 +
√
6), s = 0.3

6.2. Julia sets for higher degree polynomials.
• The cubic Julia sets for polynomial Qc(z) = z3 − az + c, where Pc(z) = z3 + c

and for parameters α = 0.1, β = 0.4, γ = 0.1, c = −0.5 + 0.09ι, a = (1 +
√

6) are
presented by Figs. 23 and 24 for s = 0.2 and s = 0.5 respectively.



DYNAMICS OF SUPERIOR FRACTALS VIA JUNGCK SP ORBIT... 363

• Taking the same polynomials as above, the cubic Julia set for α = 0.1, β =
0.4, γ = 0.9, c = −0.5 + 0.09ι and a = (1 +

√
6) is shown in Fig. 25. Further, we

generate cubic Julia sets for α = 0.3, β = 0.1, γ = 0.5, c = 0.2 − 0.2ι, a = 3 by
using different values of parameter s (see Figs. 26 and 27).

• We generate fifth order Julia sets (see Figs. 28 and 29) by considering α =
0.5, β = 0.5, γ = 0.5, c = 0.1− 0.1ι, a = 2 for different values of s. A Julia set of
fifteenth order is presented for α = 0.7, β = 0.7, γ = 0.7, c = 0.2− 0.2ι, a = 2 by
Fig. 30.

Fig. 23. Cubic Julia set for α =
0.1, β = 0.4, γ = 0.1, c = −0.5 +

0.09ι, a = (1 +
√
6), s = 0.2

Fig. 24. Cubic Julia set for α =
0.1, β = 0.4, γ = 0.1, c = −0.5 +

0.09ι, a = (1 +
√
6), s = 0.5

Fig. 25. Cubic Julia set for α =
0.1, β = 0.4, γ = 0.9, c = −0.5 +

0.09ι, a = (1 +
√
6), s = 1

Fig. 26. Cubic Julia set for α =
0.3, β = 0.1, γ = 0.5, c = 0.2 −
0.2ι, a = 3, s = 0.2

7. Conclusion

In this experimental study, we generate fractals in Jungck SP orbit with s-convexity
and derive following results:
(1) We use maximum number of 30 iterations to generate these fractals.
(2) It is observed that the structure of Mandelbrot sets and Julia sets varies with

the variation of convex parameter s.
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(3) As the value of parameter s comes closer to 1, the number of attached tiny bulbs
increases and main body of fractals becomes fattier.

(4) Some fractals generated by us may be useful for graphic designers (see Figs.
11-15).

(5) Our algorithm and source programs enable one to generate more beautiful frac-
tals.

Fig. 27. Cubic Julia set for α =
0.3, β = 0.1, γ = 0.5, c = 0.2 −
0.2ι, a = 3, s = 0.5

Fig. 28. Julia set for α =
0.5, β = 0.5, γ = 0.5, c = 0.1 −
0.1ι, a = 2, s = 0.6 and n = 5

Fig. 29. Julia set for α =
0.5, β = 0.5, γ = 0.5, c = 0.1 −
0.1ι, a = 2, s = 1 and n = 5

Fig. 30. Julia set for α =
0.7, β = 0.7, γ = 0.7, c = 0.2 −
0.2ι, a = 2, s = 0.2 and n = 15
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