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Numerical simulations in the study of frictionless viscoelastic
contact problems
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Abstract. The frictionless contact problem between a viscoelastic body and a deformable

foundation is considered. The process is assumed to be quasistatic and the contact is modelled

with normal compliance. A fully discrete numerical scheme is presented for the model and

implemented in a computer code. It is based on the finite element method and the backward’s

Euler scheme. Numerical simulations in 1D and 2D test problems are shown.
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1. Introduction

Phenomena of contact between deformable bodies abound in industry and every-
day life. Contact of braking pads with wheels, tires with roads, pistons with skirts are
just a few simple examples. Because of the importance of contact processes in struc-
tural and mechanical systems, a considerable effort has been made in its modelling
and numerical simulations. The literature concerning this topic is extensive, see for
instance the references in [4].

The quasistatic frictionless contact problem between a viscoelastic body and a
deformable obstacle was considered in [8]. There, the contact was modeled with
normal compliance, that is, the penetration of the body into the foundation is allowed
but penalized; an existence and uniqueness result was obtained by using arguments
of variational inequalities and fixed point. The numerical analysis of this model was
provided in [3]; there, semi-discrete and fully discrete schemes were considered and
error estimates were derived.

In this paper we deal with the frictionless version of the contact problem studied
in [8]. The analysis of this problem, including the existence of a unique weak solution
and error estimates for the approximation schemes, is a straightforward consequence
of the results obtained in the references above. For this reason we only recall it and
focus on the numerical simulations of the model, which represent the main goal of
this work.

The paper is structured as follows. In Section 2 we present the mechanical prob-
lem as well as its variational formulation. In Section 3 we describe a fully discrete
approximation scheme for the model, based on the finite element method and the
backward’s Euler scheme. Our main interest lies in Section 4 where we present nu-
merical simulations in the study of one- and two-dimensional test problems.
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2. Mechanical problem and variational formulation

The physical setting is the following. A viscoelastic body occupies a regular domain
Ω ⊂ IRd (d = 1, 2, 3) with the boundary Γ partitioned into three disjoint measurable
parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. We are interested in the evolution
process of the mechanical state of the body in the time interval [0, T ] with T > 0.
The body is clamped on Γ1 and so the displacement field vanishes there. Surface
tractions of density f2 act on Γ2 and volume forces of density f0 act in Ω. We
assume that the forces and tractions change slowly in time so that the acceleration of
the system is negligible. The body may come in frictionless contact with an obstacle,
called the foundation. There is a gap g between the potential contact surface Γ3 and
the foundation, measured along the direction of the unit outward normal vector ν.

Under these conditions, the classical formulation of the mechanical problem is the
following:

Problem P . Find a displacement field u : Ω × [0, T ] → IRd and a stress field

σ : Ω × [0, T ] → Sd such that

σ = Aε(u̇) + Bε(u) in Ω × (0, T ), (1)

Div σ + f0 = 0 in Ω × (0, T ), (2)

u = 0 on Γ1 × (0, T ), (3)

σν = f2 on Γ2 × (0, T ), (4)

−σν = pν(uν − g), στ = 0 on Γ3 × (0, T ), (5)

u(0) = u0 in Ω. (6)

Here Sd represents the space of second-order symmetric tensors on IRd. The relation
(1) is the viscoelastic constitutive law in which A and B are given nonlinear opera-
tors, called the viscosity and elasticity operators, respectively. As usual, ε(u) denotes
the infinitesimal strain tensor and the dot above represents the derivative with re-
spect to the time variable. Relation (2) represents the equilibrium equation in which
Div denotes the divergence operator, and (3) and (4) are the displacement-traction
boundary conditions. The function u0 in (6) denotes the initial displacement.

The first equality in (5) represents the normal compliance contact condition where
uν is the normal displacement, σν denotes the normal stress, and pν is a prescribed
function. Here, uν − g, when positive, represents the penetration of the surface
asperities into those of the foundation. As an example of normal compliance function
pν we may consider

pν(r) = cνr+ (7)

where cν is a positive constant and r+ = max{0, r}. Formally, Signorini’s nonpene-
tration condition is obtained in the limit cν → ∞. The normal compliance contact
condition was introduced in [7] and used in a large number of papers, see e.g. [2, 5, 6, 8]
and the references therein. Finally, in (5), στ represents the tangential stress which
is assumed to be zero, since frictionless contact is being considered.

To study Problem P we introduce the function spaces

V = {v = (vi) ∈ [H1(Ω)]d ; v = 0 on Γ1},

Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, 1 ≤ i, j ≤ d}.
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These are real Hilbert spaces endowed with their canonical inner products denoted
(·, ·)V and (·, ·)Q, respectively. We denote by f(t) the element of V given by

(f(t),v)V =

∫

Ω

f0(t) · v dx +

∫

Γ2

f2(t) · v da

for all v ∈ V and t ∈ [0, T ], and let j : V × V → IR be the functional defined by

j(v,w) =

∫

Γ3

pν(vν − g)wν da ∀v,w ∈ V.

Here and below the index ν denotes the normal component of vectors in V . Using
Green’s formula we obtain the following variational formulation of Problem P in terms
of the displacement field:

Problem PV . Find a displacement field u : Ω × [0, T ] → V such that u(0) = u0

and

(Aε(u̇(t)), ε(v))Q + (Bε(u(t)), ε(v))Q + j(u(t),v)

= (f(t),v)V ∀v ∈ V, t ∈ [0, T ].

Problem PV represents a special case of the mathematical model treated in [8].
Therefore, keeping in mind the results in [8], under appropriate assumptions on the
data, we can state the existence and the uniqueness of a solution for Problem PV .

3. Numerical approximation

In this section we consider a fully discrete approximation scheme for Problem PV .
Let us denote by V h ⊂ V an arbitrary finite dimensional subspace of V , where h > 0
is a discretization parameter. Assume Ω is a polyhedral domain, and T h is a finite
element triangulation compatible with the boundary partition Γ = Γ1 ∪ Γ2 ∪ Γ3. In
our numerical simulations, we choose V h to be the finite element space of continuous
piecewise affine functions:

V h = {vh ∈ [C(Ω̄)]d ; vh|T ∈ [P1(T )]d ∀T ∈ T h, vh = 0 on Γ1}. (8)

For the time discretization we use a general partition of the time interval [0, T ] : 0 =
t0 < t1 < . . . < tN = T . Denote the step size kn = tn − tn−1 for n = 1, . . . , N and
let k = maxn kn be the maximal step size. For a continuous function w(t), we use
the notation wn = w(tn). For a sequence {wn}

N
n=0 we denote ∆wn = wn − wn−1

for the difference and δwn = ∆wn/kn for the corresponding divided difference. In
the following, c denotes a generic positive constants independent of the discretization
parameters h and k.

Let uh
0 ∈ V h be chosen to approximate the initial value u0. A fully discrete

approximation scheme for Problem PV is the following:

Problem Phk
V . Find a displacement field uhk = {uhk

n }N
n=0 ⊂ V h such that uhk

0 =
uh

0 , and for n = 1, . . . , N ,

(Aε(vhk
n ), ε(wh))Q + (Bε(uhk

n−1), ε(wh))Q + j(uhk
n−1,w

h) = (fn,wh)V ∀wh ∈ V h,

where vhk
n = δuhk

n = (uhk
n − uhk

n−1)/kn is the discrete velocity field.

By using arguments similar to those used in [3, 4], we deduce that Problem Phk
V

has a unique solution uhk ⊂ V h. Proceeding now as in [1] and assuming that ü ∈
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Figure 1. Contact of a rod with a deformable foundation.

L∞(0, T ;V ), we can show the following error estimate:

max
1≤n≤N

{|un − uhk
n |V + |u̇n − δuhk

n |V } ≤ c
(

k|ü|L∞(0,T :V ) + |u0 − uh
0 |V

+ max
1≤n≤N

|u̇n − wh|V
)

∀wh ∈ V h.

This estimate is the basis for error estimation. For example, if we assume V h

is defined by (8) and u̇ ∈ L∞(0, T ; [H2(Ω)]d), we obtain a linear convergence with
respect to the parameters k and h.

4. Numerical simulations

To show the performance of the numerical method described in the previous sec-
tion, we have done a number of numerical experiments. In this section we describe
numerical results for solving Problem P in one and two dimensions.

4.1. One dimensional example. We consider a cantilever viscoelastic rod Ω =
(0, L) which is fixed at its left end x = 0 and is subjected to the action of a body
force of density f0(x, t) in the x-direction (see Figure 1). An initial gap g is assumed
between its right end x = L and an obstacle with normal compliance. Contact occurs
at certain time tc > 0 and then compression starts to spread in from the contacting
end. This problem corresponds to Problem P with Ω = (0, L), Γ1 = {0}, Γ2 = ∅,
Γ3 = {L}. We use a linearly viscoelastic constitutive law, i.e.

σ = aε(u̇) + bε(u).

Here ε(u) =
∂u

∂x
, while a, b are material constants, independent of x and t, such that

a > 0. We choose (7) as normal compliance contact function.
A complete description of this problem is the following:
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Problem 1D. Find a displacement field u : [0, L] × [0, T ] → IR and a stress field

σ : [0, L] × [0, T ] → IR such that

σ(x, t) = a
∂2u(x, t)

∂x∂t
+ b

∂u(x, t)

∂x
in (0, L) × (0, T ),

∂σ(x, t)

∂x
+ f0(x, t) = 0 in (0, L) × (0, T ),

u(0, t) = 0 for t ∈ (0, T ),

−σ(L, t) = cν max{0, u(L, t) − g} for t ∈ (0, T ),

u(x, 0) = u0(x) in (0, L).

For computation we used the following data:

L = 1m, T = 0.1 sec, a = 100Nsec/m, b = 1N/m,

f0(x, t) = 10N/m ∀x ∈ (0, 1), t ∈ [0, 0.1],

cν = 1N/m, g = 0.25m, u0(x) = 0m ∀x ∈ (0, 1).

The exact solution of Problem 1D with the previous data can be obtained through
an elementary but tedious calculation. It is given below.

• For 0 ≤ t ≤ tc = ln
(

20
19

)

there is no contact and







u(x, t) = 5(1 − e−t)(2x − x2),

σ(x, t) = 10 − 10x.

• For tc = ln
(

20
19

)

≤ t ≤ 0.1 there is contact and















u(x, t) = −
50

19
e−2tx + 5x(x − 1)e−t +

61

8
x − 5x2,

σ(x, t) =
50

19
e−2t +

61

8
− 10x.

We have implemented the numerical method described in Section 3 on a standard
workstation. We used continuous piecewise linear functions for the space V h with
parameter h = 0.01. The time step is uniform, and k = 0.01.

In Figure 2 the displacement fields at times t = 0.03, 0.06, 0.1 and the correspond-
ing errors are shown.

The evolution in time of the displacement at nodes x = 0.25, 0.5, 1 for the approxi-
mate solutions and the corresponding error are plotted in Figure 3. In Figure 4, the
evolution of the discrete stresses on the contact node x = 1 and their difference with
the exact solution are drawn. We remark that before the contact occurs, the point
x = 1 is stress free and, after the contact occurs, the reaction of the obstacle is
towards the rod and increases when the penetration increases. Linear convergence of
the method is clearly observed.

4.2. Two-dimensional example. As a two-dimensional example of Problem P ,
we consider the plane stress viscoelastic problem depicted in Figure 5. The domain
Ω = (0, 10) × (0, 2) is a cross-section of a three dimensional body subjected to the
action of vertical body forces assumed to be linearly increasing in time. No tractions
act on the part Γ2 = [0, 10] × {2} ∪ (2, 8) × {0} of the boundary. Both ends of
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Figure 2. Problem 1D: Displacement fields and corresponding error
at several times.
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Figure 3. Problem 1D: Evolution of the displacements of nodes
x = 0.25, 0.5, 1 and the corrsponding errors.
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Figure 4. Problem T1D: Evolution of the stress field in x = 1 and
the corresponding error.

the body are supposed to be clamped, i.e. Γ1 = {0, 10} × (0, 2). We assume the
body is in frictionless contact with an elastic foundation with normal compliance on
Γ3 = [0, 2] × {0} ∪ [8, 10] × {0}.
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Figure 5. Test 2D: Contact of a 2D viscoelastic body.

Figure 6. Problem 2D: Initial boundary and deformed mesh at
final time for cν = 10N/cm2 and cν = 108 N/cm2.

The elasticity tensor B satisfies

(Bτ )αβ =
Eκ

1 − κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ , 1 ≤ α, β ≤ 2,

where E and κ are Young’s modulus and Poisson’s ratio of the material respectively,
and δαβ denotes the Kronecker symbol. The viscosity tensor A has a similar form,
i.e.

(Aτ )αβ = µ(τ11 + τ22)δαβ + ηταβ , 1 ≤ α, β ≤ 2,

where µ and η are viscosity constants. Note that the von Mises norm for a plane
stress field τ = (ταβ) is given by

‖τ‖ =
(

τ2
11 + τ2

22 − τ11τ22 + 3τ2
12

)
1

2

.

For computation we used the following data:

T = 1 sec, f0(x1, x2, t) = (0,−t)N/m3, f2 = (0, 0)N/m2,

pν(r) = cν(r)+, g = 0m, u0 = 0m,

E = 100N/m2, κ = 0.3, µ = 30N · sec/m2, η = 20N · sec/m2.

As in the previous example, V h is composed by continuous piecewise linear func-
tions and a uniform partition was considered with k = 0.01.

In Figure 6 the initial boundary and deformed mesh at final time t = 1sec. are
shown for values cν = 10, 108N/cm2 (Signorini’s conditions). In Figure 7, the von
Mises norm for stress field at final time t = 1sec. is plotted in the deformed configu-
ration for cν = 108 N/cm2.

Finally, the evolution of the contact line displacement is shown in Figure 8 for
several values of β = 1/cν .
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Figure 7. Test 2D: Von-Mises stress norm at final time in the de-
formed configuration for cν = 108 N/cm2.
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Figure 8. Test 2D: Evolution of the contact line.
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