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Ground state solutions and concentration phenomena in
nonlinear eigenvalue problems with variable exponents
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Abstract. In this paper we consider a class of nonlinear eigenvalue problems that involves
a particular nonhomogeneous operator with variable growth condition and multiple variable

exponents. The main results establish the existence of minimum action solutions and the

concentration of the spectrum in a bounded interval.
The proofs rely on variational arguments based on the Mountain-Pass Theorem and the

Nehari manifold technique.
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1. Introduction

The study of differential equations involving p(x)-growth conditions was moti-
vated by their applications. Some materials with inhomogeneities, for instance elec-
trorheological fluids, required that the exponents of classical Lebesgue and Sobolev
spaces Lp and W 1,p (where 1 ≤ p ≤ ∞) to be able to vary. For example, electrorhe-
ological fluids have an extensive application in robotics, aircraft and aerospace.

Recently, the applications of variable exponent analysis in image restoration at-
tracted more and more attention. To this end we may refer to [10] and [11].

Therefore, the need to study variable exponent Lebesgue and Sobolev spaces.
In this paper we study the following quasilinear elliptic equation involving several

variable exponents:

(P )

{
−div [φ(x, |∇u|)∇u] = λ

(
g(x)|u|q(x)−2 + |u|r(x)−2

)
u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with Lipschitz boundary and the function φ(x, t)
is of the type |t|p(x)−2, where the function p : Ω→ (1,∞) is a continuous function.

The operator−div [φ(x, |∇u|)∇u] was firstly introduced by I. H. Kim and Y.H. Kim
in [14], and it enables the understanding of problems with possible lack of uniform
convexity.

For the more strictly case when φ(x, t) = |t|p(x)−2 our operator becomes the p(x)-
Laplacian, i.e., −∆p(x)u := −div

(
|∇u|p(x)−2∇u

)
. This operator was intensely studied

in the last decade in various ways. For more details we refer to [19] and [21].
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Our abstract setting includes also the case

φ(x, t) = (1 + |t|2)
p(x)−2

2 ,

which corresponds to the generalized mean curvature operator:

div
[
(1 + |∇u|2)

p(x)−2
2 ∇u

]
and our equation becomes the capillary surface equation described by the operator

div

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

]
.

In a recent monograph V. Rădulescu and D. Repovš [20] studied various problems
involving the p(x)-Laplacian and p(x)-Laplacian type operators. Some significant
ideas are also detailed by Y. Fu, Y. Shan in [9] and G. Molica Bisci, D. Repovs̆ in
[17].

In the present paper we extend the study from [14] by using a nonlinearity which
involves several variable exponents on the right-hand side of the equation. This fact
leads us to new results which consists in finding an other type of weak solutions which
minimizes the functional of the action on the set of all weak solutions.

We also point out that we obtain the concentration of the spectrum in an interval
away from the origin, which is bounded. Due to the new type of nonlinearities we
will also observe later on this paper that we can not establish the coercivity of the
associated energy functional and we could not apply the Direct Method in Calculus
of Variations in order to determine its critical points like I. H. Kim, Y.H. Kim in [14]
in the proof of Theorem 4.6.

The first result is concerned with the revealing of the first eigenvalue associated to
this problem and the existence of its eigenfunction. The spectrum of p(x)-Laplacian
type operators was also studied by M. Mihăilescu and V. Rădulescu in [15], M.
Mihăilescu, V. Rădulescu, D. Repovs̆ in [16], X. Fan, Q. Zhang and D. Zhao in
[8], I. H. Kim, Y.H. Kim in [14] and I. Stăncuţ, I. St̂ırcu in [22]. A special topic in the
study of the eigenvalue problems is constituted by the perturbed eigenvalue problems
and in this case we may refer to [4]. The difficulties in the study of spectral properties
of these operators comes from the existence of the gap between the infimum and the
supremum of the nonconstant exponents.

In the next sections of this paper we will prove the existence of the solutions for
our problem. Our first existence result state that the problem (P ) admits at least one
nontrivial weak solution due to the mountain pass theory. X. Fan, V. Rădulescu and
D. Repovš studied also the mountain-pass type solutions in [7], respectively in [20].

The second existence result lets us know that the problem (P ) admits a ground
state solution via some theory founded in a recent work of A. Azzollini, P. d’Avenia,
A. Pomponio [2].

In our last section, we will study the concentration phenomena related to the
spectrum and the fact that each eigenvalue of our problem is strictly positive.

2. The functional framework

With the emergence of nonlinear problems in applied sciences, standard Lebesgue
and Sobolev spaces demonstrated their limitations in the applications.



124 V. F. UŢĂ

In this section we will introduce the necessary functional framework needed in
the study of the problem (P ), i.e., the Lebesgue and Sobolev spaces with variable
exponent, and we will recall their main properties. To this end we studied the following
books by J. Musielak [18], L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka [5], V.
Rădulescu and D. Repovš [20].

Let us assume that Ω is a bounded domain in RN . We define

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
.

For any continuous function p : Ω→ (1,∞) one have

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

The condition p+ < +∞ is known to imply many desirable features for the associated
variable exponent Lebesgue space, which is defined by:

Lp(x)(Ω) =

{
u : Ω→ R a measurable function :

∫
Ω

|u|p(x)dx <∞
}
.

Equipped with the so called Luxemburg norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

Lp(x)(Ω) becomes a Banach space.
This space is a special case of an Orlicz-Musielak space and its dual space is

Lp
′(x)(Ω), where 1

p(x) + 1
p′(x) = 1.

For 1 < p(x) < +∞, Lp(x)(Ω) is reflexive, uniformly convex Banach space, and for
any measurable bounded exponent p, Lp(x)(Ω) is separable.

If 0 < |Ω| < +∞ and p(x), q(x) are two variable exponents so that p(x) ≤ q(x)
almost everywhere in Ω, then there exists the continuous embedding

Lq(x)(Ω) ↪→ Lp(x)(Ω).

For the next conjugate variable exponents, if we have u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω)
then the Hölder type inequality holds:∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (1)

We define by ρp(x) : Lp(x)(Ω)→ R, the modular of the space Lp(x)(Ω) such that:

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx.

If p(x) 6≡ constant in Ω, and u, {un} ∈ Lp(x)(Ω), then the following relations hold
true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (3)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (4)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (5)
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We define in what follows the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
.

On W 1,p(x)(Ω) we may consider the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

We define W
1,p(x)
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖ · ‖p(x) or

W
1,p(x)
0 (Ω) =

{
u;u|∂Ω = 0, u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
.

Taking account of [14] for p ∈ C+(Ω) we have the p(·)− Poincaré type inequality

|u|p(x) ≤ C‖∇u‖p(x), (6)

where C > 0 is a constant which depends on p and Ω.
For Ω ⊂ RN a bounded domain and p a global log-Hölder continuous function, on

W
1,p(x)
0 (Ω) we can work with the norm |∇u|p(x) equivalent with ‖u‖p(x).

Remark 2.1. [20] If p, q : Ω→ (1,∞) are Lipschitz continuous, p+ < N and p(x) ≤
q(x) ≤ p∗(x), for any x ∈ Ω, where p∗(x) = Np(x)

N−p(x) , the embedding

W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact and continuous.

3. Existence of solutions

3.1. Basic hypotheses. We will study the problem

(P )

{
−div [φ(x, |∇u|)∇u] = λ

(
g(x)|u|q(x)−2 + |u|r(x)−2

)
u in Ω,

u = 0 on ∂Ω,

In order to state more precisely our results we have that:
(φ1) φ : Ω× [0,∞)→ [0,∞) fulfill the following assumptions:
→ φ(·, t) is measurable on Ω for all t ≥ 0;
→ φ(x, ·) is locally absolutely continuous on [0,∞) for almost all x ∈ Ω.

(φ2) There exist a function α ∈ Lp′(x)(Ω) and a positive constant β such that

|φ(x, |t|)t| ≤ α(x) + β|t|p(x)−1

for almost all x ∈ Ω and for all t ∈ RN .
(φ3) There is a positive constant c such that the following hypotheses hold for almost
all x ∈ Ω:
→ φ(x, t) ≥ ctp(x)−2;

→ t
∂φ

∂t
(x, t) + φ(x, t) ≥ ctp(x)−2;

for almost all t > 0.
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Definition 3.1. We say that u ∈ W 1,p(x)
0 (Ω) is a weak solution of the problem (P )

if:∫
Ω

φ(x, |∇u(x)|)∇u(x)·∇v(x)dx = λ

∫
Ω

g(x)|u(x)|q(x)−2u(x)v(x)+|u(x)|r(x)−2u(x)v(x)dx

for all v ∈W 1,p(x)
0 (Ω).

In what follows we set

Φ0(x, s) =

∫ s

0

φ(x, t)tdt,

and we define the functional

Φ : W
1,p(x)
0 (Ω)→ R

by

Φ(u) =

∫
Ω

Φ0(x, |∇u(x)|)dx.

Lemma 3.2. [14] Assume that (φ1) and (φ2) hold. Then Φ ∈ C1(W
1,p(x)
0 (Ω),R) and

its Frèchet derivative is given by

〈Φ′(u), v〉 =

∫
Ω

φ(x, |∇u(x)|)∇u(x) · v(x)dx.

Lemma 3.3. [14] Assume that (φ1)−(φ3) hold. Then the operator Φ′ : W
1,p(x)
0 (Ω)→

W−1,p′(x)(Ω) is a strictly monotone on W
1,p(x)
0 (Ω) and a mapping of type (S+), i.e.,

if un ⇀ u in W
1,p(x)
0 (Ω) as n → ∞ and lim sup

n→∞
〈Φ′(un) − Φ′(u), un − u〉 ≤ 0, then

un → u in W
1,p(x)
0 (Ω), as n→∞.

By the definition of Φ0 and φ we can assert that one have:
(φ4) For every x ∈ Ω, and every t ∈ RN one have: 0 ≤ a(x, t) · t ≤ p+Φ0(x, |t|),

where a(x, t) = φ(x, |t|)t.
Before giving our results we must state some conditions on our exponents, and our

domain.
We consider Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ > 0

is a real number and p, q, r ∈ C+(Ω) such that:

1 < p− ≤ p(x) ≤ p+ < q− ≤ q(x) ≤ q+ < r− ≤ r(x) ≤ r+ < p∗(x) = Np(x)
N−p(x) ,

and p(x) < N
(7)

for all x ∈ Ω.
Furthermore, we assume that the function g(x) satisfies the hypotheses:

(g1) g : Ω→ [0,∞), g ∈ L∞(Ω).
(g2) g(x) > 0 for any x ∈ Ω and ‖g‖∞ ≤ C, where C > 0 is a constant.

Denote the following functional:

J(u) :=

∫
Ω

Φ0(x, |∇u|)dx− λ
(∫

Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

)
.

Set

Γ(u) :=

∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx.

We can say from now on, that J(u) := Φ(u)− λΓ(u).
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In the study of our results we will further use the following assumption related to
the Γ functional:
(Γ1) There exist the constants A1 > 0 and ω > 0 such that ω > p+, and

0 <

∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx ≤

∫
Ω

g(x)

ω
|u|q(x)dx+

∫
Ω

1

ω
|u|r(x)dx

for all |u| > A1.
Using the properties founded in [14] and in the Chapter 3, Section 3.2 of [20] we

can say that J(u) is well defined on W
1,p(x)
0 (Ω), it is a C1 functional and for every

v ∈W 1,p(x)
0 (Ω) we have:

J ′(u)(v) = Φ′(u)(v)− λΓ′(u)(v)

=

∫
Ω

φ(x, |∇u(x)|)∇u(x) · ∇v(x)dx−

−λ
(∫

Ω

g(x)|u(x)|q(x)−2u(x) · v(x)dx+

∫
Ω

|u(x)|r(x)−2u(x) · v(x)dx

)
.

Therefore we observe that critical points of our energy functional are weak solutions
for the problem (P ).

3.2. On the first eigenvalue of the problem (P ). Let us define the following
quantity

λ1 := inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

Φ0(x, |∇u|)dx∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

.

In order to prove that λ1 is an eigenvalue for the problem (P ) we firstly assert some
important lemmas.

Lemma 3.4. Assume that (φ3), (7), (g1) and (g2) hold. Then the functionals Φ and
Γ satisfy the following relation:

lim
‖u‖p(x)→0

Φ(u)

Γ(u)
= +∞.

Proof. Taking use of the properties of the function g we obtain that

|Γ(u)| =

∣∣∣∣∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

g(x)

q(x)
|u|q(x)dx

∣∣∣∣+

∣∣∣∣∫
Ω

1

r(x)
|u|r(x)dx

∣∣∣∣
≤ ‖g‖∞

q−

∫
Ω

|u|q(x)dx+
1

r−

∫
Ω

|u|r(x)dx.

Let u ∈W 1,p(x)
0 (Ω), with ‖u‖p(x) < 1.

Now, using the fact that p(x) < q(x) < r(x) < p∗(x) we have the following
continuous embeddings:

W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) ⇒ ∃ Cq > 0 such that |u|q(x) ≤ Cq‖u‖p(x)

and
W

1,p(x)
0 (Ω) ↪→ Lr(x)(Ω) ⇒ ∃ Cr > 0 such that |u|r(x) ≤ Cr‖u‖p(x).
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Taking account of relations (2) and (3) we have that:∫
Ω

|u|q(x)dx ≤ |u|q
−

q(x) + |u|q
+

q(x),∫
Ω

|u|r(x)dx ≤ |u|r
−

r(x) + |u|r
+

r(x).

We can say now that

|Γ(u)| ≤ C

q−

(
Cq
−

q ‖u‖
q−

p(x) + Cq
+

q ‖u‖
q+

p(x)

)
+

1

r−

(
Cr
−

r ‖u‖r
−

p(x) + Cr
+

r ‖u‖r
+

p(x)

)
. (8)

It follows using (φ3), (8) and (2) that∣∣∣∣Φ(u)

Γ(u)

∣∣∣∣ ≥ c
p+ ‖u‖

p+

p(x)

C
q−

(
Cq
−
q ‖u‖q

−

p(x) + Cq
+

q ‖u‖q
+

p(x)

)
+ 1

r−

(
Cr−r ‖u‖r

−

p(x) + Cr+r ‖u‖r
+

p(x)

) .
Since our exponents follow relation (7) we conclude that:

Φ(u)

Γ(u)
→ +∞, as ‖u‖p(x) → 0.

2

Lemma 3.5. [14] Assume that (φ1) − (φ3) and (7) hold. Then Φ is weakly lower

semicontinuous, i.e., un ⇀ u in W
1,p(x)
0 (Ω) as n→∞ implies that

Φ(u) ≤ lim inf
n→∞

Φ(un).

The following remark is a consequence of Lemma 21, Chapter 3 in [20] combined
with some details from the Section 2 of [6].

Remark 3.1. Assume that (7) holds, then Γ is weakly-strongly continuous, i.e.,

un ⇀ u in W
1,p(x)
0 (Ω) as n→∞, implies that Γ(un)→ Γ(u) as n→∞.

Theorem 3.6. The quantity λ1 is an eigenvalue for the problem (P ).

Proof. Let {un} ⊆W 1,p(x)
0 (Ω) \ {0} be a minimizing sequence for λ1, such that

λ1 = lim
n→∞

Φ(un)

Γ(un)
. (9)

Taking account of Lemma 3.4, we note that {un} is bounded in W
1,p(x)
0 (Ω) and so,

one have un ⇀ u as n→∞, for some nonzero element u ∈W 1,p(x)
0 (Ω).

Arguing by contradiction we suppose that u ≡ 0. Since Γ is weakly-strongly
continuous, we obtain that Γ(un)→ 0 as n→∞. By (9) we have that

lim
n→∞

Φ(un) = lim
n→∞

Φ(un)

Γ(un)
Γ(un) = 0.

Since Φ(un) ≥ C̃‖un‖p
+

p(x) or Φ(un) ≥ C̃‖u‖p
−

p(x) for some positive constant C̃, using

(φ3), one have ‖un‖p(x) → 0 as n→∞. Applying Lemma 3.4 we deduce that

lim
n→∞

Φ(un)

Γ(un)
=∞,

which is a contradiction.
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Hence, we have u 6≡ 0.
Since un ⇀ u as n→∞ we get by Lemma 3.5 and Remark 3.1 that

Φ(u) ≤ lim inf
n→∞

Φ(un) and Γ(un)→ Γ(u). (10)

In conclusion by the definition of λ1 and (10) we have that Φ(u) = λ1Γ(u) so, λ1

is an eigenvalue of the problem (P).
2

3.3. Mountain-Pass type solution. In order to show the existence of the critical
points of the energy functional J , and so, the existence of weak solutions for for our
problem we will use the following version of mountain pass lemma of A. Ambrosetti
and P. Rabinowitz and we can also refer to [3].

Theorem 3.7. [1] Let X be a real Banach space and assume that J : X → R is a
C1-functional that satisfies the following geometric hypotheses:
(i) J(0) = 0 and there exist positive numbers c0 and R such that J(u) ≥ c0 for all
u ∈ X with ‖u‖ = R;
(ii) there exists e ∈ X with ‖e‖ > R such that J(e) < 0.

Set
P := {p ∈ C([0, 1];X ); p(0) = 0, p(1) = e}

and
C := inf

p∈P
sup
t∈[0,1]

J(p(t)).

Then there exists a sequence (un) ⊂ X such that

lim
n→∞

J(un) = C and lim
n→∞

‖J ′(un)‖X∗ = 0.

Moreover, if J satisfies the Palais-Smale condition at the level C, then C is a critical
value of J .

Theorem 3.8. Assume that hypotheses (φ1) − (φ4), (g1), (g2), λ > 0 and (7) hold.
Then the problem (P ) admits at least one weak solution.

We will proof the Theorem 3.8 using the following results.

Proposition 3.9. Suppose that the hypotheses of Theorem 3.8 are fulfilled, then the

functional J : W
1,p(x)
0 (Ω)→ R possesses a mountain-pass geometry.

Proof. Our aim is to prove the existence of a “mountain and a valley”.
We may assume, without lose of generality, that ‖u‖p(x) < 1, then we have

J(u) = Φ(u)− λΓ(u)

=

∫
Ω

Φ0(x, |∇u|)dx− λ
(∫

Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

)
.

Using (φ4) we obtain

J(u) ≥
∫

Ω

1

p+
φ(x, |∇u|) · ∇udx− λ

(∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

)
.

By (φ3), and the fact that q(x) and r(x) ∈ C+(Ω), we obtain that

J(u) ≥ c

p+

∫
Ω

|∇u|p(x)dx− λ
(

1

q−

∫
Ω

g(x)|u|q(x)dx+
1

r−

∫
Ω

|u|r(x)dx

)
.
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Now by the fact that

1 < p(x) < q(x) < r(x) < p∗(x)

the embeddings W
1,p(x)
0 (Ω) ↪→ Lr(x)(Ω) and W

1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) are continuous

and compact, hence it yields that

J(u) ≥ c

p+
‖u‖p

+

p(x) − λ
[
‖g‖∞
q−

(
Cq
−

q ‖u‖
q−

p(x) + Cq
+

q ‖u‖
q+

p(x)

)
+

1

r−

(
Cr
−

r ‖u‖r
−

p(x) + Cr
+

r ‖u‖r
+

p(x)

)]
.

Since g ∈ L∞(Ω), we have that, there exists a constant C > 0 such that ‖g‖∞ ≤ C,
so we have

J(u) ≥ c

p+
‖u‖p

+

p(x) − λ
[
C

q−

(
Cq
−

q ‖u‖
q−

p(x) + Cq
+

q ‖u‖
q+

p(x)

)
+

1

r−

(
Cr
−

r ‖u‖r
−

p(x) + Cr
+

r ‖u‖r
+

p(x)

)]
.

So, by the assumption

1 < p− ≤ p(x) ≤ p+ < q− ≤ q(x) ≤ q+ < r− ≤ r(x) ≤ r+ < p∗(x)

taking ‖u‖p(x) = R > 0 small enough we have that

J(u) ≥ c0 > 0.

This shows the existence of a “mountain” around the origin.
Next, we prove the existence of a “valley” over the “chain of mountains”.
The hypothesis (φ4) implies that for all γ ≥ 1 and x ∈ Ω, t ∈ RN ,

Φ0(x, γ|t|) ≤ γp
+

Φ0(x, |t|). (11)

For now, we choose u0 ∈W 1,p(x)
0 (Ω), u0 > 0 in Ω and t ∈ R with t > 0.

From a straightforward computation we get

J(tu0) =

∫
Ω

Φ0(x, t|∇u0|)dx− λ
(∫

Ω

tq(x)g(x)

q(x)
|u0|q(x)dx+

∫
Ω

tr(x)

r(x)
|u0|r(x)dx

)
.

Since p+ < q− ≤ q+ < r− ≤ r+, g(x) > 0 for all x ∈ Ω and g ∈ L∞(Ω), does not
depends on t, we obtain that

J(tu0)→ −∞, as t→∞.
Therefore we can consider v = tu0 with ‖v‖p(x) = t‖u0‖p(x) > R such that J(v) < 0,
for t chosen sufficiently large.

Hence, we have checked that our functional J : W
1,p(x)
0 (Ω) → R possesses a

mountain-pass geometry. 2

Proposition 3.10. Suppose that (φ1)− (φ4), (g1), (g2), (Γ1) and (7) hold. The the
functional J verifies the Palais-Smale condition for all λ > 0.

Proof. We have J(u) := Φ(u)− λΓ(u).
Note that using Lemma 21 from chapter 3 in [20] we have that Γ′ is of type (S+),

since Γ′ is compact (due to the compact Sobolev embeddings, W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

and W
1,p(x)
0 (Ω) ↪→ Lr(x)(Ω), g ∈ L∞(Ω).
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Let {un} be a (PS)-sequence in W
1,p(x)
0 (Ω), i.e.,

J(un)→ C and J ′(un)→ 0, as n→∞.

Due to Lemma 3.3 we know that Φ′ : W
1,p(x)
0 (Ω) → W 1,p′(x)(Ω) is of type (S+), so

J ′ is of type (S+).

Since J ′ is of type (S+) and W
1,p(x)
0 (Ω) is reflexive, it is enough to show that {un}

is bounded in W
1,p(x)
0 (Ω).

Arguing by contradiction, we suppose that ‖un‖p(x) →∞ (passing eventually to a
subsequence).

Using the hypothesis (Φ4) we obtain

J(un)− 1

ω
J ′(un)(un) =

∫
Ω

(
Φ0(x, |∇un|)−

1

ω
φ(x, |∇un|)∇un · ∇un

)
dx+

+ λ

∫
Ω

(
g(x)

ω
|un|q(x) − g(x)

q(x)
|un|q(x) +

1

ω
|un|r(x) − 1

r(x)
|un|r(x)

)
dx

≥
(

1− p+

ω

)∫
Ω

Φ0(x, |∇un|)dx+

+ λ

∫
Ω

(
g(x)

ω
− g(x)

q(x)

)
|un|q(x) +

(
1

ω
− 1

r(x)

)
|un|r(x)dx.

Let us consider

A = sup

{∣∣∣∣(g(x)

ω
− g(x)

q(x)

)
|u|q(x) +

(
1

ω
− 1

r(x)

)
|u|r(x)

∣∣∣∣ : x ∈ Ω, |u| ≤ A1

}
.

Using the condition (Γ1) we get that(
1− p+

ω

)∫
Ω

Φ0(x, |∇un|)dx ≤ J(un)− 1

ω
J ′(un)(un)−

− λ
∫
{x∈Ω:|un(x)|>A1}

(
g(x)

ω
|un|q(x) − g(x)

q(x)
|un|q(x) +

1

ω
|un|r(x) − 1

r(x)
|un|r(x)

)
dx

+ λA|Ω| ≤ J(un)− 1

ω
J ′(un)(un) + λA|Ω|,

where |Ω| is the Lebesgue measure of the domain Ω.
Since we supposed that ‖un‖p(x) →∞, we may say that for n taken large enough

we have ‖un‖p(x) > 1. Now using (φ3), (φ4) and (3) we obtain that:(
1− p+

ω

)
c

p+
‖un‖p

−

p(x) ≤ J(un) +
1

ω
‖J ′(un)‖W−1,p′(x)(Ω)‖un‖p(x) + λA|Ω|.

Using the fact that ω > p+ and p− > 1 we obtain a contradiction.
Therefore J : W 1,p(x)0(Ω) → R fulfills the Palais-Smale condition. 2

Finally we will conclude the affirmation stated by the Theorem 3.8.

Conclusion of Theorem 3.8. Since J(0) = 0, using the Propositions 3.9 and 3.10
we observe that J has at least one critical point via Theorem 3.7, therefore our
problem (P ) has at least one nontrivial weak solution.
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3.4. Existence of a ground state solution. To find a ground state solution

in W
1,p(x)
0 (Ω) we will develop some ideas founded in [2].

Firstly, we defineWs, as the set of all nontrivial weak solutions of (P ) in W
1,p(x)
0 (Ω)

like that

Ws := {u ∈W 1,p(x)
0 (Ω) \ {0} : J ′(u) = 0}.

Using Theorem 3.8 we observe that Ws is not empty.
We will show that the following lemmas hold on the set Ws.

Lemma 3.11. There exists Cw > 0 such that ‖u‖p(x) ≥ Cw, for all u ∈ Ws.

Proof. Assume that ‖u‖p(x) < 1. The case ‖u‖p(x) > 1 is irrelevant.

λ

(∫
Ω

g(x)|u|q(x) + |u|r(x)dx

)
=

∫
Ω

φ(x, |∇u|) · |∇u|2dx

≥ c
∫

Ω

|∇u|p(x)dx.

Next, using (g1), (g2), (φ3) and relation (7), we obtain

λ
[
C ·
(
Cq
−

q ‖u‖
q−

p(x) + Cq
+

q ‖u‖
q+

p(x)

)
+
(
Cr
−

r ‖u‖r
−

p(x) + Cr
+

r ‖u‖r
+

p(x)

)]
≥ c‖u‖p

+

p(x).

Hence, one have

λCM‖u‖q
−

p(x) ≥ c‖u‖
p+

p(x).

Therefore we obtain ‖u‖q
−−p+
p(x) ≥ c

λCM
, so

‖u‖p(x) ≥
(

c

λCM

) 1

q−−p+

,

where CM = C(Cq
−

q + Cq
+

q ) + Cr
−

r + Cr
+

r . 2

Lemma 3.12. There exists a positive constant c > 0, such that J(u) ≥ c, for all
u ∈ Ws and for all p+ < ω(where ω is the same from the assumption (Γ1)).

Proof. Let u ∈ Ws. Using the terms of Proposition 3.10, and by Lemma 3.11 we
have:

J(u) = J(u)− 1

ω
J ′(u)(u) ≥

≥
(

1− p+

ω

)∫
Ω

Φ0(x, |∇u|)dx+ λ

∫
Ω

(
g(x)

ω
− g(x)

q(x)

)
|u|q(x) +

(
1

ω
− 1

r(x)

)
|u|r(x)dx

≥
(

1− p+

ω

)∫
Ω

Φ0(x, |∇u|)dx+ λ

[(
C

ω
− C

q−

)∫
Ω

|u|q(x)dx+

(
1

ω
− 1

r−

)∫
Ω

|u|r(x)dx

]
≥ c.

In the previous estimates we used the Sobolev embeddings allowed by relation (7)
and the properties of the function g. 2

Let us now indicate the Nehari manifold associated to the functional J , i.e.,

Nλ := {u ∈W 1,p(x)
0 (Ω) \ {0} : J ′(u)(u) = 0}.

We note that Lemmas 3.11 and 3.12 hold also for Nλ.
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By Lemma 3.12, we infer that

ξ = inf
u∈Ws

J(u) > 0.

We will show by our next theorem that this infimum is achieved.

Theorem 3.13. Assuming that (φ1)− (φ4), (g1)− (g2), (Γ1) and relation (7) hold,

then in the space W
1,p(x)
0 (Ω), there exists a ground state solution for the problem

(P ), i.e.,

J(u) = min
u∈Ws

J(u).

Proof. Let {un} ⊂ Ws be a minimizing sequence, i.e.,

J(un)→ ξ and J ′(un) = 0.

Then {un} is Palais-Smale sequence for J and we showed its existence in the proof of
Proposition 3.10. 2

4. Spectrum consisting in a bounded interval

In this section we will establish a concentration phenomena related to the spectrum
which consists in an interval which is bounded by two Rayleigh-type quotients, while
no eigenvalues exists outside this interval.

We define the following Rayleigh-type quotient:

λ0 := inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

φ(x, |∇u|) · |∇u|2dx∫
Ω

g(x)|u|q(x)dx+

∫
Ω

|u|r(x)dx

and we remind that:

λ1 := inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

Φ0(x, |∇u|)dx∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

.

Before we can study the concentration of the spectrum we will give some important
lemmas.

Lemma 4.1. We have that λ1 > λ0 > 0.

Proof. Using the assumption (φ4) we find that∫
Ω

Φ0(x, |∇u|)dx ≥ 1

p+

∫
Ω

φ(x, |∇u|) · |∇u|2dx.

By hypothesis (Γ1) we deduce that for all u ∈W 1,p(x)
0 (Ω), with |u| > 0 we have:∫

Ω

Φ0(x, |∇u|)dx∫
Ω

g(x)

q(x)
|u|q(x)dx+

∫
Ω

1

r(x)
|u|r(x)dx

≥ ω

p+
·

∫
Ω

φ(x, |∇u|) · |∇u|2dx∫
Ω

g(x)|u|q(x)dx+

∫
Ω

|u|r(x)dx

.
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Taking the inequality to the infimum for u ∈ W 1,p(x)
0 (Ω) \ {0} we obtain using (Γ1)

and (φ4) that

λ1 ≥
ω

p+
λ0 > λ0.

We proceed now to show that λ0 > 0. Firstly we suppose that ‖u‖p(x) < 1. Hence,
using (φ3) and (g2) we obtain∫

Ω

φ(x, |∇u|) · |∇u|2dx∫
Ω

g(x)|u|q(x)dx+

∫
Ω

|u|r(x)dx

≥
c

∫
Ω

|∇u|p(x)dx

‖g‖∞
∫

Ω

|u|q(x)dx+

∫
Ω

|u|r(x)dx

≥
c‖u‖p

+

p(x)

C(Cq
−

q ‖u‖
q−

p(x) + Cq
+

q ‖u‖
q+

p(x)) + (Cr
−

r ‖u‖r
−

p(x) + Cr
+

r ‖u‖r
+

p(x))

≥
c‖u‖q

−

p(x)

[C(Cq
−

q + Cq
+

q ) + (Cr
−

r + Cr
+

r )]‖u‖q
−

p(x)

≥ c

C(Cq
−
q + Cq

+

q ) + (Cr−r + Cr+r )
> 0.

where c is the constant given by (φ3), C is the constant from (g2) and Cq and Cr are
positive constants resulted from the continuous embeddings:

W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) and W

1,p(x)
0 (Ω) ↪→ Lr(x)(Ω).

Taking the infimum in the previous inequality we obtain that λ0 > 0.
Due to the fact that relation (7) implies that p− < q− ≤ q+ < r− ≤ r+ we are

not interested in the weak solutions which have ‖ · ‖p(x) > 1, and their associated
eigenvalues, because we can not show that the functional J is coercive and we can
not apply the Direct Method in the Calculus of Variations in order to point out its
critical points. 2

Theorem 4.2. The problem (P ) has no solution for every λ < λ0.

Proof. We recall that:

λ0 := inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

φ(x, |∇u|) · |∇u|2dx∫
Ω

g(x)|u|q(x)dx+

∫
Ω

|u|r(x)dx

:= inf
u∈W 1,p(x)

0 (Ω)\{0}

P (x, u)

Q(x, u)
,

where P (x, u) :=

∫
Ω

φ(x, |∇u|) · |∇u|2dx andQ(x, u) :=

∫
Ω

g(x)|u|q(x)dx+

∫
Ω

|u|r(x)dx.

Fix λ < λ0. We argue by contradiction, and assume that λ is an eigenvalue of the

problem (P ). Therefore we may find u ∈W 1,p(x)
0 (Ω) \ {0} such that∫

Ω

φ(x, |∇u|) · ∇u · ∇ϕdx = λ

(∫
Ω

g(x)|u|q(x)−2uϕdx+

∫
Ω

|u|r(x)−2uϕdx

)
,
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for all ϕ ∈W 1,p(x)
0 (Ω), thus we have

P ′u(x, u) = λQ′u(x, u).

For now on, taking ϕ = u we get that P (x, u) = λQ(x, u). Hence,

λ =
P (x, u)

Q(x, u)
≥ inf
u∈W 1,p(x)

0 (Ω)\{0}

P (x, u)

Q(x, u)
= λ0

which contradicts de choice of λ. 2

Theorem 4.3. Every λ ∈ (λ0, λ1] is an eigenvalue of the problem (P ).

Proof. As we pointed out by Theorem 3.6 , λ1 is an eigenvalue of the problem (P ).
It remains to show that every λ ∈ (λ0, λ1) is an eigenvalue for our problem.

As we proved in the previous section there exists u ∈ Nλ which is a global minimizer
of J , such that

J(u) = min
u∈Ws

J(u) = ξ > 0.

We argue in what follows to reveal that u 6= 0. Indeed, using the definition of λ1, and

the fact that λ < λ1, we may find v ∈W 1,p(x)
0 (Ω) \ {0} such that

λ <
Φ(v)

Γ(v)
.

Then J(v) > 0.
Since u is a global minimum point of J , it follows that J(v) ≥ J(u) > 0, which

implies u 6= 0.
We conclude that λ is an eigenvalue for the problem (P ) with the corresponding

eigenfunction u. 2

Theorem 4.4. For all λ > λ1, problem (P ) does not have a solution.

Proof. Suppose that λ is an eigenvalue of (P ). Set λ > λ1. Using the definition of λ1

and the fact that λ > λ1, we may find v ∈W 1,p(x)
0 (Ω)\{0} such that Φ(v)− λΓ(v) < 0,

so J(v) < 0.
So we can say that

inf
u∈W 1,p(x)

0 (Ω)\{0}
J(u) < 0,

which leads us to the following alternative:
(i) u ∈ Ws and inf

u∈Ws

J(u) < 0, which is a contradiction with the fact that inf
u∈Ws

J(u) =

ξ > 0;

(ii) u ∈ W
1,p(x)
0 (Ω) \ {0} and inf

u∈W 1,p(x)
0 (Ω)\{0}

J(u) < 0, hence u 6∈ Ws, fact that

contradicts the hypothesis that λ is an eigenvalue for the problem (P ).
Therefore, we can conclude that for any λ ∈ (λ1,+∞), the problem (P ) does not

admit a solution. 2
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[15] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising
in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462

(2006), 2625–2641.
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