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Double merging of phase space for differential equations with
small stochastic supplements under Levy and Poisson
approximation conditions

Igor V. Samoilenko and Anatolii V. Nikitin

Abstract. The paper is devoted to the study of limit theorems of evolving evolutionary

systems of ”particles” in random environment. Here the term ”particle” is used broadly to

include molecules in the infected individuals considered in epidemic models, species in logistic
growth models, age classes of population in demographics models, etc. The evolutionary

system is complicated by the influence of impulse perturbation and non-trivial structure of

the random environment. Namely, the the switching Markov process has a split phase space
of states. We propose a new approach in construction of the approximation scheme for the

impulse perturbation that allows not only to see the averaged and diffusion component of the

limit process, but also to preserve Poisson jumps that models catastrophic events like mass
extinction, earthquakes, etc. We discuss limit behavior of the generators of the evolutionary

systems that allows not only to claim convergence of corresponding distributions, but to use

the results obtained for solving the problems of stability and dissipativity of the limit processes.
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1. Introduction

During the analysis of complex systems, we often meet difficulties, which are essen-
tially complicated by the phase space of such systems. This situation can lead an
investigator to the practical impossibility of a visual representation of the model.
The actual problem of modern system theory is the development of mathematically
justified methods for constructing simplified models and their analysis does not cause
significant difficulties. Of course, most of characteristics of such models can be taken
for the corresponding characteristics of real models.

Concerning this problem, in order to be able to give analytical or numerical
tractable models, the state space must be simplified via a reduction of the num-
ber of states. This is possible when some subsets are connected between them by
small transition probabilities and the states within such subsets are asymptotically
connected. That is typically the case of reliability - and in most applications involving
hitting time models, for which the state space is naturally cut into two subsets (the
up states set and the down states set). In this case, transitions between the subsets
are slow compared with those within the subsets. In the literature, the reduction of
state space is also called aggregation, lumping, or consolidation of state space.
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For the first time, the algorithm for phase consolidation of states of the system was
proposed and described in [1] by Korolyuk V.S. and Turbin A.F. The analysis of the
merging system is greatly simplified, but at the same time, with the successful splitting
of the phase space, the main characteristics of the simplified system can accurately
reflect the corresponding characteristics of the output. In turn, the proximity of real
and merging systems also means the proximity of global characteristics, which are
determined at increasing intervals of time. An important property of the algorithms
for phase consolidation is the possibility of constructing a hierarchy of aggregated

systems Ŝ,
ˆ̂
S, ....

Random evolution in the form of a differential equation with stochastic applications
use to describe a wide class of natural processes in many branches of science. An
extremely important case is the study of the behavior of similar evolutionary systems
in a random environment. The study of such systems is devoted to a large number of
famous scientists, including A.V. Skorokhod, M.I. Gichman, M.M. Bogolyubov and
others. A detailed bibliography on this subject can be found, for example, in the
monographs of V.S. Korolyuk [2], [3]. Particular attention should be paid to the
works [4], [5], [7], [6], [8], in which the approaches used in this paper were initiated,
in particular to the study of the stability and control of an evolutionary system with
diffusion perturbation.

This paper is devoted to the case when the system perturbations are determined
by the impulse process in the Levi and Poisson approximation schemes. First of
all, we will be interested in the double merging of the phase space of states of such
evolutionary models.

2. Double merging of phase space for differential equations with small
stochastic supplements under Levi approximation conditions

We investigate the stochastic evolutionary system in ergodic Markov environment

duε(t) = C(uε(t), x(t/ε3)dt+ dηε(t), uε(t) ∈ R, (2.1)

where xε(t), t ≥ 0 is Markov process determined on a standard phase space (E, E)
with splitting

E =

N⋃
k=1

Ek, Ek ∩ Ek′ = ∅, k 6= k′

in a series scheme with a small parameter of a series of ε→ 0, ε > 0.
The Markov kernel has the form

Qε(x,B, t) = P ε(x,B)[1− exp{−q(x)t}], x ∈ E, B ∈ E , t ≥ 0.

Let us consider the following assumptions:
1: A kernel describing transition probabilities of imbedded Markov chain xεn, n ≥ 0

is defined as follows

P ε(x,B) = P (x,B) + εP1(x,B).

The stochastic kernel P (x,B) on the split phase space is defined as

P (x,Ek) = 1k(x) =

{
1, x ∈ Ek,
0, x 6∈ Ek.
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The stochastic kernel P (x,B) define accompanying Markov chain xn, n ≥ 0 on
classes Ek, 1 ≤ k ≤ N . In addition, the perturbing kernel P1(x,B) satisfies the
condition

P1(x,E) = 0,

that is a direct corollary of equality

P ε(x,E) = P (x,E) = 1.

2: Associated Markov process x0(t), t ≥ 0, given by the generator

Qϕ(x) = q(x)

∫
E

P (x, dy)[ϕ(y)− ϕ(x)],

is uniformly ergodic in each of classes Ek, 1 ≤ k ≤ N , with stationary distribution
πk(dx), 1 ≤ k ≤ N , satisfied relation:

πk(dx)q(x) = qkρk(dx), qk :=

∫
Ek

πk(dx)q(x).

3: Average probability of exit

p̂k := q(x)

∫
Ek

ρk(dx)P1(x,E/Ek) > 0, 1 ≤ k ≤ N.

Thus, the perturbing kernel P1(x,B) determines transitional probabilities between
classes Ek, 1 ≤ k ≤ N , so, equality

P ε(x,B) = P (x,B) + εP1(x,B)

means that imbedded Markov chain xεn, n ≥ 0 spends a great deal of time in each of
the classes Ek and jumps between classes with low probabilities εP1(x,E/Ek).

Example 2.1. Consider a three state Markov process, E0 = {0, 1, 2} with generator
matrix

Qε =

 0 0 0
ελ −(1 + ε)λ λ
εµ µ −(1 + ε)µ

 =

 0 0 0
0 −λ λ
0 µ −µ

+ ε

 0 0 0
λ −λ 0
µ 0 −µ


The transition matrix of the embedded Markov chain is

P ε =

 1 0 0
ε 0 1− ε
ε 1− ε 0

 =

 1 0 0
0 0 1
0 1 0

+ ε

 0 0 0
1 0 −1
1 −1 0

 .

Now, for the ergodic process x(t), t ≥ 0, taking values in E = {1, 2}, and generator
Q, we have π = ( µ

λ+µ ,
λ

λ+µ ). For the ergodic embedded Markov chain xn, n ≥ 0, we

have ρ = (1/2, 1/2).
Thus, since we have p(1) = −P1(1, E) = 1 and p(2) = −P1(2, E) = 1, the stoppage

probability is p = 1.
On the other hand, we have q(1) = λ, and q(2) = µ.
Hence

q = π1q(1) + π2q(2) =
2λ

λ+ µ
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and

Λ = qp =
2λµ

λ+ µ
.

The limit of distribution of the normalized absorption times is

P{ζ > t} = exp(−Λt).

Under conditions ME1–ME3, there is a weak convergence [3]

ν(xε(t))⇒ x̂(t), ε→ 0, ν(x) = k ∈ Ê = {1, ..., N}, x ∈ Ek, 1 ≤ k ≤ N.

Limited Markov process x̂(t), t ≥ 0 on the enlarged phase space Ê = {1, ..., N}
determined by the generating matrix

Q̂1 = (q̂kr, 1 ≤ k, r ≤ N),

where

q̂kr = q̂kp̂kr, k 6= r, q̂k = qkp̂k, 1 ≤ k ≤ N,

p̂kr = pkr/p̂k, pkr =

∫
Ek

ρk(dx)P1(x,Er), 1 ≤ k, r ≤ N, k 6= r,

p̂k = −
∫
Ek

ρk(dx)P1(x,Ek).

4: Merging Markov process x̂(t), t ≥ 0 is ergodic process with stationary distribu-

tion π̂ = (πk, k ∈ Ê).
Therefore, Qε is the operator that can be represented as

Qε = Q + εQ1, Q1(x) = q(x)

∫
E

P1(x, dy)ϕ(y),

where Qε = Q + εQ1

Q(x) = q(x)

∫
E

P (x, dy)[ϕ(y)− ϕ(x)], Q1(x) = q1(x)

∫
E

P1(x, dy)ϕ(y).

Let Π be the projector to zero-subspace of a reducible-invertible operator Q. Its
effect on the test functions is defined as follows:

Πϕ(x) =

N∑
k=1

ϕ̂k1k(x), ϕ̂k :=

∫
Ek

πk(dx)ϕ(dx).

Reducible operator Q̂1 can be determined by relation

Q̂1Π = ΠQ1Π.

Let Π̂ be the projector to zero-subspace of a reducible-invertible operator Q̂1:

Π̂ϕ̂ := q(x)
∑
k∈E

π̂kϕ̂k.

Potential matrix R̂0 = [R̂0
kj ; 1 ≤ k, l ≤ N ] can be determined by relation

Q̂1R̂0 = R̂0Q̂1 = Π̂− E.
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Impulse perturbation process (IPP) ηε(t), t ≥ 0, in the Levy approximative scheme
can be determined by relation

ηε(t) =

t∫
0

ηε(ds, x(s/ε3)), (2.2)

where ηε(t, x), t ≥ 0, x ∈ X is a set of processes with independent increments that
can be determined by generators

Γε(x)ϕ(w) = ε−2
∫
R

(ϕ(w + v)− ϕ(w))Γε(dv, x), x ∈ X (2.3)

and satisfied to Levy approximation conditions
L1. Approximation of averages∫

R

vΓε(dv, x) = εa1(x) + ε2(a2(x) + θa(x)), θa(x)→ 0, ε→ 0,

and ∫
R

v2Γε(dv, x) = ε(b(x) + θb(x)), θb(x)→ 0, ε→ 0,

L2. Condition to the distribution function∫
R

g(v)Γε(dv, x) = ε2(Γg(x) + θg(x)), θg(x)→ 0, ε→ 0,

for each g(v) ∈ C2(R) (space of bounded functions with values in R and g(v)/|v|2 → 0,
|v| → 0). Measure Γg(x) is bounded for each g(v) ∈ C2(R) and can be determined
by relation

Γg(x) =

∫
R

g(v)Γ0(dv, x), g(v) ∈ C2(R);

L3. Uniform quadratic integrability

sup lim
c→∞

∫
|v|>c

v2Γ0(dv, x) = 0;

Let’s denote:

Γ1(x)ϕ(w) = a(x)ϕ′(w)

Let the condition of balance be fulfilled

Π̂Γ̂1 = 0, (2.4)

where Γ̂1ϕ̂(w) = ΠΓ1(x)ϕ(w).
We shall investigate further the asymptotic properties of the perturbation process.

Theorem 2.1. Let the balance condition (2.4) and L1–L3 hold. Then the weak
convergence

ηε(t)→ η0(t), ε→ 0.

holds true.
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The limit process η0(t) is determined by generator

ˆ̂
Γϕ(w) = ˆ̂a2ϕ

′(w) +
1

2
ˆ̂σ2ϕ′′(w) +

∫
R

[ϕ(w + v)− ϕ(w)]
ˆ̂
Γ0(dv),

where

ˆ̂a2 =
∑
k∈Ê

π̂k

∫
Ek

πk(dx)(a2(x)− a0(x)),

ˆ̂σ2 =
∑
k∈Ê

π̂k

∫
Ek

π(dx)(b(x)− b0(x)) + 2
∑
k∈Ê

π̂k

∫
Ek

π(dx)a1(x)R0a1(x),

ˆ̂a0(x) =
∑
k∈Ê

π̂k

∫
Ek

vΓ0(dv, x),

ˆ̂
b0(x) =

∑
k∈Ê

π̂k

∫
Ek

v2Γ0(dv, x),

ˆ̂
Γ0(v) =

∑
k∈Ê

π̂k

∫
Ek

π(dx)Γ0(v, x)

and it is a Levy process that has three components: deterministic shift, diffusion, and
Poisson jump part.

Proof. Firstly let’s prove some additional propositions.

Lemma 2.2. Generators of independent increment processes ηε(t, x), t ≥ 0, x ∈ X,
acting on test functions ϕ(w) ∈ C2(R) under assumptions L1–L3 have asymptotic
presentation

Γε(x)ϕ(w) = ε−1Γ1(x)ϕ(w) + Γ2(x)ϕ(w), (2.5)

where

Γ1(x)ϕ(w) =a1(x)ϕ′(w),

Γ2(x)ϕ(w) =(a2(x)− a0(x))ϕ′(x) +
1

2
(b(x)− b0(x))ϕ′′(x)+

+

∫
R

[ϕ(w + v)− ϕ(v)]Γ0(dv, x).

Proof. We use the expansion of the function ϕ(w) to the Taylor series. Then by (2.3)
we obtain:

Γε(x)ϕ(w) =ε−2
∫
R

(ϕ(w + v)− ϕ(v))Γε(dv, x)

=ε−2
∫
R

(ϕ(w + v)− ϕ(v)− vϕ′(v)− 1

2
v2ϕ′′(w))Γε(dv, x)+

+ ε−2
∫
R

(vϕ′(w)Γε(dv, x) +
1

2
v2ε−2

∫
R

v2ϕ′′(w)Γε(dv, x)
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=

∫
R

(ϕ(u+ v)− ϕ(v)− vϕ′(w)− 1

2
v2ϕ′′(w))Γ0(dv, x)+

+ ε−1a1(x)ϕ′(w) + a2(x)ϕ′(w) + +
1

2
(b(x)− b0(x))ϕ′′(w)+

+

∫
R

(ϕ(u+ v)− ϕ(v))Γ0(dv, x) + γε(w)ϕ(w),

where penultimate equality follows from L1–L3 (we remark also that function ϕ(w+
v)−ϕ(w)− vϕ′(w)− 1

2v
2ϕ′′(w) ∈ C2(R), because it is bounded and ϕ(w) is bounded

along with its derivatives, and

[ϕ(w + v)− ϕ(w)− vϕ′(w)− 1

2
v2ϕ′′(w)]/|v2| → 0

when v → 0.
We recall that γε(w)ϕ(w) = o(ε2), ϕ(w) ∈ C2(R), and thus, we obtained the

presentation (2.5). �

Lemma 2.3. Generator of a two-component Markov process (ηε, x(t/ε2)), t ≥ 0 can
be represented as follows

Γ̂ε(x)ϕ(w, x) =ε−3Qϕ(w, x) + ε−1Γ1(x)ϕ(w, x)

+ Γ2(x)ϕ(w, x) + γε(x)ϕ(w, x), (2.6)

where Γ1(x) and Γ2(x) are defined at Lemma 2.1 and remainder term ‖γε(x)ϕ(w, x)‖ →
0 when ε→ 0, ϕ(w, ·) ∈ C2(R).

Proof. The lemma’s statement follows from the generator of Markov process definition
and from the form of the corresponding process generators ηε(t, x) and x(t/ε2). �

The truncated operator has a form

Lε = ε−3Qε + ε−1Γ1 + Γ2 = ε−3Q + ε−2Q1 + ε−1Γ1 + Γ2. (2.7)

Lemma 2.4. Under balance condition (2.4) the solution of the problem of singular
perturbation for cut operator (2.4) on test functions

ϕ(u, x) = ϕ(u) + εϕ1 + ε2ϕ2 + εϕ3

is determined by the relation

Γε0(x)ϕε(u, x) =
ˆ̂
Lϕ(u) + εθεη(x)ϕ(u), (2.8)

where remainder term is uniform bounded with respect to x.
Limiting operator can be represented by the formula

ˆ̂
L = Π̂Γ̂1R̂0Γ̂1Π̂ + Π̂Γ̂2Π̂. (2.9)

Proof. Let’s calculate

(ε−3Q + ε−2Q1 + ε−1Γ1 + Γ2)(ϕ+ εϕ1 + ε2ϕ2 + ε3ϕ3) =

= ε−3Qϕ+ ε−2(Qϕ1 + Q1ϕ) + ε−1(Qϕ2 + Q1ϕ1 + Γ1ϕ)+

+(Qϕ3 + Q1ϕ2 + Γ1ϕ1 + Γ2ϕ) + o(ε).

From here we get 4 relations:
Qϕ = 0; (2.10)
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Qϕ1 + Q1ϕ = 0; (2.11)

Qϕ2 + Q1ϕ1 + Γ1ϕ = 0; (2.12)

Qϕ3 + Q1ϕ2 + Γ1ϕ1 + Γ2ϕ =
ˆ̂
Lϕ. (2.13)

Further we define the form of
ˆ̂
L.

From (2.10) follows ϕ ∈ NQ;
According to (2.11), since ϕ ∈ NQ, then from the solvability condition we have

ΠQ1Πϕ = 0.

Let’s denote

ΠQ1 = Q̂1, Πϕ = ϕ̂.

Then

Q̂1ϕ̂ = 0,

and further

ϕ̂ ∈ NQ̂1
.

Let’s consider (2.12): from the solvability condition for Q we obtain

ΠQ1Πϕ1 + ΠΓ1Πϕ = 0, (2.14)

Q̂1ϕ̂1 + Γ̂1ϕ̂ = 0.

According to balance condition (2.4) one can see Γ̂1ϕ̂ ∈ RQ, so, the solution

ϕ̂1 = R̂0Γ̂1ϕ̂,

where R̂0 – reducible-invertible to Q̂1.
Let’s turn to (2.13): from the solvability condition for Q we obtain

ΠQΠϕ2 + ΠΓ1Πϕ1 + ΠΓ2Πϕ = Π̂̂LΠϕ, (2.15)

Q̂1ϕ̂2 + Γ̂1ϕ̂1 + Γ̂2ϕ̂ =
ˆ̂
Lϕ̂.

Remembering ϕ̂1 = R̂0Γ̂1ϕ̂, we have

Q̂1ϕ̂2 + Γ̂1R̂0Γ̂1ϕ̂+ Γ̂2ϕ̂ =
ˆ̂
Lϕ̂.

Further, from the solvability condition for ϕ̂2

Π̂Γ̂1R̂0Γ̂1Π̂ϕ+ Π̂Γ̂2Π̂ϕ̂ =ˆ̂L̂̂ϕ,

where
ˆ̂
L = Π̂Γ̂1R̂0Γ̂1Π̂ + Π̂Γ̂2Π̂,

ϕ̂2 = R̂0[Γ̂1R̂0Γ̂1 + Γ̂2 −ˆ̂L]ϕ̂,

ϕ̂3 = R0[Q1ϕ2 + Γ1ϕ1 + Γ2ϕ−ˆ̂Lϕ].

The boundedness of θεη(x)ϕ(w) follows from the form of operators Γ1, Γ2 and
R0. �

The completion of the Theorem 2.1 proof is carried out using Lemma 2.4 and
Theorem 6.3 in [3]. �

Further let’s consider asymptotic properties of evolutionary system (2.1).
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Theorem 2.5. Under balance condition (2.4) the weak convergence

(uε(t), ηε(t))⇒ (ˆ̂u(t), η0(t)), ε→ 0

holds true.
The limit process (ˆ̂u(t), η0(t)) can be given by generator

Lϕ(u,w) =
ˆ̂
C(u)ϕ′u(u,w) +

ˆ̂
Γu1ϕ(u, ·) +

ˆ̂
Γw1 ϕ(·, w)R̂0

ˆ̂
Γw1 ϕ(·, w) +

ˆ̂
Γw2 ϕ(·, w) (2.16)

where
ˆ̂
C(u) = ΠC(x) =

∫
X

π(dx)C(u, x);

and generators
ˆ̂
Γu1 and

ˆ̂
Γw1,2 are determined in 2.2 and they have the same form, but

acting with respect to different values.

Remark 2.1. The weak convergence of processes (uε(t), ηε(t))⇒ (ˆ̂u(t), η0(t)), ε→ 0,
follows from convergence of respectiv generators when prelimiting set of processes
uε(t) is compact. Theorems about compactness of processes with independent incre-
ments in Levy aproximative scheme were proved, in particular, in [4].

Proof of Theorem 2.5.

Lemma 2.6. The generator of three components Markov process (uε(t), ηε(t), xε(t/ε3)),
t ≥ 0, can be represented as follows

Lε(x)ϕ(u,w, x) =ε−3Qεϕ(u,w, x) + Γεu(x)ϕ(u, ·, x) + εΓεw(x)ϕ(·, w, x)+

+ C(x)ϕ(u,w, x) + θεw(x)ϕ(u,w, x), (2.17)

where Γε(x) – the generator of set of IPP (2.3),

C(x)ϕ(u,w, x) = C(u, x)ϕ′u(u,w, x).

Remainder term ‖θεw(x)ϕ(u,w, x)‖ → 0 when ε→ 0.

Proof. One can be find in [6]. �

Lemma 2.7. Generator Lε(x) in a case of IPP has asymptotical representation

Lε(x)ϕ(u,w, x) =ε−3Qεϕ(u,w, x) + ε−1Γw1 (x)ϕ(u,w, x) + +Γw2 (x)ϕ(u,w, x)

+ Γu1 (x)ϕ(u,w, x) + +C(x)ϕ(u,w, x) + θ̂εwϕ(u,w, x), (2.18)

where

θ̂εw(x) = γε + θεw(x),

Γ·1(x) and Γ·2(x) are given in 2.2

Remainder term ‖θ̂εw(x)ϕ(u,w, x)‖ → 0 when ε→ 0.

Proof. The proof is carried out with the representation of the operator (2.5) and the
results of the 2.6. �

Truncate operator has a form:

Lε(x)ϕ(u,w, x) =ε−3Qεϕ(u,w, x) + ε−1Γw1 (x)ϕ(u,w, x) + Γw2 (x)ϕ(u,w, x)+

+ Γu1 (x)ϕ(u,w, x) + C(x)ϕ(u,w, x) (2.19)
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Lemma 2.8. Under balance condition (2.4) the solution of singular perturbation prob-
lem for truncate operator (2.19) on test functions

ϕε(w, x) = ϕ(w) + εϕ1(w, x) + ε2ϕ2(w, x) + ε3ϕ3(w, x)

can be found from relation

Lε0(x)ϕε(w, x) = Lϕ(w) + ε3θεw(x)ϕ(w), (2.20)

where remainder term θεw(x) is uniform bounded with respect to x.
Limit operator L can be given by the formula

L = Π[
ˆ̂
C +

ˆ̂
Γu1 +

ˆ̂
Γw1 R̂0

ˆ̂
Γw1 +

ˆ̂
Γw2 ]Π. (2.21)

Proof. To perform the equality (2.20) it is necessary that the coefficients at the same
degrees ε on the left and the right be equal. Therefore we can calculate:

(ε−3Q + ε−2Q2 + ε−1Γu1 + Γu2 + ε−1Γw1 + Γw2 + C)(ϕ+ εϕ1 + ε2ϕ2 + ε3ϕ3) =

= ε−3Qϕ+ ε−2(Qϕ1 + Q1ϕ) + ε−1(Qϕ2 + Q1ϕ1 + Γu1ϕ+ Γw1 ϕ)+

+(Qϕ3 + Q1ϕ2 + Γu1ϕ1 + Γw1 ϕ1 + Γu2ϕ+ Γw2 ϕ+ Cϕ) + o(ε).

Again, we get four relations:
Qϕ = 0; (2.22)

Qϕ1 + Q1ϕ = 0; (2.23)

Qϕ2 + Q1ϕ1 + Γu1ϕ+ Γw1 ϕ = 0; (2.24)

Qϕ3 + Q1ϕ2 + Γu1ϕ1 + Γw1 ϕ1 + Γu2ϕ+ Γw2 ϕ+ Cϕ =
ˆ̂
Lϕ. (2.25)

Let’s define the form of
ˆ̂
L.

From (2.22) follows ϕ ∈ NQ.
According to (2.23), since ϕ ∈ NQ, then from the solvability condition we have

ΠQ1Πϕ = 0.

Let’s denote
ΠQ1 = Q̂1, Πϕ = ϕ̂.

then
Q̂1ϕ̂ = 0,

and
ϕ̂ ∈ NQ̂1

.

In (2.24) from the solvability condition for Q we have

ΠQ1Πϕ1 + ΠΓ1Πϕ = 0,

Q̂1ϕ̂1 + Γ̂u1ϕ+ Γ̂w1 ϕ̂ = 0.

From the balance condition (2.4) one can see Γ̂u1 ϕ̂, Γ̂u1 ϕ̂ ∈ NQ, then, the solution

ϕ̂1 = R̂0[Γ̂u1 + Γ̂w1 ]ϕ̂,

where R̂0 – reducible-invertible to Q̂1.
In (2.25): from the solvability condition for Q we have

ΠQ1Πϕ2 + ΠΓu1Πϕ1 + ΠΓu2Πϕ+ ΠΓw1 Πϕ1 + ΠΓw2 Πϕ+ ΠCΠϕ = Π
ˆ̂
LΠϕ,

Q̂1ϕ̂2 + Γ̂u1 ϕ̂1 + Γ̂w1 ϕ̂1 + Γ̂u2 ϕ̂+ Γ̂w2 ϕ̂+ Ĉϕ̂ =
ˆ̂
Lϕ̂.
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Remembering ϕ̂1 = R̂0Γ̂u1 ϕ̂+ R̂0Γ̂w1 ϕ̂, we obtain

Q̂1ϕ̂2 + Γ̂u1 R̂0Γ̂u1 ϕ̂+ Γ̂u1 R̂0Γ̂w1 ϕ̂+

+Γ̂w1 R̂0Γ̂u1 ϕ̂+ Γ̂w1 R̂0Γ̂w1 ϕ̂+ Γ̂u2 ϕ̂+ Γ̂w2 ϕ̂+ Ĉϕ̂ =
ˆ̂
Lϕ̂.

Further, from the solvability condition for ϕ̂2

Π̂Γ̂u1 R̂0Γ̂u1Πϕ̂+ Π̂Γ̂u1 R̂0Γ̂w1 Πϕ̂+ Π̂Γ̂w1 R̂0Γ̂u1Πϕ̂+

+Π̂Γ̂w1 R̂0Γ̂w1 Πϕ̂+ Π̂Γ̂u2Πϕ̂+ Π̂Γ̂w2 Πϕ̂+ Π̂ĈΠ̂ϕ̂ =
ˆ̂
L ˆ̂ϕ.

where
ˆ̂
L = Π̂Γ̂1R̂0Γ̂1Π̂ + Π̂Γ̂2Π̂ + Π̂ĈΠ̂,

ϕ̂2 = R̂0[
ˆ̂
L− Γ̂1R̂0Γ̂1 − Γ̂2 − Ĉ]ϕ̂,

ϕ̂3 = R̂0[
ˆ̂
L+ Q1ϕ2 + Γ1ϕ1 + Γ̂2ϕ+ Cϕ].

Boundedness of θεη(x)ϕ(w) follows from the form of the operator Γ̂1, Γ̂2 and R0. �

The completion of the Theorem 2.5 proof is carried out using Lemma 2.4 and
Theorem 6.3 in [3]. �

3. Double merging of phase space for differential equations with small
stochastic supplements under Poisson approximation conditions

In this section we will consider the case, when system perturbation is determined
by jumping process under Poisson approximating scheme. In particular, we interest
in double merging of phase space for such evolutionary models.

Let’s consider an evolutionary system in ergodic Markov environment that has
form of stochastic differential equation as follows

duε(t) = C(uε(t), x(t/ε2))dt+ dηε(t), uε(t) ∈ R, (3.1)

where Markov process xε(t), t ≥ 0 is determined in standard phase space (E, E) with
splitting

E =

N⋃
k=1

Ek, Ek ∩ Ek′ = ∅, k 6= k′

at a series scheme with a small parameter of a serie ε→ 0 when ε > 0.
Markov kernel has a form

Qε(x,B, t) = P ε(x,B)[1− exp{−q(x)t}], x ∈ E, B ∈ E , t ≥ 0.

Let’s conditions ME1–ME4 from previous section hold true.
Impulse perturbation process ηε(t), t ≥ 0 under Poison approximative scheme is

given by relation

ηε(t) =

t∫
0

ηε(ds, x(s/ε3)), (3.2)

where set of processes with independent increments ηε(t, x), t ≥ 0, x ∈ X, is deter-
mined by generators

Γε(x)ϕ(w) = ε−2
∫
R

(ϕ(w + v)− ϕ(w))Γε(dv, x), x ∈ X (3.3)
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and satisfies the Poison approximation conditions
P1. Approximation of averages∫

R

vΓε(dv, x) = ε(a(x) + θa(x)), θa(x)→ 0, ε→ 0,

and ∫
R

v2Γε(dv, x) = ε(b(x) + θb(x)), θb(x)→ 0, ε→ 0,

P2. Condition for the distribution function∫
R

g(v)Γε(dv, x) = ε(Γg(x) + θg(x)), θg(x)→ 0, ε→ 0,

for each g(v) ∈ C2(R) (space of real values bounded functions that g(v)/|v|2 → 0,
|v| → 0). Measure Γg(x) is bounded for each g(v) ∈ C2(R) and is determined by
relation

Γg(x) =

∫
R

g(v)Γ0(dv, x), g(v) ∈ C2(R);

P3. Uniform quadratic integrability

sup lim
c→∞

∫
|v|>c

v2Γ0(dv, x) = 0;

P4. Absence of a diffusion component

b(x) =

∫
R

v2Γ0(dv, x).

Let’s denote:

Γ1(x)ϕ(w) = a(x)ϕ′(w) +

∫
R

[ϕ(w + v)− ϕ(v)− vϕ′(w)]Γ0(dv, x).

Firstly we investigate asymptotic properties of perturbation process.

Theorem 3.1. Under conditions P1–P4 the weak convergence

ηε(t)→ η0(t), ε→ 0.

holds true.
Limit process η0(t) is determined by generator

ˆ̂
Γϕ(w) = Π̂Γ̂1(x)ϕ(w) = ˆ̂aϕ′(w) +

∫
R

[ϕ(w + v)− ϕ(w)− vϕ′(w)]
ˆ̂
Γ0(dv),

where

ˆ̂a =
∑
k∈Ê

π̂k

∫
Êk

π(dx)(a(x)),

ˆ̂
Γ0(v) =

∑
k∈Ê

π̂k

∫
Êk

π(dx)Γ0(v, x)
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and it is process with independent increments, deterministic shift and Poison jumping
component.

Proof. We begin from obtaining of some propositions.

Lemma 3.2. Generators of processes with independent increments ηε(t, x), t ≥ 0,
x ∈ X, on test functions ϕ(w) ∈ C2(R) under Poison approximative conditions P1–P4
have asymptotical representation

Γε(x)ϕ(w) = Γ1(x)ϕ(w) + γε(x)ϕ(w), (3.4)

where

Γ1(x)ϕ(w) = a(x)ϕ′(w) +

∫
R

[ϕ(w + v)− ϕ(v)− vϕ′(w)]Γ0(dv, x),

and remainder term ‖γε(x)ϕ(w)‖ → 0 when ε→ 0, ϕ(w, ·) ∈ C2(R).

Proof. Using a Taylor series of functions Γ1(x)ϕ(w) we can transform generator (3.3):

Γε(x)ϕ(w) =ε−1
∫
R

(ϕ(w + v)− ϕ(v))Γε(dv, x) =

=ε−1
∫
R

(ϕ(w + v)− ϕ(v)− vϕ′(v)− 1

2
v2ϕ′′(w))Γε(dv, x)+

+ ε−1
∫
R

(vϕ′(w)Γε(dv, x) +
1

2
v2ε−1

∫
R

v2ϕ′′(w)Γε(dv, x) =

=

∫
R

(ϕ(u+ v)− ϕ(v)− vϕ′(w)− 1

2
v2ϕ′′(w))Γ0(dv, x)+

+ a(x)ϕ′(w) +
1

2
b(x)ϕ′′(w) + γε(x)ϕ(w) =

=

∫
R

(ϕ(u+ v)− ϕ(v)− ϕ′(w))Γ0(dv, x) + a(x)ϕ′(w) + γε(w)ϕ(w),

where preemption equality follows from conditions P1–P4 (we remark that function

ϕ(w + v)− ϕ(w)− vϕ′(w)− 1

2
v2ϕ′′(w) ∈ C2(R),

since it is bounded because ϕ(w) and its derivatives are bounded and relation

[ϕ(w + v)− ϕ(w)− vϕ′(w)− 1

2
v2ϕ′′(w)]/|v2| → 0

holds true when v → 0.
Remembering γε(w)ϕ(w) = o(ε2), ϕ(w) ∈ C2(R), we obtain (2.4). �

Lemma 3.3. Generator of two-component Markov process(ηε, x(t/ε2)), t ≥ 0 has a
form as follows

Γ̂ε(x)ϕ(u,w, x) = ε−2Qεϕ(u,w, x) + γε(x)ϕ(u,w, x), (3.5)

where Γ1(x) is determined at Lemma 3.2, and remainder term ‖γε(x)ϕ(u,w, x)‖ → 0
when ε→ 0, ϕ(u,w, ·) ∈ C2(R).
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Proof. The statement of the lemma follows from definition of Markov process gener-
ator and from respective forms of generators ηε(t, x) i x(t/ε2).

Truncate generator has a form

Lεϕ(u,w, x) = ε−2Qϕ(u,w, x) + Γ1(x)ϕ(u,w, x). (3.6)

�

Lemma 3.4. The solution of singular perturbation problem for truncate operator
(3.6) on test functions

ϕε(u,w, x) = ϕ(u,w) + εϕ1(u,w, x) + ε2ϕ2(u,w, x)

can be given by relation

Γε0(x)ϕε(u, x) =
ˆ̂
Lϕ(u) + εθεη(x)ϕ(u), (3.7)

where remainder term is uniform bounded with respect to x.
Limit operator can be determined by formula

ˆ̂
L = Π̂Γ̂1Π̂ (3.8)

Proof. Let’s calculate

(ε−2Q + ε−1Q1 + Γ1)(ϕ(u) + εϕ1 + ε2ϕ2) =

= ε−2Qϕ+ ε−1(Qϕ1 + Q1ϕ) + (Qϕ2 + Q1ϕ1 + Γ1ϕ) + o(ε).

We have three relations:
Qϕ = 0; (3.9)

Qϕ1 + Q1ϕ = 0; (3.10)

Qϕ2 + Q1ϕ1 + Γ1ϕ =
ˆ̂
Lϕ. (3.11)

Further we find a form of
ˆ̂
L.

From (3.9) follows ϕ ∈ NQ;
In (3.10), since ϕ ∈ NQ, from solvability condition we obtain

ΠQ1Πϕ = 0.

Let’s denote
ΠQ1 = Q̂1, Πϕ = ϕ̂.

Then
Q̂1ϕ̂ = 0,

where
ϕ̂ ∈ NQ̂1

.

Let’s consider (3.11): from solvability condition for Q we obtain

ΠQ1Πϕ1 + ΠΓ1Πϕ = Π
ˆ̂
LΠϕ,

where

Q̂1ϕ̂1 + Γ̂1ϕ̂ =
ˆ̂
Lϕ̂.

Further, from solvability condition for ϕ̂2 we obtain

Π̂Γ̂1Π̂ϕ̂ =
ˆ̂
L ˆ̂ϕ,

where
ˆ̂
L = Π̂Γ̂1Π̂,
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ϕ̂1 = R̂0[Γ̂1 − ˆ̂
L]ϕ̂,

ϕ̂2 = R0[Q1ϕ1 + Γ1ϕ− ˆ̂
Lϕ].

Boundedness of θεη(x)ϕ(w) follows from the form of operators Γ1 and R0. �

The completion of the Theorem 3.1 proof is carried out using 3.4 and Theorem 6.3
in [3]. �

Further we investigate asymptotic properties of evolutionary system (26).

Theorem 3.5. Under conditions P1–P4 weak convergence

(uε(t), ηε(t))⇒ (ˆ̂u(t), η0(t)), ε→ 0.

holds true.
Limit process (ˆ̂u(t), η0(t)) is can be determined by generator

Lϕ(u,w) =
ˆ̂
C(u)ϕ′u(u,w) +

ˆ̂
Γwϕ(·, w), (3.12)

where
ˆ̂
C(u) = ΠC(x) =

∑
k∈Ê

π̂k

∫
Êk

π(dx)C(u, x);

and generator
ˆ̂
Γw is defined in Theorem 3.1, acting at variable w.

Remark 3.1. Weak convergence of processes uε(t) ⇒ ˆ̂u(t), ε → 0, follows from
convergence of respective generators under assumption of compactness prelimiting
set of processes uε(t). Respective theorems one can read, in particulary, in [3].

Lemma 3.6. Generator of three-component Markov process (uε(t), ηε(t), xε(t/ε3)),
t ≥ 0, has a representation

Lε(x)ϕ(u,w, x) =ε−2Qεϕ(u,w, x) + εΓεu(x)ϕ(u, ·, x) + Γεw(x)ϕ(·, w, x)+

+ C(x)ϕ(u,w, x) + θεw(x)ϕ(u,w, x), (3.13)

where Γε· (x) is IPP generator (3.3),

C(x)ϕ(u,w, x) = C(u, x)ϕ′u(u,w, x).

Remainder term ‖θεw(x)ϕ(u,w, x)‖ → 0 when ε→ 0.

Proof the reader can see in [3].

Lemma 3.7. Generator Lε(x) in a case of IPP has asymptotic representation

Lε(x)ϕ(u,w, x) = ε−2Qεϕ(u,w, x) + εΓu1 (x)ϕ(u,w, x)+

+Γw1 (x)ϕ(u,w, x) + C(x)ϕ(u,w, x) + θ̂εwϕ(u,w, x), (3.14)

where
θ̂εw(x) = γε + θεw(x),

Γ·1(x) is defined in 3.2

Remainder term ‖θ̂εw(x)ϕ(u,w, x)‖ → 0 when ε→ 0.

Proof. follows from representation of generator (3.4) and 3.6
Truncate operator has a form:

Lε0(x)ϕ = ε−2Qεϕ+ Γw1 (x)ϕ+ C(x)ϕ (3.15)

�
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Lemma 3.8. The solving of singular perturbation problem for truncate operator
(3.15) on test functions

ϕε(w, x) = ϕ(w) + εϕ1(w, x) + ε2ϕ2(w, x)

holds by relation
Lε0(x)ϕε(w, x) = Lϕ(w) + ε3θεw(x)ϕ(w), (3.16)

where remainder term θεw(x) is uniform bounded at x.
Limit operator L is defined by formula

L =
ˆ̂
C +

ˆ̂
Γw1 . (3.17)

Proof. In order to satisfy (3.16), it is necessary that the coefficients at the same
degrees ε of the left and right be equal. For this purpose we calculate

(ε−2Q + ε−1Q1 + Γw1 + C)(ϕ+ εϕ1 + ε2ϕ2) =

= ε−2Qϕ+ ε−1(Qϕ1 + Q1ϕ) + (Qϕ2 + Q1ϕ1 + Γw1 ϕ+ Cϕ) + o(ε).

and again we have three relations:

Qϕ = 0; (3.18)

Qϕ1 + Q1ϕ = 0; (3.19)

Qϕ2 + Q1ϕ1 + Γw1 ϕ =
ˆ̂
Lϕ. (3.20)

We define the form of
ˆ̂
L.

From (3.18) it follows that ϕ ∈ NQ.
In (3.19), since ϕ ∈ NQ, according to solvability condition we obtain

ΠQ1Πϕ = 0.

Let’s denote
ΠQ1 = Q̂1, Πϕ = ϕ̂.

Then
Q̂1ϕ̂ = 0,

where
ϕ̂ ∈ NQ̂1

.

Let’s consider (3.20): from solvability condition for Q we have

ΠQ1Πϕ1 + ΠΓw1 Πϕ+ ΠCΠϕ = Π
ˆ̂
LΠϕ. (3.21)

Further

Q̂1ϕ̂1 + Γ̂w1 ϕ̂+ Ĉϕ̂ =
ˆ̂
Lϕ̂.

Again, from the solvability condition for ϕ̂2 we obtain

Π̂ĈΠ̂ϕ̂+ Π̂Γ̂w1 Π̂ϕ̂ =
ˆ̂
L ˆ̂ϕ,

where
ˆ̂
L = Π̂ĈΠ̂ + Π̂Γ̂w1 Π̂,

ϕ̂1 = R̂0[
ˆ̂
L− Γ̂w1 ϕ1 − Ĉ]ϕ̂,

ϕ̂2 = R̂0[
ˆ̂
Lϕ+Q1ϕ1 + Γw1 ϕ+ Cϕ].

The boundedness of θεη(x)ϕ(w) follows from the form of operators Γ̂1 and R0. �
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The completion of the Theorem 3.5 proof is carried out using Lemma 3.4 and
Theorem 6.3 in [3]. �
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