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A new approach to Markov processes of order 2
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Abstract. We propose an approach to study Markov processes of order 2 which is based

on their “natural” transition probability and differs from a recommendation of Doob how to

transform Markov processes of order 2 to such of order 1, i.e. the usual ones. We extend

the concept of uniform ergodicity from Markov processes of order 1 to such of higher order.

This property makes them accessible for statistics. Making use of their natural transition

probability sufficient conditions for their uniform ergodicity may be derived. We apply our

method of analysis to two types of Markov processes of order 2, which arise in processing a
given Markov process of order 1.

2000 Mathematics Subject Classification. Primary 60J05; Secondary 60J20.
Key words and phrases. Markov process of order 2, uniform ergodicity, non-linear time

series, exponential smoothing, Markovian noise sequence, Markovian innovations.

1. Introduction

Markov processes may be considered as stochastic processes with a short memory
or a very simple dependence structure. The subject of generalization of such processes
towards a longer memory or a more complex dependence structure is a classical field
of the Romanian probability school and some French mathematicians, as can be seen
e.g. in the books of Iosifescu and Theodorescu (1969), Iosifescu and Grigorescu (1990).

The classical questions concerning such processes refer to their asymptotic stability
and related to that to the validity of the important limit theorems of probability
theory to make such processes accessible for statistics. In this context the property
of (uniform) ergodicity is essential.

The reasons for treating processes with more complex dependence structures are
on one hand theoretical considerations in handling dependencies within stochastic
processes and on the other hand are given by applications.

Here we deal with a class of processes in discrete time in between the usual Markov
processes and the “chains of infinite order” which were created by the Romanian
mathematicians Onicescu and Mihoc (see Iosifescu and Theodorescu (1969)), namely
Markov processes of order 2. Although they were defined in the literature long ago,
they were scarcely treated in detail. Doob (1953, p. 89) remarks that they could be
reduced to Markov processes of order 1, i.e. the usual ones, by a simple expansion
of the state space and a transition to vector-valued variables. But this advice is not
constructive in so far as for a given Markov process of order 2 the question remains,
which conditions on its characteristics ensure e.g. its ergodicity.

In the following we discuss the concept of uniform ergodicity for Markov processes
of order 2. We propose a different transformation than Doob to study these processes.
An important class of examples of such processes is considered. The effiency of our
approach is demonstrated by two theorems which give sufficient conditions for the
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uniform ergodicity of two types of Markov processes of order 2. Our method can be
extended to Markov processes of order higher than 2.

2. Definitions and Examples

Definition 2.1. A stochastic process (Zn, n ≥ 1) on the probability space (Ω,A, P)
with values in a measurable space (Z,Z) is a Markov process of order p, p ∈ N, if and
only if

P(Zn+1 ∈ A|Z1, . . . , Zn−1, Zn) = P(Zn+1 ∈ A|Zn−p+1, . . . , Zn−1, Zn) a.s.

for all A ∈ Z, n ∈ N and n ≥ p.

In the following we restrict ourselves to Markov processes of order p ≤ 2. Those of
order p = 1 are simply called Markov processes and special cases of Markov processes
of order 2.

As well as for Markov processes of order 1, in the case of a Polish state space (Z,Z)
endowed with the Borel-σ-algebra Z, “regular” versions of the conditional probabili-
ties can be chosen, i.e. P(Zn+1 ∈ A|Zn−1, Zn) can be expressed as Q(Zn−1, Zn;A) by
means of a transition probability Q. For a Markov process of order 2 we call that Q

“its transition probability”.
Often instead of the process there is given a transition probability Q, i.e. the

process is defined by means of Q and a starting pair (z1, z2) by the Ionescu Tulcea
theorem: For a given transition probability Q from (Z × Z,Z ⊗ Z) to (Z,Z) and
each starting pair (z1, z2) ∈ (Z ×Z) there exist a probability space (Ω,A, Pz1,z2

) and
random variables (Zn, n ≥ 1) with values in Z, such that

Pz1,z2
(Z1 = z1, Z2 = z2) = 1 and

Pz1,z2
(Zn+1 ∈ A|Z1 = z1, Z2 = z2, . . . , Zn−1 = zn−1, Zn = zn) = Q(zn−1, zn;A) a.s.

for all A ∈ Z, n ≥ 2,

that is, (Zn, n ≥ 1) is a Markov process of order 2 with transition probability Q.

In particular we consider the following class of examples of Markov processes of
order 2:

Example 2.1. Let (W,W), (X,X ) be measurable spaces and u a measurable function
u : (W × X,W ⊗X ) → (W,W),

for which moreover all mappings uw : X → W are injective, uw(x) = u(w, x) ∀w ∈ W,
x ∈ X.

Let (Xn, n ≥ 1) be a Markov process on (X,X ) with transition probability P and
(Wn, n ≥ 1) a recursively generated sequence in terms of (Xn, n ≥ 1) and u:

Wn+1 = u(Wn,Xn), n ∈ N,

for a given W1 = w1.

(A) The function u is “given by nature” or induced by a “system”. In the first case,
(Wn, n ≥ 1) is a (non-linear) time series with a Markov process as noise sequence.
In the second case, (Wn, n ≥ 1) can be regarded as a sequence of states of a system
for which the inputs (Xn, n ≥ 1) are a Markov process.
(B) The function u is chosen by a “statistician”, e.g. with the purpose to smoothen
sequentially the Markovian sequence (Xn, n ≥ 1) of observations or innovations. In
this context the special function u(w, x) = (1 − λ)w + λx, 0 < λ < 1, represents the
well-known procedure of “exponential smoothing”, see Brown (1963), Bowerman and
O’Connell (1993) as general references for this procedure.
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By the Ionescu Tulcea theorem, the existence of the processes (Xn, n ≥ 1) and
(Wn, n ≥ 1) is ensured, given P and u: For each w1 ∈ W,x1 ∈ X there exist a
probability space (Ω,A, Pw1,x1

) = ((W × X)N, (W ⊗X )N, Pw1,x1
) and two stochastic

processes (Wn, n ≥ 1) and (Xn, n ≥ 1) with values in (W,W), respectively in (X,X ),
such that

Pw1,x1
(W1 = w1,X1 = x1) = 1,

Pw1,x1
(Wn+1 ∈ A|W1 = w1,X1 = x1, . . . ,Wn = wn,Xn = xn) = δu(wn,xn)(A),

Pw1,x1
(Xn+1 ∈ B|W1 = w1,X1 = x1, . . . ,Wn = wn,Xn = xn,

Wn+1 = wn+1) = P (xn, B)

for all A ∈ W, B ∈ X , n ∈ N, where δw denotes the probability measure concentrated
at {w}.
Of course, (Xn, n ≥ 1) is a Markov process with transition probability P, while
(Wn, n ≥ 1) is a Markov process of order 2 since

Pw1,x1
(Wn+1 ∈ A|W1 = w1, . . . ,Wn−1 = wn−1,Wn = wn)

= Pw1,x1
(Wn+1 ∈ A|W1 = w1, . . . ,Wn−1 = wn−1,Xn−1 = u−1

wn−1
(wn),Wn = wn)

= P (u−1
wn−1

(wn), u−1
wn

(A)) = Pw1,x1
(Wn+1 ∈ A|Wn−1 = wn−1,Wn = wn)

for all A ∈ W, n ≥ 2. This conclusion is valid by the injectivity of the mappings
uw(·), w ∈ W. Note that Pw1,x1

can be written as Pw1,w2
with w2 = u(w1, x1).

In the case when W is a Borel-set of a Polish space, the Markov process (Wn, n ≥ 1)
of order 2 has a transition probability Q given by

Q(w,w′;A) = P (u−1
w (w′), u−1

w′ (A))

for (w,w′) ∈ (Z × Z), A ∈ W.

As for the analysis of Markov processes of order 2 in general, we come back to
Doob’s advice to reduce such processes to Markov processes of order 1. Doob and
numerous other authors recommend the following transformation:
If (Zn, n ≥ 1) is a Markov process of order 2 on the state space (Z,Z) with the

transition probability Q, then (Ỹn = (Zn, Zn+1), n ≥ 1) is a Markov process of order 1
on the state space (Z × Z,Z ⊗ Z), as can be easily checked.

The sequence (Ỹn, n ≥ 1) with terms Ỹn = (Zn, Zn+1) reveals a remarkable re-
dundance, as each Zn appears twice for n ≥ 2. Therefore the question arises whether
the above transformation is really apted to obtain results for (Zn, n ≥ 1), e.g. its
ergodicity.

Tong (1995, Appendix 1) deals with non-linear autoregressive time series which are
Markov processes of order p. He studies them by making use of Doob’s transformation.

Here we propose and deal with a different transformation of the Markov process
(Zn, n ≥ 1) of order 2 to one of order 1. We simply omit the variables Ỹ2n, n ≥ 1,

from the above sequence thus removing its redundance. Consequently we define the
sequence of random variables (Yn, n ≥ 1) as

Yn = (Z2n−1, Z2n), n ∈ N.

One easily can prove:

Lemma 2.1. Let (Zn, n ≥ 1) be a Markov process of order 2 on the probability space
(Ω,A, P) with values in (Z,Z). Then (Yn = (Z2n−1, Z2n), n ≥ 1) is a Markov process
of order 1 with values in (Z × Z,Z ⊗Z).
If moreover (Z,Z) is a Polish space endowed with the Borel-σ-algebra and Q is the
transition probability of (Zn, n ≥ 1) from (Z × Z,Z ⊗ Z) to (Z,Z), then the Markov
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process (Yn, n ≥ 1) has a transition probability R on (Z × Z,Z ⊗ Z) given by

R(z, z′;A1 × A2) =

∫
A1

Q(z, z′; dz′′)Q(z′, z′′;A2) (1)

for (z, z′) ∈ (Z × Z), A1, A2 ∈ Z.

The above method of transformation of a Markov process of higher order to one of
order 1 is possible for orders p > 2 as well and the Lemma is valid with the obvious
modifications.

For a Markov process (Zn, n ≥ 1) of order 2 its transition probability Q, in case it
exists, is a natural characteristic. Therefore the study of such a process may be based
on Q.

If one wants to apply the rich theory of Markov processes of order 1, that amounts
to deal with the transition probability R. This R again is some kind of iterated Q’s.
Thus it is natural to ask whether “good properties” for Q are inherited by R.

We shall show in the next Sections that this method leads to fruitful results.

3. Uniform ergodicity

With regard to the literature, see e.g. Iosifescu and Theodorescu (1969), Iosifescu
and Grigorescu (1990), we define uniform ergodicity for Markov processes of order 2
as follows:

The Markov process (Zn, n ≥ 1) of order 2 with transition probability Q is trans-
formed to the Markov process (Yn = (Z2n−1, Z2n), n ≥ 1) of order 1 with transition
probability R. Uniform ergodicity of (Zn, n ≥ 1) is defined by the well-known uni-
form ergodicity of the Markov process (Yn, n ≥ 1), see the above references and Meyn
and Tweedie (1996) for the definition of uniform ergodicity of a Markov process of
order 1. This device is applicable to Markov processes of order p > 2 as well. For
Markov processes (Zn, n ≥ 1) of order 1 no transformation is necessary.

Definition 3.1. Let (Zn, n ≥ 1) be a Markov process of order 2 on the probabil-
ity space (Ω,A, P) with values in (Z,Z) and with transition probability Q and let
(Yn = (Z2n−1, Z2n), n ≥ 1) be the associated Markov process of order 1 with transi-
tion probability R defined by (1).
The process (Zn, n ≥ 1) is called uniformly ergodic if and only if there exists a prob-
ability measure π on (Z × Z,Z ⊗ Z) such that

lim
n→∞

sup
(z,z′)∈(Z×Z)

‖ Rn(z, z′; ·) − π(·) ‖= 0,

where Rn denotes the n-step transition probability associated with R and ‖·‖ the norm
of total variation.

With respect to the unique invariant probability measure π associated to R we
have the following result.

Lemma 3.1. If π is the unique invariant probability measure on (Z × Z,Z ⊗ Z) of
a uniformly ergodic Markov process (Zn, n ≥ 1) of order 2, then the two marginal
measures of π are identical, i.e.

π(A × Z) = π(Z × A) =: ρ(A), A ∈ Z.

If the process (Zn, n ≥ 1) is defined on (Ω,A, Pz1,z2
), i.e. it starts from (z1, z2), then
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lim
n→∞

sup
A1,A2∈Z

|Pz1,z2
(Zn+1 ∈ A1, Zn+2 ∈ A2) − π(A1 × A2)| = 0,

lim
n→∞

sup
A∈Z

|Pz1,z2
(Zn ∈ A) − ρ(A)| = 0.

Proof. According to Definition 3.1 and Lemma 2.1 we have

π(A1 × Z) = lim
n→∞

Rn−1(z1, z2;A1 × Z) = lim
n→∞

Pz1,z2
(Z2n−1 ∈ A1)

= lim
n→∞

∫
Z

Rn−1(z2, z3;A1 × Z)Q(z1, z2; dz3)

= lim
n→∞

∫
Z

Pz1,z2
(Z2n ∈ A1|Z3 = z3)Pz1,z2

(dz3) = lim
n→∞

Pz1,z2
(Z2n ∈ A1)

= lim
n→∞

Rn−1(z1, z2;Z × A1) = π(Z × A1) = ρ(A1)

for all A1 ∈ Z, n ∈ N, which proves all statements.

For a Markov process of order 2 the joint distribution of r > 2 subsequent variables
(Zn+1, . . . , Zn+r), n ∈ N, can be composed of the distribution of the first 2 variables
Zn+1, Zn+2 and Q:

Pz1,z2
(Zn+1 ∈ A1, . . . , Zn+r ∈ Ar)

=
∫
A1

∫
A2

Pz1,z2
(Zn+3∈A3, . . . , Zn+r∈Ar|Zn+1=z′, Zn+2=z′′) Pz1,z2

(Zn+1∈dz′, Zn+2∈dz′′)

=
∫
A1

∫
A2

∫
A3

. . .
∫
Ar

Q(z′, z′′; dy3)Q(z′′, y3; dy4) . . . Q(yr−2, yr−1; dyr)R
n/2(z1, z2; dz′, dz′′)

for A1, . . . , Ar ∈ Z. Thus for any r∈N the limit lim
n→∞

Pz1,z2
(Zn+1∈A1, . . . , Zn+r ∈Ar)

is determined by lim
n→∞

Rn(z1, z2; ·).

Therefore one can state:

Corollary 3.1. Uniform ergodicity of a Markov process of order 2 is equivalent to
the property:
For any r ∈ N there exists a probability measure P

∞
r on (Zr,Zr), where Zr is the

r-fold Cartesian product of Z and Zr the corresponding Borel-σ-algebra, such that

lim
n→∞

Pz1,z2
((Zn+1, . . . , Zn+r) ∈ A) = P

∞
r (A)

uniformly with respect to z1, z2 ∈ Z,A ∈ Zr and r ∈ N.

The probabilities P
∞
r are determined by the unique invariant probability measure π

and Q:

P
∞
r (A1 × . . . × Ar) =

∫
A1

. . .
∫
Ar

π(dy1, dy2)Q(y1, y2; dy3) . . . Q(yr−2, yr−1; dyr)

for A1, . . . , Ar ∈ Z.

The law of large numbers and the central limit theorem which are valid for the
uniformly ergodic process (Yn = (Z2n−1, Z2n), n ≥ 1) are transferred to the process
(Zn, n ≥ 1) by setting

f(Z2n−1) + f(Z2n) = f(Yn)

for appropriate functions f and f on Z and (Z × Z), respectively.

Again the extension of those concepts and results to Markov processes of order
p > 2 is obvious: π is a probability on (Zp,Zp) and “gives weight” to the first p sets
A1, . . . , Ap out of A1, . . . , Ar. In case of order 1 nothing changes to the well-known
results, see e.g. Iosifescu and Grigorescu (1990, p. 42).

To prove the uniform ergodicity of a Markov process of order 2 one asks for sufficient
conditions for this property in case of a Markov process (Zn, n ≥ 1) of order 1 on
(Z,Z) with transition probability P.
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We mention:

Condition (MIX): P is called mixing if and only if there exists n ∈ N such that the
ergodicity coefficient α(Pn) of the iterate Pn satisfies

α(Pn) = 1 − sup
z′,z′′∈Z

A∈Z

|Pn(z′, A) − Pn(z′′, A)| > 0.

A condition on P which is generally important for Markov processes is the so-called
Doeblin-condition, see e.g. Doob (1953):

Condition (D): P satisfies the Doeblin-condition (D) if and only if there exist a finite
measure ϕ on (Z,Z) with ϕ(Z) > 0 and n ∈ N, ε > 0, η > 0 such that

∀A ∈ Z : ϕ(A) ≤ ε ⇒ Pn(·, A) ≤ 1 − η.

An obvious sufficient condition for (D) again is given, if ϕ “majorizes” all Pn(z, ·)
in the sense:

Condition (DM): P satisfies the strenghtened Doeblin-condition (DM) if and only if
there exist a finite measure ϕ on (Z,Z) with ϕ(Z) > 0 and n ∈ N such that

∀z ∈ Z,A ∈ Z : Pn(z,A) ≤ ϕ(A).

Following Doeblin’s original work already Doob (1953, p. 192 ff) extensively studied
the consequences of the validity of Condition (D), in particular the existence of a finite
number of ergodic kernels E1, . . . , Ek, each of which may contain a finite number
pj , j = 1, . . . , k, of subergodic kernels F 1

j , . . . , F
pj

j . Moreover Ei ∩ Ej = ∅ for i 6= j,

F r
j ∩ F s

j = ∅ for r 6= s and j = 1, . . . , k, the Ej are stochastically closed sets, the
process will move exponentially fast to one of the Ej ’s and cyclically move around
the F r

j , r = 1, . . . , pj . For a comprehensive description, see Iosifescu and Grigorescu
(1990, p. 72 f). In case “k = 1 and p1 = 1” the corresponding Markov process is
called “regular” by some authors, see e.g. Iosifescu and Grigorescu (1990, p. 72).
Doob (1953, p. 221) denotes that as “Condition (D0)”:

Condition (D0): P satisfies the “regularity” condition (D0) if and only if P satisfies
(D) and in addition there is exactly one ergodic kernel E1 = E which does not contain
subergodic kernels, i.e. p1 = 1.

As is well-known, (D0) as well as (MIX) are equivalent to uniform ergodicity, see
e.g. Meyn and Tweedie (1996, pp. 384, 391, 392).

Next the question arises whether “good properties” of Q are transfered to the
transition probability R in order to ensure the uniform ergodicity of a corresponding
Markov process of order 2.

Lemma 3.2. Let Q be a transition probability from (Z × Z,Z ⊗Z) to (Z,Z) and R

the corresponding “iterated” transition probability on (Z × Z,Z ⊗ Z) :

R(z, z′;A1 × A2) =
∫

A1
Q(z, z′; dz′′)Q(z′, z′′;A2)

for (z, z′) ∈ (Z × Z), A1, A2 ∈ Z.

(a) If Q satisfies (DM), then R also does.

In the case when Z ⊂ R and Q has a “positive” Lebesgue density, we get the mixing
property for R:

(b) For Z ⊂ R let Q have a Lebesgue density q, which is bounded away from zero on
a finite interval [α, β] ⊂ Z :

∃γ > 0 ∀z1, z2 ∈ Z, y ∈ [α, β] : 0 < γ ≤ q(z1, z2; y).
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Then the transition probability R is mixing.

Proof. (a) Let Q satisfy (DM) with a finite measure ϕ. Then R satisfies (DM) with
the product measure ϕ2 on (Z × Z,Z ⊗ Z), since

R(z, z′;A1 × A2) =
∫

A1
Q(z, z′; dz′′)Q(z′, z′′;A2) ≤ ϕ(A1)ϕ(A2) = ϕ2(A1 × A2),

(z, z′) ∈ (Z ×Z), A1, A2 ∈ Z. The above computation suffices, as Z ×Z is a ∩-stable
generator of (Z ⊗ Z).

(b) If Q has the density q w.r.t. the Lebesgue measure l, by its very definition R has
l2 = (l ⊗ l)-density

r(z1, z2; y1, y2) = q(z1, z2; y1)q(z2, y1; y2)

for (z1, z2), (y1, y2) ∈ (Z × Z). The assumption on q implies that

∀(z1, z2) ∈ (Z × Z), y1, y2 ∈ [α, β] : r(z1, z2; y1, y2) ≥ γ2 > 0.

For C ∈ (Z ⊗ Z) let us denote

CI = C ∩ [α, β]2, CC = [α, β]2 \ CI .

Now, if l2(CC) > 1
2 l2([α, β]2), then we have

R(z1, z2;C) ≤ 1 − γ2l2(CC) ≤ 1 − 1
2γ2l2([α, β]2),

which for δ = 1
2γ2l2([α, β]2) yields the estimate

sup
(z1,z2)∈(Z×Z)

(z′
1,z′

2)∈(Z×Z)

|R(z1, z2;C) − R(z′1, z
′
2;C)| ≤ 1 − δ.

If l2(CC) ≤ 1
2 l2([α, β]2), then we have

R(z1, z2;C) ≥ R(z1, z2;CI) = R(z1, z2; [α, β]2 \ CC)

≥ γ2l2([α, β]2 \ CC) = γ2{l2([α, β]2) − l2(CC)}

≥ 1
2γ2l2([α, β]2) = δ,

which also yields
sup

(z1,z2)∈(Z×Z)

(z′
1,z′

2)∈(Z×Z)

|R(z1, z2;C) − R(z′1, z
′
2;C)| ≤ 1 − δ.

Therefore α(R) ≥ δ > 0, i.e. R is mixing.

In the following Section we show that our method of studying Markov processes
(Zn, n ≥ 1) of order 2, i.e. the use of their transition probability Q and their trans-
formation to (Yn, n ≥ 1), is useful. For two types of such processes out of the class of
examples discussed we give sufficient conditions for their uniform ergodicity.

4. Applications

First, we consider a non-linear autoregressive time series (Wn, n ≥ 1) of order 1
with a Markov process (Xn, n ≥ 1) as noise sequence, i.e. a special case of Example
2.1(A). The time series (Wn, n ≥ 1) is generated by the recursion

Wn+1 = f(Wn) + σ(Wn)Xn, n ∈ N, (2)

with known functions f, σ for given W1 = w1,X1 = x1, w1, x1 ∈ R.
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Theorem 4.1. Let the noise sequence (Xn, n ≥ 1) in (2) be given as a Markov process
of order 1 on the state space (R,B) with transition probability P defined by

P (Xn, ·) = N(e(Xn), v(Xn)), n ≥ 1,

with bounded, measurable functions, i.e.

e : R → [a,A] and v : R → [b,B]

with −∞ < a ≤ A < ∞, 0 < b ≤ B < ∞. Assume in addition that the functions f

and σ in (2) are bounded and Borel-measurable:

f : R → [m,M ] and σ : R → [s, S]

with −∞ < m ≤ M < ∞, 0 < s ≤ S < ∞.

Then the Markov process (Wn, n ≥ 1) of order 2 is uniformly ergodic.

Proof. As was shown in Section 2, (Wn, n ≥ 1) is a Markov process of order 2
on the state space (R,B) with respect to a probability measure Pw1,x1

. Its transition
probability is given by

Q(z, z′;A) = P ( z′
−f(z)
σ(z) , 1

σ(z′) (A − f(z′))), (z, z′) ∈ R × R, A ∈ B,

where (A − r) denotes {a′ ∈ R|a′ = a − r, a ∈ A} for r ∈ R.

We compute the conditional distribution of Wn+1 given Wn−1,Wn:

Pw1,x1
(Wn+1 ∈ A|Wn−1,Wn) = Pw1,x1

(Xn ∈ 1
σ(Wn) (A − f(Wn))|Wn−1,Wn)

= Pw1,x1
(σ(Wn)Xn + f(Wn) ∈ A|Wn−1,Wn).

Since Wn−1,Wn determine Xn−1 = 1
σ(Wn−1)

(Wn − f(Wn−1)) and

Pw1,x1
(Xn ∈ B|Wn−1,Wn) = Pw1,x1

(Xn ∈ B|Xn−1) = P (Xn−1, B)

= N(e(Xn−1), v(Xn−1))(B),

it follows that

Pw1,x1
(Wn+1 ∈ A|Wn−1,Wn) = N(σ(Wn)e(Xn−1) + f(Wn), σ(Wn)v(Xn−1))(A).

This means that the transition probability Q of the process (Wn, n ≥ 1) is given by

Q(w,w′;A) = N(σ(w′)e(w′
−f(w)
σ(w) ) + f(w′);σ(w′)v(w′

−f(w)
σ(w) ))(A).

Due to Lemma 3.2(b) the transition probability R which is constructed by means of
Q is mixing:
Take as interval [α, β] in the Lemma e.g. [−1,+1]. By the boundedness assumptions on
the functions e, v, f and σ and the shape of the normal density functions the density
q of Q w.r.t. the Lebesgue measure satisfies q(z, z′; y) ≥ γ > 0 for all (z, z′) ∈ R × R,
y ∈ [−1,+1].

Since R is mixing, (Zn, n ≥ 1) is uniformly ergodic.

Now, we turn to the procedure of sequential adaptive exponential smoothing of a
Markovian observation sequence, i.e. Example 2.1(B).

Consider a sequence of observations (Xn, n ≥ 1) with values in (X,X ) = ([a, b],
B[a,b]),−∞ < a < b < ∞, which is a Markov process with transition probability P.

This sequence is sequentially and recursively smoothed by means of a smoothing
function u with values in (W,W) = (X,X ), i.e. if at time period n the smoothed
value Wn is available and Xn is the actual observation, then the new or updated
value for time period (n + 1) is given by
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Wn+1 = u(Wn,Xn), n ∈ N,

where W1 = w1,X1 = x1, w1 ∈ W,x1 ∈ X, are given as starting points. In the
classical procedure of exponential smoothing, Wn+1 is a weighted average of Wn and
Xn with a constant weight λ, 0 < λ < 1, i.e.

Wn+1 = (1 − λ)Wn + λXn, n ∈ N.

In the procedure of adaptive exponential smoothing the weight λ may be a function
of Wn, i.e.

Wn+1 = (1 − λ(Wn))Wn + λ(Wn)Xn, n ∈ N,

see e.g. Bonsdorff (1989), Herkenrath (1994) for a further discussion in case that
(Xn, n ≥ 1) are i.i.d. observations. In (adaptive) exponential smoothing a sequence
(Xn, n ≥ 1) of i.i.d. observations induces as sequence of smoothed values (Wn, n ≥ 1)
a Markov process of order 1, a Markovian observation sequence (Xn, n ≥ 1) induces
as (Wn, n ≥ 1) a Markov process of order 2. Under mild assumptions one can ensure
its uniform ergodicity:

Theorem 4.2. (Adaptive exponential smoothing). Let (W,W) = (X,X ) = ([a, b],
B[a,b]),−∞ < a < b < ∞, and the transition probability P have a bounded and
positive density p w.r.t. the Lebesgue measure, i.e.

∀x ∈ X,B ∈ X : P (x,B) =
∫

B
p(x, y) l(dy) with 0 < p(x, y) ≤ C < ∞.

Moreover, the smoothing function u : W × X → W has the form

u(w, x) = (1 − λ(w))w + λ(w)x,

where λ : W → [p, 1], 0 < p < 1, is continuous.
Then the sequence of smoothed values (Wn, n ≥ 1) is uniformly ergodic.

Proof. Since all mappings uw(·) are injective, (Wn, n ≥ 1) is a Markov process of
order 2 with transition probability Q given by

Q(w,w′;A) = P (u−1
w (w′);u−1

w′ (A))

= P (w′
−(1−λ(w))w

λ(w) , 1
λ(w′) (A − (1 − λ(w′))w′))

≤ C l( 1
λ(w′) (A − (1 − λ(w′))w′)) = C 1

λ(w′) l(A)

≤ C
p l(A) =: ϕ(A),

(w,w′) ∈ (W × W ), A ∈ W. Here ϕ(·) denotes C
p l(·), whence Q satisfies (DM). To

prove the “regularity” or Condition (D0) we conclude:
For given W2n−1 = w,W2n = w′ the range of W2n+1 = u(W2n,X2n) depends on
W2n−1 = w only implicitly via X2n−1. Moreover, since supp P (x, ·) = X = [a, b]
for all x ∈ X and because of the assumptions on u, the range of W2n+1 equals
u(W2n,X) = {w′′ ∈ W |∃x ∈ X : u(W2n, x) = w′′} and supp Pw1,x1

(W2n+1 ∈ ·)
= supp Rn(w1, u(w1, x1); · × W ) = [u(W2n, a), u(W2n, b)]. By the same argument
supp Pw1,x1

(W2n+2 ∈ ·) = supp Rn(w1, u(w1, x1);W × ·) = [u(u(W2n, a), a),
u(u(W2n, b), b)]. Starting with W1 = w1,W2 = u(w1, x1) we get recursively

supp Rn(w1, u(w1, x1); ·)
= [u(w1, x1, a

2n−1), u(w1, x1, b
2n−1)] × [u(w1, x1, a

2n), u(w1, x1, b
2n)],

where e.g. u(w1, x1, a
2n−1) abbreviates the value u(. . . u(u(w1, x1), a) . . . a) in which

a appears (2n − 1) times.

Now, as in the proof of Lemma 2 in Herkenrath (1994, p. 680), one can show:

lim
n→∞

u(w1, x1, a
n) = a, lim

n→∞
u(w1, x1, b

n) = b,
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and as a consequence it holds

lim
n→∞

supp Rn(w1, u(w1, x1); ·) = (W × W ).

Since ϕ(·) = C ′l(·), there cannot exist different respectively additional ergodic or
subergodic kernels, because such kernels had to have positive mass under ϕ and
therefore under the Lebesgue measure.

Remark 4.1. 1. The assumptions on P in Theorems 4.1 and 4.2 in particular imply
the uniform ergodicity of the Markov process (Xn, n ≥ 1).
2. Since X is compact, the assumption of a continuous density p on (X × X) is suf-
ficient for its boundedness.
3. The above assumptions on u cover the important case of a constant weight func-
tion λ, i.e. λ(w) ≡ λ, 0 < λ < 1.

For a further discussion of more general suitable smoothing functions u and their
properties we refer to Herkenrath (1994).

5. Concluding Remarks

We think that time series with a Markov process as noise sequence are quite suitable
to model certain dependencies within stochastic processes, like e.g. cycles of high
variances. As well, the statistical procedure of adaptive exponential smoothing of
a Markovian observation sequence is of interest, in order to make applicable this
procedure to more general sequences than i.i.d. ones. It seems that both subjects
were not studied in the past, because that amounts to deal with Markov processes of
order 2. The methods which are presented here for such a study are constructive and
even open the treatment of Markov processes of order higher than 2.
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