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FPGA design and hardware implementation of a convolutional
neural network for classification of saccadic eye movements
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Abstract. The paper presents an efficient design and implementation of a convolutional neu-

ral network on an FPGA device. The aim is not only theoretical but also practical, since the
solution will be used in a medical clinic dealing with SpinoCerebellar Ataxia type 2 as part

of a larger project. Hence, the current work targets both high learning capabilities as well as

portability. The former has been tackled through the apppointment a convolutional neural
network while the latter is concerned with the hardware implementation of the complex net-

work on a FPGA. The preliminary results encourage the further exploitation of the proposed

solution.
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1. Introduction

Spino Cerebellar Ataxia type 2 (SCA 2) is a neurodegenerative disease. As such,
the condition has no cure and produces a gradual and increasing alteration of the
nervous system. Under these circumstances, there is a high interest in the development
of monitoring and diagnosis systems that allow an early detection of the disease, for
timely rehabilitation planning, as well as portability, for direct use in hospitals/clinics
and a minimal need for patient displacement and queuing [1].

One non-invasive diagnostic technique that allows the possibility to register the
weak electrical potentials generated by the eye movement when following the trajec-
tory of an object (saccades), is electrooculography. Such obtained saccadic records
can be further used for classification of patients into healthy, presymptomatic and
sick. The principal aim for the artificial learning support is to allow the early detec-
tion of people in the primary stages of the disease, where symptoms are so weak that
they have no external manifestation (i.e. presymptomatic). The practical target is to
implement the learning algorithm on a portable device for a direct use in the medical
unit. The complete task is being handled by a team of researchers from the Univer-
sity of Malaga (Spain), Technical University of Manabi (Ecuador) and University of
Craiova (Romania). Medicine has obtained very good results from the high potential
of machine learning [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], however pre-
liminary models with such traditional techniques have shown the complexity of this
particular classification task [14].
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Since convolutional neural networks (CNN) have lately also become very popular
for medical problems [15], [16], [17], the current algorithmic direction of the team
explores its applicability for this sequence classification. A first theoretical test of its
implementation on a portable FPGA device has been described in [18].

The focus of the current study is on the complete practical integration in the device
of all the modules designed previously in [18]. Moreover, this paper outlines in detail
all the main features of each part of the complete design. Finally, the work proves once
again the computational advantage of the FPGA over a GPU-based implementations
[19], especially as regards heterogeneous parallelism and custom data types, which is
a particularly hard task for GPUs [20].

The rest of this document is organized as follows. In the Hardware vs Software
solution section, the main ideas about hardware implementation are pointed out, ex-
plaining the key motivation for doing this project in a hardware language and using
the chosen device. In Proposed architecture, the complete architecture is shown and
the behavior of the design is exposed. Convolutional neural network block analyzes the
main ideas in the development of the hardware block; also the optimization mecha-
nism and the methodology are described. Processor and interconnection analyzes the
resources involved in the interconnection between processor part and logic part. Also,
the essential knowledge of the processor part is introduced. The results of the tests
carried out are detailed in Results, highlighting the outcome obtained in each part
of the methodology. Finally, the Conclusions section summarizes the main ideas and
conclusions of the work.

2. Hardware vs Software solution

Before explaining the proposed solution, a brief comparison between hardware and
software implementations [21] is necessary to be stated.

There are a lot of physical differences in hardware against software programming.
This entails in a set of dual parameters.

• Main design paradigm: A hardware platform, like FPGA, has a limited quantity
of logic resources for developing the complete design. The hardware developer
has to decompose the solution in the space domain. In contrast, the software
solution has the time as the constraint of the design. Software is composed by
a series of rules executed by the processor one by one, and is limited by the
duration of all rules.

• Main limitation: Hardware is limited by the time of the clock period, the oper-
ation has to be done between consecutive clock cycles. On the other hand, this
limitation is represented by the instruction set in a software solution.

• Main behavior: Parallelism is the other main dual difference. In hardware, all
blocks are executed in a concurrent way. We can make the design sequential, by
waiting for the outputs of the previous stages. However the natural work-flow is
parallelism. In software the behavior is just the opposite. Although The code is
executed instruction by instruction, T the software can behave like a concurrent
system. Because the system can have more than one processor buy this processor
have to execute the instructions in a sequential form.

• Reuse: In software from open-source there are many functionalities which have
been already developed and the programmer can use them in his/her own designs.
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Figure 1. Software solution and hardware solution.

The intellectual property in the hardware environment is more suspicious and
there are only few functionalities released.

A little example can be seen in Figure 1 that demonstrates some differences between
software and hardware solutions.

There are three main distinctions between both designs that need to be emphasized:
(1) Data Access: As can be seen in the software solution of Figure 1, the majority

of the instructions are about data access, seven of them for loading data and
three for storing, thus around 80 % of the operations are used for data instruc-
tions. Software needs to write and then read every instruction processed, those
being the most recurrent but also the longest operations, spending around 10
clock cycles for access to RAM memory in each instruction. On the other hand,
hardware avoids the multiple data access, it allows connection to different blocks
without memory interface, or to more suitable interface like FIFO.

(2) Mathematical Operations: Software needs much time to process a set of math-
ematical basic operations, referring to the fact that these instructions need to
be done one by one1. If the number of processors is higher in the system, more
operations can be performed, although in the same way, one by one. In con-
trast, hardware implementation has many little mathematical processors, called
digital signal processors (DSP), included for doing this type of operation. Many
multiplications and sums can be done within one iteration. Apart from this com-
parison, graphic processor unit(GPU) has become a hopeful option, because it

1In general Single Instruction Multiple Data(SIMD) is only possible with no decimal point data

type and few bits for its representation.
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contains a large amount of little processors, but it works necessarily with another
type of processor.

(3) Parallelism: The processor executes the code instruction by instruction, not
making possible to benefit of the parallelism of the real problem. The hardware
solution is able to implement different blocks that process the data in a concurrent
form. Moreover each block is composed of many structures that execute the data
in a parallel way too, therefore it can better suit a problem with parallel nature.
In this work, it had been chosen to utilize a heterogeneous device [22], which has
a processor part and a hardware part to benefit from both paradigms. For this
purpose the best option in our consideration was ZYNQ device from Xilinx, with
two ARM Cortex A9 and a large FPGA part.

3. Proposed architecture

In Figure 2 our general architecture can be observed. This system works as follows:
This system works as follows: the processor receives the weights from an external
source2, or in the future from the training calculation. It stores these values in the
shared memory RAM. This is done by the AXI BUS, with the AXI RAM CON-
TROLLER. Next, the inputs from an external source are received by the processor
and these are sent to the CNN hardware block with AXI BUS. Then the processor
transmits the start signal with the same bus to the CNN hardware block. The CNN
hardware block has a DONE signal for announcing the end of its work. When the pro-
cessor notes this signal, it asks the CNN block for the outputs and the CNN responds
with these.

For implementing the CNN we have chosen a fully hardware design with the HLS
language. This is explained with details in the next section. The processor part
and the interconnection result will be explained in the section 5. The results of the
integration will be exposed in section 6.

4. Convolutional Neural Network block

Before starting explaining the hardware, one of the biggest issues in FPGA pro-
gramming should be mentioned. The issue with the programming of FPGA has always
concerned development time and difficulty. New paradigms of hardware programming
have been consequently developed recently. Vivado High Level Synthesis is the lan-
guage introduced by Xilinx, which provides programming in C++, C or SystemC, and
focuses on the system level in contrast to the register level of the traditional languages
like Verilog and VHDL. HLS is a set of technologies permitting the transformation of
the code written in medium-level language to registers (called synthesis by Xilinx).
The same functionality could be expressed through many different codes, which could
be synthesized in several ways. Code styling and indication for synthesis are thus of
the most important as each result of synthesis produces an implementation with a
specific resource and performance. This study puts forward a code and a set of indi-
cations to achieve the best performance as well as a low usage of resources. Further
information on the HLS can be found in [23].

2In a future implementation we will try obtain the weights (networks parameters) in the own

processor by the training algorithm execution.
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Figure 2. Proposed general architecture.

As concerns the CNN paradigm to be implemented into the FPGA, the concepts
related to this type of deep neural network – such as convolutional filters, ReLu
nonlinearity, max-pooling or softmax activation – will not be presented in detail in
this work, but readers unfamiliar with the topic are invited to consult [24].

The architecture of the CNN model consists of a convolutional layer with a ReLu
activation function, followed by one max-pooling function, connected to another con-
volutional layer, which has the same activation function and max-pooling. The output
stage consists of two fully connected layers, the first with a ReLu activation function
and the last layer with only 3 neurons and a softmax activation function.

The next step is searching for the best implementation for this architecture. We
choose Keras API because it offers a friendly high-level language tool for both the
description of the network and the training. Consequently, it allowed the study of
different architectures with various numbers of layers and diverse types of training.
However, we need to check the functionality implemented in HLS, and we therefore
have to make a design layer by layer, with a simple operation. This fact is not possi-
ble under Keras. Because this fact is not possible with Keras, we consider MATLAB
as the best solution and, every time we implement one layer, we also make a design
in HLS. We have tried different coding styles and applied HLS directives for opti-
mizing the design, and at every iteration of our methodology we have checked the
implementation. The methodology used can be seen in Figure 3.
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Figure 3. Methodology of Keras-Matlab-HLS interplay.

The implementation on hardware follows the structure showed in Figure 4. This
architecture has been fully explained in the paper [18].

5. Processor and Interconnection

The processor part and the integration of all the components has been achieved in
the following manner.

5.1. Processor. This work uses the processor part for configuring and controlling
the CNN hardware block. In Figure 4 the processor appears like another hardware
module but it is already integrated within the device. The processor block diagram
can be seen in Figure 5. The main resources used in the design are emphasized: the
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Figure 5. Processor block diagram.

two ARM CORTEX-A9 with their DDR3 Memory RAM, the AXI BUS CONTROL
and the UART module for communicating with the external computer.

5.2. Interconnection. In this design we have considered to use individual dual port
memory ram for the weight due to two main reasons. The first is to facilitate the
parallelism of the CNN hardware block, and the second is for sharing the values be-
tween the processor part and hardware block. One port is for the CNN block and
the other is for the processor. It was necessary to put another block for storing and
reading the values from the processor to the memory block - this is AXI RAM CON-
TROLLER. For the communication between both the AXI RAM CONTROLLER
and the processor, as well as between the CNN hardware block, and the processor,
the design implemented the AXI BUS interface. It allows the control and configura-
tion of the CNN block with a standard driver; also the communication with the CNN
block includes sending the inputs and receiving the outputs.

5.3. Integration. After having completed the interconnection, it became necessary
to integrate all parts, and transform the code into a hardware language. The IDE
provides some reports for checking the functionality and for improving some parts.
This will be shown in the section 6. The next step is to implement the design, it is
the process in which Vivado transforms the hardware specification into a real map of
resources; the results of this part will also be shown in the next section.
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6. Results

The methodology used reported different results for each part with a different
meaning in each one.

First, we have the results of the CNN hardware block implementation. The im-
portant findings in the FPGA design are the usage of the hardware resources and
the running time result. Vivado HLS estimates the usage of the hardware and offers
reports for each part of the implementation. The main report is the block utilization,
as it can be seen in Table 1.

The usage of LUT, the most important resource, can be noted with a use of only
61%. This is a good mark because we are exploiting a large amount but This is a good
mark because, although we are exploiting a large amount of them, we have a remains
of 39% for other necessary actions such as putting the CNN design in connection with
the processor part and the others.. The second important mark is the usage of DSP
of 81%. This is a good result because it is very close to the total.

In order to compare the performance of the constructed implementation with that
of a standard PC, two laptops usable in hospital environments have been considered.
A comparison between the running times can be seen in Table 2. The last column
gives the ratio between the reference computers and the CNN hardware block. The
PC devices need between 8 to 12 times more time than the proposed hardware design.

The second finding refers to the integration reports. After the block diagram is
completed, this is transformed to hardware language by the synthesis process. The
results are provided in Figure 6. Referring to resource usage, the values are similar
to the estimation before. The RAM occupation is total, it is a normal point with all
the blocks already included and the DSP usage is 85%, a better point than before.
For Power consume, the marks reported are in a good range. And lastly, for the time
report, all values are in blue so all work as expected. Next step is the result of the
implementation, and all marks received are satisfactory.

The final outcome of this work is referring to the connection with the processor
part. The results obtained in terms of precision are distinct, because the data type
impacts on the precision of the result but it has no effect in the classification. The
values obtained from each software can be seen in the Table 3. These results are
referring to the classification accuracy for the three classes. The prediction capability
is not high at all, which means that the CNN architecture and learning have to be
improved. However, the interest of the proposed study is to show the viability of an
efficient implementation of a CNN framework on a FPGA.

7. Conclusions

A FPGA design and hardware implementation of a CNN have been put forward
in this work.

The CNN architecture consists of two convolutional layers (with ReLu nonlinearity
and max-pooling) and two fully connected layers.

We integrated all parts into a hardware device, with all the necessary blocks. We
have presented a general architecture, with a processor part for controlling and con-
figuring the device. We have synthesized and implemented this design and configured
the network through the processor.
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Name BRAM 18K DSP48E FF LUT
DSP - - - -
Expression - - 0 2108
FIFO 110 - 5950 12210
Instance 0 172 24886 17100
Memory 1 - 36 135
Multiplexer - - - 1188
Register - - 138 -
Total 111 172 31010 32741
Available 280 220 106400 53200
Utilization (%) 39 78 29 61

Table 1. Resource usage estimates.

Ref Processor RAM Time Computertime

FPGAtime

Computer 1 Intel Core i5-5257U 8 GB 1866MHz DDR3 937µs 11.86
Computer 2 Intel Core i7-8550U 16 GB 2400MHz DDR4 612µs 7.74
Hardware - - 79 µs 1

Table 2. Implementation in FPGA versus that in standard PCs.
Comparison of running times.

Figure 6. Integration reports.

KERAS MATLAB HLS SIM ZYNQ
Accuracy 65% 65% 65% 65%

Table 3. Accuracy in the classification in each part 1.
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We have checked and compared the outcomes reported from the processor with
the rest of implementations. All the results obtained are the same. The accuracy
of the solution is not good enough for the given classification problem, however the
aim of this study had been the achievement of the same implementation in hardware
rather than in Keras and the verification of the results in terms of efficiency and
competitiveness. Thus, we will be able to implement an improved architecture of a
CNN when such one is obtained.

What is important in this work from the practical point of view is that the task to
be solved is a real-world problem that needs a portable effective solution to be used in
actual diagnosis within hospitals and clinics. A direction for future work envisages the
optimization of the network architecture for achieving a more efficient classification.
Since, in the current form, training had been performed within a traditional computer,
a second future path will consist in analyzing the possibility of implementing both
the training and the operation tasks within the ZYNQ-7000 device.
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