Hypersurfaces of a Finsler space with exponential form of (α, β) - metric

Brijesh Kumar Tripathi

Abstract

In the present paper we have studied the Finslerian hypersurfaces of a Finsler space with the special form of exponential (α, β) - metric such as $L(\alpha, \beta)=\alpha e^{\frac{\beta}{\alpha}}+\beta e^{-\frac{\beta}{\alpha}}$. We also examined the hypersurfaces of this special exponential metric as a hyperplane of first, second and third kinds.

2010 Mathematics Subject Classification. 53B40, 53C60.
Key words and phrases. Finslerian hypersurface, exponential (α, β)-metric,Induced Cartan Connection,Hyperplane of first,hyperplane of second and hyperplane of third kind.

1. Introduction

We consider an n-dimensional Finsler space $F^{n}=\left(M^{n}, L\right)$, i.e., a pair consisting of an n-dimensional differential manifold M^{n} equipped with a fundamental function $L(x, y)$.

Definition 1.1. A Finsler space F^{n} of dimension n is a differentiable manifold such that the length s of the curve $x^{i}(t)$ of F^{n} is defined by $S=\int L(x, y) d t$. The fundamental function $L(x, y)=L\left(x^{1}, \ldots x^{n}, y^{1}, \ldots y^{n}\right)$ is supposed to be differentiable for $y \neq(0)$ and satisfies the following condition:-
(i) Positively homogeneous: $L(x, p y)=p L(x, y), p>0$.
(ii) Positive: $L(x, y)>0, y \neq 0$.
(iii)Positive definite metric $g_{i j}=\frac{1}{2} \frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}>0$.

The interesting and important examples of an (α, β) - metric are Randers metric $\alpha+\beta$, Kropina metric $\frac{\alpha^{2}}{\beta}$ and Matsumoto metric $[9] \frac{\alpha^{2}}{(\alpha-\beta)}$. The notion of an (α, β) metric was introduced by M. Matsumoto [7] and has been studied by many authors.

Definition 1.2. A Finsler metric $L(\alpha, \beta)$ in a differentiable manifold M^{n} is called an (α, β)-metric, if L is a positively homogeneous function of degree one of a Riemannian metric $\alpha=\left(a_{i j}(x) y^{i} y^{j}\right)^{\frac{1}{2}}$ and a one-form $\beta=b_{i}(x) y^{i}$ on M^{n}.

Definition 1.3. A Hypersurface is a generalization of the concept of hyperplane. Suppose an enveloping manifold M has n dimension, then any submanifold of M of $(n-1)$ dimension is a hypersurface. The co-dimension of hypersurface is one. If $m>n$, then V_{n} is called a subspace of $V_{m} . V_{m}$ is also enveloping space of V_{n} if $m>n$. In particular if $m=n+1$, then V_{n} is called hypersurface of the enveloping space V_{n+1}.

A hypersurface M^{n-1} of the M^{n} may be represented parametrically by the equation $x^{i}=x^{i}\left(u^{\alpha}\right), \alpha=1,2,3, \ldots,(n-1)$, where u are Gaussian coordinates on M^{n-1}. If the supporting element y^{i} at a point u^{α} of M^{n-1} is assumed to be tangential to M^{n-1}, we may then write $y^{i}=B_{\alpha}^{i}(u) v^{\alpha}$, so that v^{α} thought of as the supporting element of M^{n-1} at a point $\left(u^{\alpha}\right)$. Since the function $\underline{L}(u, v):=L(x(u), y(u, v))$ gives rise to a Finsler metric of M^{n-1}, we get an ($n-1$)-dimensional Finsler space $F^{(n-1)}=\left(M^{n-1}, \underline{L}(u, v)\right)$.

The concept of Finslerian hypersurface is first introduced by Matsumoto in the year 1985 and further he defined three types of hypersurfaces that were called a hyperplane of the first, second and third kinds. Further many authors studied these hyperplanes in different changes of the Finsler metric $[2,3,4,5,6,10,11]$ and obtained different results.

In the present paper we consider exponential form of special Finsler (α, β)-metric and determine Induced Riemannian metric,second fundamental v tensor also examined the hypersurfaces of this special metric as a hyperplane of first, second and third kinds.

2. Preliminaries

In the present paper we consider an n-dimensional Finsler space $F^{n}=\left\{M^{n}, L(\alpha, \beta)\right\}$, that is, a pair consisting of an n- dimensional differentiable manifold M^{n} equipped with a Fundamental function L as a special Finsler Space with the metric

$$
\begin{equation*}
L(\alpha, \beta)=\alpha e^{\frac{\beta}{\alpha}}+\beta e^{-\frac{\beta}{\alpha}} \tag{1}
\end{equation*}
$$

Differentiating equation (1) partially with respect to α and β are given by

$$
\begin{array}{ll}
L_{\alpha}=e^{\frac{\beta}{\alpha}}-\frac{\beta}{\alpha} e^{\frac{\beta}{\alpha}}+\frac{\beta^{2}}{\alpha^{2}} e^{-\frac{\beta}{\alpha}}, & L_{\beta}=e^{\frac{\beta}{\alpha}}-e^{-\frac{\beta}{\alpha}}-\frac{\beta}{\alpha} e^{-\frac{\beta}{\alpha}} \\
L_{\alpha \alpha}=\frac{\beta^{2}}{\alpha^{3}} \beta^{\frac{\beta}{\alpha}}-\frac{2 \beta^{2}}{\alpha^{3}} e^{-\frac{\beta}{\alpha}}+\frac{\beta^{3}}{\alpha^{4}} e^{-\frac{\beta}{\alpha}}, & L_{\beta \beta}=\frac{1}{\alpha} e^{\frac{\beta}{\alpha}}-\frac{2}{\alpha} e^{-\frac{\beta}{\alpha}}+\frac{\beta}{\alpha^{2}} e^{-\frac{\beta}{\alpha}} \\
L_{\alpha \beta}=\frac{\beta}{\alpha^{2}} e^{-\frac{\beta}{\alpha}}-\frac{\beta^{2}}{\alpha^{3}} e^{-\frac{\beta}{\alpha}}, &
\end{array}
$$

where $L_{\alpha}=\frac{\partial L}{\partial \alpha}, \quad L_{\beta}=\frac{\partial L}{\partial \beta}, \quad L_{\alpha \alpha}=\frac{\partial L \alpha}{\partial \alpha}, \quad L_{\beta \beta}=\frac{\partial L_{\beta}}{\partial \beta}, \quad L_{\alpha \beta}=\frac{\partial L_{\alpha}}{\partial \beta}$.
In Finsler space $F^{n}=\left\{M^{n}, L(\alpha, \beta)\right\}$ the normalized element of support $l_{i}=\dot{\partial_{i}} \dot{L}$ and angular metric tensor $h_{i j}$ are given by [8]:

$$
\begin{aligned}
l_{i} & =\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i} \\
h_{i j} & =p a_{i j}+q_{0} b_{i} b_{j}+q_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{-2} Y_{i} Y_{j}
\end{aligned}
$$

where $Y_{i}=a_{i j} y^{j}$. For the fundamental metric function (1) above constants are

$$
\begin{align*}
p & =\frac{\beta}{\alpha}+\left(1-\frac{\beta}{\alpha}\right) e^{\frac{2 \beta}{\alpha}}+\frac{\beta^{3}}{\alpha^{3}} e^{-\frac{2 \beta}{\alpha}} \\
q_{0} & =-2+\frac{2 \beta}{\alpha}+e^{\frac{2 \beta}{\alpha}}-\left(2-\frac{\beta}{\alpha}\right) \frac{\beta}{\alpha} e^{-\frac{2 \beta}{\alpha}}, \\
q_{-1} & =\left(1-\frac{\beta}{\alpha}\right)\left\{\frac{\beta}{\alpha^{2}}+\frac{\beta^{2}}{\alpha^{3}} e^{-\frac{2 \beta}{\alpha}}\right\} \\
q_{-2} & =\frac{1}{\alpha^{6}}\left\{2 \alpha \beta^{3}-\alpha^{3} \beta-2 \alpha^{2} \beta^{2}+\left(\alpha^{2} \beta^{2}-\alpha^{4}+\alpha^{3} \beta\right) e^{\frac{2 \beta}{\alpha}}+\left(\beta^{4}-3 \alpha \beta^{3}\right) e^{-\frac{2 \beta}{\alpha}}\right\} . \tag{2}
\end{align*}
$$

Fundamental metric tensor $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}$ and its reciprocal tensor $g^{i j}$ for $L=L(\alpha, \beta)$ are given by [8]

$$
\begin{equation*}
g_{i j}=p a_{i j}+p_{0} b_{i} b_{j}+p_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+p_{-2} Y_{i} Y_{j} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
p_{0} & =q_{0}+L_{\beta}^{2} \\
p_{-1} & =q_{-1}+L^{-1} p L_{\beta}, \\
p_{-2} & =q_{-2}+p^{2} L^{-2} . \tag{4}
\end{align*}
$$

The reciprocal tensor $g^{i j}$ of $g_{i j}$ is given by

$$
\begin{equation*}
g^{i j}=p^{-1} a^{i j}-s_{0} b^{i} b^{j}-s_{-1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-s_{-2} y^{i} y^{j} \tag{5}
\end{equation*}
$$

where $b^{i}=a^{i j} b_{j}$ and $b^{2}=a_{i j} b^{i} b^{j}$

$$
\begin{align*}
s_{0} & =\frac{1}{\tau p}\left\{p p_{0}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) \alpha^{2}\right\} \\
s_{-1} & =\frac{1}{\tau p}\left\{p p_{-1}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) \beta\right\} \\
s_{-2} & =\frac{1}{\tau p}\left\{p p_{-2}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) b^{2}\right\} \\
\tau & =p\left(p+p_{0} b^{2}+p_{-1} \beta\right)+\left(p_{0} p_{-2}-p_{-1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \tag{6}
\end{align*}
$$

The hv-torsion tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is given by [11]

$$
\begin{equation*}
2 p C_{i j k}=p_{-1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=p \frac{\partial p_{0}}{\partial \beta}-3 p_{-1} q_{0}, \quad m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \tag{8}
\end{equation*}
$$

Here m_{i} is a non-vanishing covariant vector orthogonal to the element of support y^{i}.
Let $\left\{\begin{array}{l}i \\ j k\end{array}\right\}$ be the component of Christoffel symbols of the associated Riemannian space R^{n} and ∇_{k} be the covariant derivative with respect to x^{k} relative to this Christoffel symbol. Now we define,

$$
\begin{equation*}
2 E_{i j}=b_{i j}+b_{j i}, \quad 2 F_{i j}=b_{i j}-b_{j i} \tag{9}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.
Let $C \Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, \Gamma_{j k}^{i}\right)$ be the Cartan connection of F^{n}. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the special Finsler space F^{n} is given by

$$
\begin{align*}
D_{j k}^{i}= & B^{i} E_{j k}+F_{k}^{i} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m} \\
& +C_{j k m} A_{s}^{m} g^{i s}+\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right) \tag{10}
\end{align*}
$$

where

$$
\begin{align*}
B_{k} & =p_{0} b_{k}+p_{-1} Y_{k}, \quad B^{i}=g^{i j} B_{j}, \quad F_{i}^{k}=g^{k j} F_{j i}, \\
B_{i j} & =\frac{1}{2}\left[p_{-1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial p_{0}}{\partial \beta} m_{i} m_{j}\right], \quad B_{i}^{k}=g^{k j} B_{j i} \\
A_{k}^{m} & =B_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m}, \\
\lambda^{m} & =B^{m} E_{00}+2 B_{0} F_{0}^{m}, \quad B_{0}=B_{i} y^{i} \tag{11}
\end{align*}
$$

where ' 0 ' denote contraction with y^{i} except for the quantities p_{0}, q_{0} and s_{o}.

3. Induced Cartan Connection

Let F^{n-1} be a hypersurface of F^{n} given by the equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ where $\{\alpha=1,2,3 \ldots(n-1)\}$. The element of support y^{i} of F^{n} is to be taken tangential to F^{n-1}, that is [8],

$$
\begin{equation*}
y^{i}=B_{\alpha}^{i}(u) v^{\alpha} \tag{12}
\end{equation*}
$$

the metric tensor $g_{\alpha \beta}$ and hv-tensor $C_{\alpha \beta \gamma}$ of F^{n-1} are given by

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad C_{\alpha \beta \gamma}=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k}
$$

and at each point $\left(u^{\alpha}\right)$ of F^{n-1}, a unit normal vector $N^{i}(u, v)$ is defined by

$$
g_{i j}\{x(u, v), y(u, v)\} B_{\alpha}^{i} N^{j}=0, \quad g_{i j}\{x(u, v), y(u, v)\} N^{i} N^{j}=1
$$

Angular metric tensor $h_{\alpha \beta}$ of the hypersurface are given by

$$
\begin{equation*}
h_{\alpha \beta}=h_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad h_{i j} B_{\alpha}^{i} N^{j}=0, \quad h_{i j} N^{i} N^{j}=1, \tag{13}
\end{equation*}
$$

(B_{i}^{α}, N_{i}) inverse of $\left(B_{\alpha}^{i}, N^{i}\right)$ is given by

$$
\begin{aligned}
& B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}, \quad B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, \quad B_{i}^{\alpha} N^{i}=0, \quad B_{\alpha}^{i} N_{i}=0, \\
& N_{i}=g_{i j} N^{j}, \quad B_{i}^{k}=g^{k j} B_{j i}, \quad B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i} .
\end{aligned}
$$

The induced connection $I C \Gamma=\left(\Gamma_{\beta \gamma}^{* \alpha}, G_{\beta}^{\alpha}, C_{\beta \gamma}^{\alpha}\right)$ of F^{n-1} from the Cartan's connection $C \Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{* i}\right)$ is given by [8].

$$
\begin{gathered}
\Gamma_{\beta \gamma}^{* \alpha}=B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma} \\
G_{\beta}^{\alpha}=B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right), \quad C_{\beta \gamma}^{\alpha}=B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}
\end{gathered}
$$

where

$$
M_{\beta \gamma}=N_{i} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}, \quad M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma}, \quad H_{\beta}=N_{i}\left(B_{0 \beta}^{i}+\Gamma_{o j}^{* i} B_{\beta}^{j}\right),
$$

and

$$
B_{\beta \gamma}^{i}=\frac{\partial B_{\beta}^{i}}{\partial u^{\gamma}}, \quad B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha}
$$

The quantities $M_{\beta \gamma}$ and H_{β} are called the second fundamental v-tensor and normal curvature vector respectively [8]. The second fundamental h-tensor $H_{\beta \gamma}$ is defined as [8]

$$
\begin{equation*}
H_{\beta \gamma}=N_{i}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} \tag{15}
\end{equation*}
$$

The relative h and v -covariant derivatives of projection factor B_{α}^{i} with respect to $I C \Gamma$ are given by

$$
B_{\alpha \mid \beta}^{i}=H_{\alpha \beta} N^{i},\left.\quad B_{\alpha}^{i}\right|_{\beta}=M_{\alpha \beta} N^{i} .
$$

It is obvious form the equation (14) that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\beta \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} \tag{16}
\end{equation*}
$$

The above equation yield

$$
\begin{equation*}
H_{0 \gamma}=H_{\gamma}, \quad H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0} \tag{17}
\end{equation*}
$$

We shall use following lemmas which are due to Matsumoto [8] in the coming section
Lemma 3.1. The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.
Lemma 3.2. A hypersurface $F^{(n-1)}$ is a hyperplane of the first kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$.

Lemma 3.3. A hypersurface $F^{(n-1)}$ is a hyperplane of the second kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.
Lemma 3.4. A hypersurface $F^{(n-1)}$ is a hyperplane of the third kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=M_{\alpha \beta}=0$.

4. Hypersurface $F^{(n-1)}(c)$ of a exponential form of (α, β)-metric in Finsler space

Let us consider a Finsler space with exponential form of (α, β)-metric $L(\alpha, \beta)=$ $\alpha e^{\frac{\beta}{\alpha}}+\beta e^{-\frac{\beta}{\alpha}}$, where, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and vector field $b_{i}(x)=\frac{\partial b}{\partial x^{i}}$ is a gradient of some scalar function $b(x)$. Now we consider a hypersurface $F^{(n-1)}(c)$ given by equation $b(x)=c$, a constant [11].

From the parametric equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$, we get

$$
\frac{\partial b(x)}{\partial u^{\alpha}}=0, \quad \frac{\partial b(x)}{\partial x^{i}} \frac{\partial x^{i}}{\partial u^{\alpha}}=0, \quad b_{i} B_{\alpha}^{i}=0
$$

Above shows that $b_{i}(x)$ are covariant component of a normal vector field of hypersurface $F^{n-1}(c)$. Further, we have

$$
\begin{equation*}
b_{i} B_{\alpha}^{i}=0 \quad \text { and } \quad b_{i} y^{i}=0 \quad \text { i.e. } \quad \beta=0, \tag{18}
\end{equation*}
$$

and induced matric $L(u, v)$ of $F^{n-1}(c)$ is given by

$$
\begin{equation*}
L(u, v)=a_{\alpha \beta} v^{\alpha} v^{\beta}, a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} \tag{19}
\end{equation*}
$$

which is a Riemannian metric.
Writing $\beta=0$ in the equations (2), (3) and (5) we get

$$
\begin{align*}
& p=1, \quad q_{0}=-1, \quad q_{-1}=0, \quad q_{-2}=-\alpha^{-2} \\
& p_{0}=3, \quad p_{-1}=2 \alpha^{-1}, \quad p_{-2}=0, \quad \tau=1-b^{2} \\
& s_{0}=-\frac{1}{1-b^{2}}, \quad s_{-1}=\frac{2}{\alpha\left(1-b^{2}\right)} \quad s_{-2}=-\frac{4 b^{2}}{\alpha^{2}\left(1-b^{2}\right)} \tag{20}
\end{align*}
$$

from (4) we get,

$$
\begin{equation*}
g^{i j}=a^{i j}+\frac{1}{1-b^{2}} b^{i} b j-\frac{2}{\alpha\left(1-b^{2}\right)}\left(b^{i} y^{j}+b^{j} y^{i}\right)-\frac{4 b^{2}}{\alpha^{2}\left(1-b^{2}\right)} y^{i} y^{j} \tag{21}
\end{equation*}
$$

thus along $F^{n-1}(c),(21)$ and (18) leads to

$$
g^{i j} b_{i} b_{j}=\frac{b^{2}}{\left(1-b^{2}\right)}
$$

So we get

$$
\begin{equation*}
b_{i}(x(u))=\sqrt{\frac{b^{2}}{\left(1-b^{2}\right)}} N_{i}, \quad b^{2}=a^{i j} b_{i} b_{j} \tag{22}
\end{equation*}
$$

where b is the length of the vector b^{i}.
Again from (21) and (22), we get

$$
\begin{equation*}
b^{i}=a^{i j} b_{j}=\left(1-b^{2}\right) N^{i}+\frac{2 b^{2} y^{i}}{\alpha} \tag{23}
\end{equation*}
$$

thus we have,
Theorem 4.1. The exponential form of (α, β)-metric, $L(\alpha, \beta)=\alpha e^{\frac{\beta}{\alpha}}+\beta e^{-\frac{\beta}{\alpha}}$ in a Finsler hypersurface $F^{(n-1)}(c)$, the Induced Riemannian metric is given by (19) and the scalar function $b(x)$ is given by (22) and (23).

Now the angular metric tensor $h_{i j}$ and metric tensor $g_{i j}$ of F^{n} are given by

$$
\begin{equation*}
h_{i j}=a_{i j}-b_{i} b_{j}-\frac{1}{\alpha^{2}} Y_{i} Y_{j} \quad \text { and } \quad g_{i j}=a_{i j}+3 b_{i} b_{j}+\frac{2}{\alpha}\left(b_{i} Y_{j}+b_{j} Y_{i}\right) \tag{24}
\end{equation*}
$$

From equation (18), (24) and (13) it follows that if $h_{\alpha \beta}^{(a)}$ denote the angular metric tensor of the Riemannian $a_{i j}(x)$ then we have along $F_{(c)}^{n-1}, h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$.

Thus along $F_{(c)}^{n-1}, \quad \frac{\partial p_{0}}{\partial \beta}=-\frac{2}{\alpha}$, from equation (8) we get

$$
r_{1}=\frac{2}{\alpha}, \quad m_{i}=b_{i}
$$

then hv-torsion tensor becomes

$$
\begin{equation*}
C_{i j k}=\frac{1}{\alpha}\left(h_{i j} b_{k}+h_{j k} b_{i}+h_{k i} b_{j}\right)+\frac{1}{\alpha} b_{i} b_{j} b_{k} \tag{25}
\end{equation*}
$$

in the exponential form of (α, β)-metric of a Finsler hypersurface $F_{(c)}^{(n-1)}$. Due to fact from (13), (14), (15), (18) and (25) we have

$$
\begin{equation*}
M_{\alpha \beta}=\frac{1}{\alpha} \sqrt{\frac{b^{2}}{\left(1-b^{2}\right)}} h_{\alpha \beta} \quad \text { and } \quad M_{\alpha}=0 \tag{26}
\end{equation*}
$$

Therefore from equation (17) it follows that $H_{\alpha \beta}$ is symmetric. Thus we have
Theorem 4.2. The second fundamental v-tensor of the exponential form of (α, β) metric with Finsler hypersurface $F_{(c)}^{(n-1)}$ is given by (26) and the second fundamental h-tensor $H_{\alpha \beta}$ is symmetric.

Now from (18) we have $b_{i} B_{\alpha}^{i}=0$. Then we have

$$
b_{i \mid \beta} B_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0
$$

Therefore, from (16) and using $b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta}$, we have

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+b_{i \mid j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{i} H_{\alpha \beta} N^{i}=0 \tag{27}
\end{equation*}
$$

since $\left.b_{i}\right|_{j}=-b_{h} C_{i j}^{h}$, we get

$$
b_{i \mid j} B_{\alpha}^{i} N^{j}=0
$$

Therefore from equation (27) we have,

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1-b^{2}\right)}} H_{\alpha \beta}+b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}=0 \tag{28}
\end{equation*}
$$

because $b_{i \mid j}$ is symmetric. Now contracting (28) with v^{β} and using (12) we get

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1-b^{2}\right)}} H_{\alpha}+b_{i \mid j} B_{\alpha}^{i} y^{j}=0 . \tag{29}
\end{equation*}
$$

Again contracting by v^{α} equation (29) and using (12), we have

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1-b^{2}\right)}} H_{0}+b_{i \mid j} y^{i} y^{j}=0 \tag{30}
\end{equation*}
$$

From Lemma 3.1 and 3.2, it is clear that exponential (α, β)-metric with Finsler hypersurface $F_{(c)}^{(n-1)}$ is a hyperplane of first kind if and only if $H_{0}=0$. Thus from (29) it is obvious that $F_{(c)}^{n-1}$ is a hyperplane of first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$. This $b_{i \mid j}$ being the covariant derivative with respect to $C \Gamma$ of F^{n} defined on y^{i}, but $b_{i j}=\nabla_{j} b_{i}$ is the covariant derivative with respect to Riemannian connection $\left\{{ }_{j k}^{i}\right\}$ constructed from $a_{i j}(x)$. Hence $b_{i j}$ does not depend on y^{i}. We shall consider the difference $b_{i \mid j}-b_{i j}$ where $b_{i j}=\nabla_{j} b_{i}$ in the following. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{l}i \\ j k\end{array}\right\}$ is given by (10). Since b_{i} is a gradient vector, then from (9) we have

$$
E_{i j}=b_{i j}, \quad F_{i j}=0, \quad \text { and } \quad F_{j}^{i}=0
$$

Thus (10) reduces to

$$
\begin{align*}
D_{j k}^{i}= & B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m} \\
& +C_{j k m} A_{s}^{m} g^{i s}+\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right), \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
B_{i} & =3 b_{i}+2 \alpha^{-1} Y_{i}, \quad B^{i}=-\frac{1}{\left(1-b^{2}\right)} b^{i}+\frac{2\left(1-8 b^{2}\right)}{\alpha\left(1-b^{2}\right)} y^{i}, \\
B_{i} B^{i} & =\frac{4-35 b^{2}}{1-b^{2}}, \lambda^{m}=B^{m} b_{00}, \quad B_{i j}=\frac{1}{\alpha}\left(a_{i j}-\frac{Y_{i} Y_{j}}{\alpha^{2}}\right)-\frac{1}{\alpha} b_{i} b_{j}, \\
B_{j}^{i} & =\frac{1}{\alpha}\left(\delta_{j}^{i}-\alpha^{-2} Y^{i} Y_{j}\right)-\frac{4}{\alpha^{2}} b^{i} Y_{j}-\frac{2\left(1+b^{2}\right)}{\alpha^{2}} b_{j} y^{i}-\frac{8 b^{2}}{\alpha^{3}\left(1-b^{2}\right)} y^{i} Y_{j}, \\
A_{k}^{m} & =B_{k}^{m} b_{00}+B^{m} b_{k 0} . \tag{32}
\end{align*}
$$

In view of (20) and (21), the relation in (11) becomes to by virtue of (32) we have $B_{0}^{i}=0, B_{i 0}=0$ which leads $A_{0}^{m}=B^{m} b_{00}$.

Now contracting (31) by y^{k} we get

$$
D_{j 0}^{i}=B^{i} b_{j 0}+B_{j}^{i} b_{00}-B^{m} C_{j m}^{i} b_{00}
$$

Again contracting the above equation with respect to y^{j} we have

$$
D_{00}^{i}=B^{i} b_{00}=\left\{-\frac{1}{\left(1-b^{2}\right)} b^{i}+\frac{2\left(1-8 b^{2}\right)}{\alpha\left(1-b^{2}\right)} y^{i}\right\} b_{00} .
$$

Paying attention to (18), along $F_{(c)}^{(n-1)}$, we get

$$
\begin{equation*}
b_{i} D_{j 0}^{i}=-\frac{b^{2}}{\left(1-b^{2}\right)} b_{j 0}+\frac{1}{\alpha} b_{j} b_{00}-\frac{4 b^{2}}{\alpha^{2}\left(1-b^{2}\right)} Y_{j} b_{00}-\frac{b^{2}}{1-b^{2}} b_{i} b^{m} C_{j m}^{i} b_{00} . \tag{33}
\end{equation*}
$$

Now we contract (33) by y^{j} we have

$$
\begin{equation*}
b_{i} D_{00}^{i}=-\frac{5 b^{2}}{1-b^{2}} b_{00} \tag{34}
\end{equation*}
$$

From (14), (22), (23), (26) and $M_{\alpha}=0$, we have

$$
b_{i} b^{m} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0
$$

Thus the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$ the equation (33) and (34) gives

$$
b_{i \mid j} y^{i} y^{j}=b_{00}-b_{r} D_{00}^{r}=\frac{1+4 b^{2}}{1-b^{2}} b_{00}
$$

Consequently (29) and (30) may be written as

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{1-b^{2}}} H_{\alpha}+\frac{1+4 b^{2}}{1-b^{2}} b_{i 0} B_{\alpha}^{i}=0, \quad \sqrt{\frac{b^{2}}{1-b^{2}}} H_{0}+\frac{1+4 b^{2}}{1-b^{2}} b_{00}=0 \tag{35}
\end{equation*}
$$

Thus the condition $H_{0}=0$ is equivalent to $b_{00}=0$. Using the fact $\beta=b_{i} y^{i}=0$ the condition $b_{00}=0$ can be written as $b_{i j} y^{i} y^{j}=b_{i} y^{i} b_{j} y^{j}$ for some $c_{j}(x)$. Thus we can write,

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} \tag{36}
\end{equation*}
$$

Now from (18) and (36) we get

$$
b_{00}=0, \quad b_{i j} B_{\alpha}^{i} B_{\beta}^{j}=0, \quad b_{i j} B_{\alpha}^{i} y^{j}=0 .
$$

Hence from (35) we get $H_{\alpha}=0$, again from (36) and (32) we get $b_{i 0} b^{i}=\frac{c_{0} b^{2}}{2}, \lambda^{m}=$ $0, A_{j}^{i} B_{\beta}^{j}=0$ and $B_{i j} B_{\alpha}^{i} B_{\beta}^{j}=\frac{1}{\alpha} h_{\alpha \beta}$.

Now we use equation (14), (21), (22), (23), (26) and (31) then we have

$$
\begin{equation*}
b_{r} D_{i j}^{r} B_{\alpha}^{i} B_{\beta}^{j}=-\frac{c_{0} b^{3}}{2 \alpha\left(1-b^{2}\right)^{3 / 2}} h_{\alpha \beta} . \tag{37}
\end{equation*}
$$

Thus the equation (28) reduces to

$$
\begin{equation*}
H_{\alpha \beta}+\frac{c_{0} b^{2}}{2 \alpha\left(1-b^{2}\right)} h_{\alpha \beta}=0 \tag{38}
\end{equation*}
$$

Hence the hypersurface $F_{(c)}^{n-1}$ is umbilical.
Theorem 4.3. The necessary and sufficient condition for a exponential form of (α, β)-metric in Finsler hypersurface $F_{(c)}^{(n-1)}$ to be a hyperplane of first kind is (36). In this case the second fundamental tensor of $F_{(c)}^{n-1}$ is proportional to its angular metric tensor.

Now from Lemma 3.3, $F_{(c)}^{(n-1)}$ is a hyperplane of second kind if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=0$. Thus from (37), we get

$$
c_{0}=c_{i}(x) y^{i}=0
$$

Therefore there exists a function $\psi(x)$ such that

$$
c_{i}(x)=\psi(x) b_{i}(x)
$$

Therefore (36) we get

$$
2 b_{i j}=b_{i}(x) \psi(x) b_{j}(x)+b_{j}(x) \psi(x) b_{i}(x)
$$

This can also be written as

$$
b_{i j}=\psi(x) b_{i} b_{j} .
$$

Theorem 4.4. The necessary and sufficient condition for a exponential form of (α, β)-metric in Finsler hypersurface $F_{(c)}^{(n-1)}$ to be a hyperplane of second kind is (38).

Again Lemma 4.4, together with (26) and $M_{\alpha}=0$ shows that $F_{(c)}^{n-1}$ does not become a hyperplane of third kind.

Theorem 4.5. The exponential form of (α, β)-metric in a Finsler hypersurface $F_{(c)}^{(n-1)}$ is not a hyperplane of the third kind.

References

[1] T. Aikou, M. Hashiguchi, K. Yamauchi, On Matsumoto's Finsler space with time measure, Rep. Fac. Sci., Kagoshima Univ. (Math., Phys. and Chem.) 23 (1990), 1-12.
[2] V.K. Chaubey, A. Mishra, Hypersurface of a Finsler Space with Special (α, β)-metric,Journal of Contemporary Mathematical Analysis 52 (2017), 1-7.
[3] Chaubey, V.K. B.K. Tripathi, Hypersurfaces of a Finsler Space with deformed BerwaldMatsumoto Metric, Bulletin of the Transilvania University of Brasov 11(60) (2018), no. 1, 37-48.
[4] V.K. Chaubey, B.K. Tripathi, Finslerian Hypersurface of a Finsler Spaces with Special (γ, β) metric, Journal of Dynamical System and Geometric Theories 12 (2014), no. 1, 19-27.
[5] M.Kitayama, On Finslerian hypersurfaces given by β - change, Balkan Journal of Geometry and Its Applications 7 (2002), no. 2, 49-55.
[6] I.Y. Lee, H.Y. Park, Y.D. Lee, On a hypersurface of a special Finsler spaces with a metric $\left(\alpha+\frac{\beta^{2}}{\alpha}\right)$, Korean J. Math. Sciences 8 (2001), 93-101.
[7] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. on Math, Phys. 31 (1992), 43-83.
[8] M. Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ. 25 (1985), 107-144.
[9] M. Matsumoto, A slope of Mountain is a Finsler surface with respect to time measure, J. Math. Kyoto Univ. 29 (1989), no. 1, 17-25.
[10] T.N. Pandey, B.K. Tripathi, On a hypersurface of a Finsler space with special (α, β)-Metric, Tensor, N. S. 68 (2007), no. 2, 158-166.
[11] U.P. Singh, B. Kumari, On a hypersurface of a Matsumoto space, Indian J. pure appl. Math. 32 (2001), no. 4, 521-531.
(Brijesh Kumar Tripathi) Department of Mathematics, L.D. College of Engineering, Ahmedabad (Gujarat)-380015, India
E-mail address: brijeshkumartripathi4@gmail.com

