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An Example of Interaction Between Two Gasdynamic
Objects: a Shock Discontinuity and a Model of Turbulence

Liviu Florin Dinu

Abstract. The context of the considered interaction assumes a minimal nonlinearity - in
the form of a nonlinear subconscious. Consequently the interaction solution is essentially con-
structed as an admissible solution. The present analysis has essentially two objectives: (a)
finding an explicit optimal form for the interaction solution, and (b) offering an exhaustively
classifying characterization of this mentioned solution. Realising the objective (a) is con-
nected with: (a1) considering a singular limit of the interaction solution, (a2) considering a
hierarchy of (natural) partitions of the singular limit, (a3) inserting some (natural) gasdy-
namic factorizations at a certain level of the mentioned hierarchy and noticing a compatibility
(coherence) of these factorizations, (a4) identifying some inner connections inside one of the
mentioned partitions, (a5) predicting some exact details of the interaction solution, (a6) in-
dicating some parasite singularities [= strictly depending on the method] to be compensated
[= pseudosingularities], (a7) re-weighting the singular limit of the interaction solution. Real-
ising the objective (b) is connected with finding some Lorentz arguments of criticity. The
interaction solution appears essentially to (exhaustively) include a subcritical and respectively
a supercritical contribution distinguished by differences of a ”relativistic” nature. Precisely:
in the singular limit of the interaction solution [see (a1)] the emergent sound is singular in
the subcritical contribution and it is regular in the supercritical contribution (see Fig. 1). It
can be shown that this ”relativistic” discontinuity in the nature of the emergent sound, cor-
responding to the singular limit of the interaction solution appears to be dissembled (hidden)
in the re-weighted interaction solution [mentioned in (a7)].
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A Fourier-Snell representation of the parallel linearized interaction between a planar
shock discontinuity and a planar compressible finite-core vortex the axis of which is
parallel to the shock has been considered first time by Ribner [11] in a theoretical
attempt consecutive to a pioneering and most suggestive experimental approach of
Hollingworth and Richards [8] concerning the mentioned interaction. An ample and
significant series of theoretical and experimental developments has followed the two
mentioned works [see Ribner [12] for a thorough review]. A planar compressible
finite-core vortex the axis of which is parallel to the shock has the representation

[ũ(x∼, y
∼

), ṽ(x∼, y
∼

)] =
ε̃

2π





(1/r2
∗)[− y

∼
, x∼] for r ≤ r∗

(1/r2)[− y
∼

, x∼] for r∗ ≤ r
, s̃ ≡ p̃ ≡ 0 (1)

where we use the Lagrangian reference frames x∼, y
∼

(fixed on the undisturbed flow

ahead of the shock) and x̃, ỹ (fixed on the undisturbed flow behind of the shock) in
addition to the frame X, Y fixed on the shock discontinuity; we have
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x∼ = X −MT, x̃ = X −MT = x∼+(M −M) t∼; y
∼

= ỹ = Y ; t∼ = t̃ = T,

where M and M are the Mach numbers respectively associated to the regions behind
or ahead of the shock discontinuity [both are taken with respect to the sound velocity
behind].

The limit r∗ → 0 of (1) results in

[ũ(x∼, y
∼

), ṽ(x∼, y
∼

)] =
ε̃

2π
·

[− y
∼

, x∼]

x∼
2 + y

∼
2
, s̃ ≡ p̃ ≡ 0 (2)

∂ṽ

∂x∼
− ∂ũ

∂y
∼

= ε̃δ(x∼)δ(y
∼

). (3)

The present paper (see Dinu [1], [2]) has three main objectives:
• (i) to notice a gasdynamic factorization of the vorticity-shock interaction; via

E(z2) ≡ (d01z
2 + d02)2 + (d03z

2 + d04)2(z2 − z2c) ≡ d2
03(z

2 + a2)(z2 − b2)(z2 − c2)

where

a
def=

M

M
, $2

±
def=

M

M

[
(2MM − 1)±2M

√
γ − 1
γ + 1

MM

]
, b2 def= $2

+, c2 def= $2
−

a > 1,

{
b2 > 0 for − 1 < γ <

5
3
; c2 > 0

0 < |b| < |c| < zc

[the coefficients d0j should be presented below] and to make use of this factorization
to give an explicit, closed form to Ribner’s representation;
• (ii) to identify a sequence of other five gasdynamic factorizations in the explicit

form of the vortex-shock interaction solution [since a vortex represents a structured
vorticity, the present factorizations appear to be induced by that mentioned in (i) by
structuring] and to take into account the reality of a factoring compatibility of these
factorizations in order to select an extensible (to the case of the oblique interactions)
structure of the mentioned explicit form; an optimal simplicity [see (5)-(10)] is seen
to be induced in the extensible structure by this factoring compatibility; we use the
Lorentz transform

x =
x̃ + Mt̃√
1−M2

=
X√

1−M2
, y = ỹ, t =

t̃ + Mx̃√
1−M2

. (4)

in order to present the mentioned factorizations by

(ξ2 + η2 + ζi)2 − 4ξ2ζi

=
1

(x2 + y2)2
[(zct− x

√
z2c − ζi)2 − ζiy

2][(zct + x
√

z2c − ζi)2 − ζiy
2]

with

zc =
M√

1−M2
, ξ =

zcty

x2 + y2
, η =

zcx
√

t2 − x2 − y2

x2 + y2
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Ep
1 (ζi)[2(z2c − ζi)xξ + 2zc

√
z2c − ζi tξ −

√
z2c − ζi y(ξ2 + η2 + ζi)]

+Ep
2 (ζi)[−2zctξ + y(ξ2 + η2 + ζi)− 2

√
z2c − ζi xξ

= [
√

z2c − ζiEp
1 (ζi)− Ep

2 (ζi)][2
√

z2c − ζi xξ + 2zctξ − y(ξ2 + η2 + ζi)]
= [

√
z2c − ζiEp

1 (ζi)− Ep
2 (ζi)]

{
[y/(x2 + y2)][(zct + x

√
z2c − ζi)2 − ζiy

2]
}

√
z2c − ζi t[z2c(t

2 − x2)− ζi(x2 + y2)]± zcx[z2c(t
2 − x2)− ζi(2t2 − x2 − y2)]

≡ (t
√

z2c − ζi ∓ xzc)[(zct± x
√

z2c − ζi)2 − ζiy
2]

−{
2ξζiT v

1 (ζi) + (ξ2 + η2 + ζi)T v
2 (ζi)

}
+

√
z2c − ζi ·

{
2ξζi[−yEv

1 (ζi)] + (ξ2 + η2 + ζi)[zctEv
1 (ζi)− xEv

2 (ζi)]
}

= −[Ev
2 (ζi)− Ev

1 (ζi)
√

z2c − ζi][(ξ2 + η2 + ζi)(zct + x
√

z2c − ζi)− 2ζiyξ]
=−[Ev

2(ζi)−Ev
1(ζi)

√
z2c−ζi][1/(x2+y2)](zct−x

√
z2c−ζi)[(zct+x

√
z2c−ζi)2−ζiy

2]

zc[z2c(t
4 − t2x2 − t2y2 − x2y2)− ζi(t2y2 − x2y2 − y4 − t2x2)]

±
√

z2c − ζi tx[z2c(t
2 − y2)− (z2c − ζi)(x2 + y2)]

= [t(zct∓ x
√

z2c − ζi)− z2cy
2][(zct± x

√
z2c − ζi)2 − ζiy

2]

where

Q1(z2)
def= d11z

2 + d12, Q2(z2)
def= d01z

2 + d02, Q3(z2)
def= d03z

2 + d04,

Ep
1 (ζi)

def= MQ2(ζi) + zcQ3(ζi), Ep
2 (ζi)

def= zcQ2(ζi) + M(z2c − ζi)Q3(ζi)

Ev
1 (ζi)

def= Q3(ζi), Ev
2 (ζi)

def= Q2(ζi)

T v
1 (ζi)

def= −yEv
2 (ζi), T v

2 (ζi)
def= −x(z2c − ζi)Ev

1 (ζi) + tzcEv
2 (ζi),

with

d01 =
2

γ + 1
M

M
(1− 2M2), d02 =

M

M
d01 − 8

(γ + 1)2
M

2

M2
(1−M2),

d03 = − 2
γ + 1

√
1−M2, d04 =

M

M
d03,

d11 =
8

(γ + 1)2
(1−M2), d12 = −M

M
d11

• (iii) to use the mentioned extensible structure in order to indicate (see Fig. 1)
an exhaustively classifying, deterministic and explicit characterization of Lighthill’s
statistic and implicit approach [10] concerning the turbulence − planar shock in-
teraction. The incident turbulence, regarded as a perturbation, is modelled by a
nonstatistical/noncorrelative superposition of some compressible finite core (or point
core) planar vortices.

The linearized context implies the taking into consideration of a linear problem
with a nonlinear subconscious; the resultant perturbation is regarded as a solution
(”interaction solution”) of such a linearized problem. A nonlinear subconscious results
when the nonlinearity is allowed only at the zeroth order of a perturbation expansion:
we linearize the perturbation of a piecewise constant admissible solution and prove
that the requirement of admissibility is still active at the first order and essentially
structures the linearized description. The turbulence – planar shock interaction is
associated with a class of interaction elements. An interaction element models the
interaction between a planar shock and a single incident vortex corresponding to a
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Figure 1. The simplest nonstatistical model of turbulence refraction
(t̃ > 0)

certain inclination of the vortex axis with respect to the shock. The resulting ”rela-
tivistically motivated” classification, which is essentially oblique, takes into account
the importance of some subcritical or supercritical inclinations of the incident vortices
with respect to the shock in the mentioned interaction.

A final (extensive) version of the above mentioned analysis consists in replacing the
present vorticity incident perturbation by a general gasdynamic incident perturbation
(Dinu [3]). In fact, it may be proven (see Dinu [3]) that the structure (i)–(iii) of the
above mentioned interaction analysis persists in this final version.

The approach of the present paper (see Dinu [1], [2]) corresponds to a minimal
nonlinearity [associated to the presence of nonlinear subconscious]; still coupled with
a “maximal” (exhaustive; explicit and oblique) classifying characterization of the
turbulence – shock interaction.

This approach could be set in contrast with a lot of recent studies which allow
(analytically or numerically) a more complete considering of the nonlinearity contri-
bution yet in presence of the ”minimal” case of a (strictly) parallel interaction; see
for example Grove and Menikoff [6], Han and Yin [7] or Inoue et all [9].
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The work of Han and Yin allows more nonlinearity yet in presence of a set of
(approximating) restrictions [cf. its pag. 188]. These authors classify the context
of their work to be ”complicated” [pag. 189]. Still, from such a (”complicated”)
context an analogue of the maximal (exhaustive; explicit and oblique) characterization
included in this paper (also see Dinu [1], [2]) does not emerge. A possible cause for
such an issue appears to be the absence of some structuring arguments (needed to
replace a ”complicated” context by a complex context).

More nonlinearity is (numerically) allowed in the parallel interactions considered
in the papers by Inoue et all or Grove and Menikoff.

A first aspect of the complex character of the interaction solution concerns the
modal (entropy / vorticity / sound) structure involved.

Remark. Even in presence of a suitable set of structuring arguments we may need
a bit of ”chance” in order to get a successful calculation. For example, the attempt
to obtain an explicit/closed form for the parallel interaction solution may be fruitless
if we are not aware of the presence of a lot of ”traps”:
• (a) the emergent sound contribution cannot be computed directly; in fact, if r∗ is

the radius of the core of the planar incident vortex, this contribution can be put in an
explicit form directly only in the singular limit r∗→ 0 [which replaces the incidence
(1) by (2)] and only in the interior points of the sonic cylinder [X > 0, x̃2 + ỹ2 < t̃2];
incidentally it can be predicted (and verified) in the exterior points of the sonic
cylinder too; cf.

p̃ = p̃r + p̃s, ũ = ũr + ũs, ṽ = ṽr + ṽs, (5)

[p̃r(x̃, ỹ, t̃), ũr(x̃, ỹ, t̃), ṽr(x̃, ỹ, t̃)]

= −K

4∑

i=1

kr
i (ζ)Q−(ζi)

[t̃k̂−(ζi) + x̃ǩ−(ζi)]2 − ζiỹ2
[k̂−(ζi)ỹ,−ǩ−(ζi)ỹ, t̃k̂−(ζi) + x̃ǩ−(ζi)] (6)

and

p̃s(x̃, ỹ, t̃) = − K√
t̃2 − x̃2 − ỹ2

·H(t̃−
√

x̃2 + ỹ2) ·
{

4∑

i=1

ki(ζ)Q−(ζi)k̂−(ζi)
ỹ[t̃ǩ−(ζi) + x̃k̂−(ζi)]

[t̃k̂−(ζi) + x̃ǩ−(ζi)]2 − ζiỹ2
+

4∑

i=1

ki(ζ)Q+(ζi)k̂+(ζi)
ỹ[t̃ǩ+(ζi) + x̃k̂−(ζi)]

[t̃k̂+(ζi) + x̃ǩ+(ζi)]2 − ζiỹ2

}
(7)

ũs(x̃, ỹ, t̃) =
K√

t̃2 − x̃2 − ỹ2
·H(t̃−

√
x̃2 + ỹ2) ·

{
4∑

i=1

ki(ζ)Q−(ζi)ǩ−(ζi)
ỹ[t̃ǩ−(ζi) + x̃k̂−(ζi)]

[t̃k̂−(ζi) + x̃ǩ−(ζi)]2 − ζiỹ2
+

4∑

i=1

ki(ζ)Q+(ζi)ǩ+(ζi)
ỹ[t̃ǩ+(ζi) + x̃k̂+(ζi)]

[t̃k̂+(ζi) + x̃ǩ+(ζi)]2 − ζiỹ2

}
(8)
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ṽs(x̃, ỹ, t̃) = − K√
t̃2 − x̃2 − ỹ2

·H(t̃−
√

x̃2 + ỹ2) ·
{

4∑

i=1

ki(ζ)Q−(ζi)
◦
k(ζi)

(t̃ + Mx̃)[t̃k̂−(ζi) + x̃ǩ−(ζi)]−Mỹ2

[t̃k̂−(ζi) + x̃ǩ−(ζi)]2 − ζiỹ2
+

4∑

i=1

ki(ζ)Q+(ζi)
◦
k(ζi)

(t̃ + Mx̃)[t̃k̂+(ζi) + x̃ǩ+(ζi)]−Mỹ2

[t̃k̂+(ζi) + x̃ǩ+(ζi)]2 − ζiỹ2

}
(9)

where

ζ1 = −a2, ζ2 = b2, ζ3 = c2, ζ4 = −1,

Q±(ζi) = Q1(ζi)[Q2(ζi)±Q3(ζi)
√

z2c − ζi];

K =
ε̃

2π
· 1
d2
03

, k̂±(ζi) =
zc ±M

√
z2c − ζi√

1−M2
, ǩ±(ζi) =

Mzc ±
√

z2c − ζi√
1−M2

,

k
◦
(ζi) =

ζi√
1−M2

√
z2c−ζi

, ki(ζ)=


∏

j 6=i

(ζi−ζj)



−1

, kr
i (ζ) =

(2− i)(3− i)
2

ki(ζ)
√
|ζi|;

kr
2(ζ) = 0, kr

3(ζ) = 0; k̂−(ζ1) = 0; Q+(ζ1) = 0, Q−(ζ2) = 0, Q−(ζ3) = 0.

• (b) the emergent vorticity contribution cannot be computed directly even in the

singular limit r∗ → 0; its explicit form results by taking into account its connection
with the emergent sound contribution:

ũvorticity(x̃, ỹ, t̃) = ũ−

(
y
∼

, t∼ = T − X

M

)
−M ∗p̃+

(
ỹ, t̃ = T − X

M

)

−
T∫

T− X
M

∂p̃

∂x̃
(x̃, ỹ, θ)dθ − ũsound(x̃, ỹ, t̃)

ṽvorticity(x̃, ỹ, t̃) = ṽ−

(
y
∼

, t∼ = T − X

M

)
+ (M −M)

∂ψ

∂ỹ

(
ỹ, t̃ = T − X

M

)

−
T∫

T− X
M

∂p̃

∂ỹ
(x̃, ỹ, θ)dθ − ṽsound(x̃, ỹ, t̃)

where we have to insert,

M ∗ =
γ + 1
4M

[
3− γ

γ + 1
+

M

M

]
; T = t̃, T − X

M
= − x̃

M
, ỹ = ỹ.

The entropy component (in the sense of Carrier) of the resultant solution is:

s̃(x̃, ỹ, t̃) ≡ γ2 − 1
4MM

(M −M)2p̃+

(
− x̃

M
, ỹ

)
.



94 L. F. DINU

We end this paragraph by presenting the expression of the shock discontinuity per-
turbation ψ. Since lim

T→−∞
ψ = 0, we obtain

ψ(ỹ, t̃) =

t̃∫

−∞

[
−γ + 1

4M
p̃+(ỹ, θ) + ũ−(ỹ, θ)

]
dθ

where the subscripts + or − correspond respectively to the sides behind or ahead of
the shock discontinuity.
• (c) finally, the explicit form of the nonsingular parallel interaction solution which

corresponds to the incidence (1) results from a re-weighting {a re-set of the weight
lost in the singular limit r∗ → 0; cf. Dinu and Dinu [4]}. ¤

We have to strictly follow this recipe in order to reach an extensible Lorentz type
arguments structure of the mentioned parallel representation [the arguments structure
(10) may be regarded (see pag. 8) as being a code (”cipher”) which filters out the
passage to an oblique approach]:




p̃r + p̃s ≡ p̃‖(x, y, t; ζ1, ζ2, ζ3, ζ4; zc; Q1, Q2, Q3)
ũr + ũs ≡ ũ‖(x, y, t; ζ1, ζ2, ζ3, ζ4; zc; Q1, Q2, Q3)
ṽr + ṽs ≡ ṽ‖(x, y, t; ζ1, ζ2, ζ3, ζ4; zc; Q1, Q2, Q3).

(10)

The structure of the limit r∗ → 0 of the parallel interaction solution reflects: • the
shape of the incident vortex [the emergent sound singularities are distributed along
a (circular) sonic arc], • the details of the modal [vorticity-shock] interaction {some
pseudosingularities [= compensated singularities: they are singularities for the com-
ponents (6)–(9) taken separately still they appear to be compensated in the sums (5)]
are present}, • the presence of a singularity in the incident contribution, • a memory
of the various inner connections [cf. the compatibility of the mentioned factoriza-
tions], • a gasdynamic specificity [in most cases the above mentioned factorizations
become immaterial if the gasdynamic context is extended/lost; cf. Dinu and Dinu [5].

We could abstract these key phrases by saying that the details of the interaction
analysis in this paper (see Dinu [1], [2]) allow a structural characterization of the
”prodigious memory” of the interaction solution.

A second aspect of the complex character of the interaction solution considered
appears to be connected with the presence of a ”relativistic” structure. Modelling
the incident turbulence by a superposition of compressible planar vortices appears to
correspond to a first level of decomposition; next, in order to proceed, each incident
vortex is decomposed (by a Fourier representation) into planar monochromatic waves
– a second level of decomposition; finally, each incident planar monochromatic wave is
Snell passed through the shock discontinuity. The composition of the mentioned levels
leads to a Fourier–Snell representation of the interaction solution. The main point
of the present paper is that the result of the passage through the shock can again be
presented by two levels of recombination so that each incident level of decomposition
has a correspondent in the emergent solution.

A ”relativistic” character appears to reflect, at the first level of decomposition, the
importance of a critical (”relativistic”) inclination corresponding to Θ = Θc with

tanΘc = zc

(cf. Dinu [1], [2]) where Θ is the the inclination of the vortex axis with respect to
the plane of the discontinuity. The singular limit of the interaction solution essen-
tially appears to (exhaustively) include a subcritical and, respectively, a supercritical
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contribution distinguished by differences of a ”relativistic” nature. Precisely: in the
singular limit of the interaction solution [see Remark (a) here above] the emergent
sound is singular in the subcritical contribution and it is regular in the supercritical
contribution (see Fig. 1). In the mentioned singular limit the contributions Dinu
[1], [2] present, particularly, the following oblique subcritical extension of the sound
contribution (10)

p̃(x, y, t) = {1 + z−c (Θ)} · p̃‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

+Mz−c (Θ) · ũ‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗
1, Q

∗
2, Q

∗
3]

ũ(x, y, t) = M

{
1 +

M2

M
2 zc

[
z−c (Θ)− 1

zc

tan 2Θ
]}

· cosΘ√
M+(Θ)

· ũ‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

+
M

M
zc

[
z−c (Θ)− 1

zc

tan 2Θ
]
· cosΘ√

M+(Θ)

· p̃‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

ṽ(x, y, t) = ṽ‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

w̃(x, y, t) = M

(
2 +

M2

M
2 · zc · z−c (Θ)

)
· ( sign θ) sinΘ√

M+(Θ)

· ũ‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

+
(

1 +
M2

M
2 · zc · z−c (Θ)

)
· ( sign θ) sinΘ√

M+(Θ)

· p̃‖[x, y, t; a∗2, εbb
∗2, εcc

∗2, υ∗2; z∗c(Θ); Q∗1, Q
∗
2, Q

∗
3]

where




M+(Θ) def= M
2

+ (M2 −M
2
) sin2 Θ

z∗c(Θ) def=
√

z2c − tan 2Θ
z−c (Θ) def= z∗c(Θ)− zc





a∗2 =a2+tan 2Θ, b∗2 = |b2−tan 2Θ|,
c∗2 = |c2−tan 2Θ|, υ∗2 =1+tan 2Θ

εb = sign (tan 2Θ− b2), εc = sign (tan 2Θ− c2)





Q∗1(z
∗2) def= d11z

∗2 + (d11tan2Θ + d12)
Q∗2(z

∗2) def= d01z
∗2 + (d01tan2Θ + d02)

Q∗3(z
∗2) def= d03z

∗2 + (d03tan2Θ + d04)
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and x, y, t have the extended subcritic Lorentz expressions [which reduce to (4) in the
limit Θ → 0]





x =
zc cos Θ√
M+(Θ)

x̃+
Mzc

M
t̃+

Mzc

M
· (sign θ) sinΘ√

M+(Θ)
z̃ =

X√
1−M2

;

y = ỹ ; z = z̃

t =
Mz∗c(Θ) cos Θ√

M+(Θ)
x̃ +

z2c
Mz∗c(Θ)

t̃ +
z2c

Mz∗c(Θ)
· (sign θ) sin Θ√

M+(Θ)
z̃

In Dinu [2] it is shown that the ”relativistic” discontinuity in the nature of the
emergent sound, corresponding to the singular limit of the interaction solution, ap-
pears to be dissembled (hidden) in the re-weighted interaction solution.

We finally notice that the singular limit of the interaction solution appears to be,
cf. (3), an example of fundamental solution in presence of a nonlinear subconscious.
The contribution of this (minimal) nonlinearity results in a subcritical widening of
the incident singularities of the mentioned singular limit.
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