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Stress formulation for the blocking property of the
inhomogeneous Bingham fluid
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Abstract. This work is concerned with the flow of a viscous plastic fluid. After setting the

general threedimensional problem, the blocking property is introduced. We then focus on

necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow

in twodimensional case is considered. A variational formulation in terms of stresses is deduced.
Some properties dealing with local stagnant regions as well as local regions are obtained.

Résumé. Nous considérons le problème de l’écoulement d’un fluide viscoplastique. Nous nous

intéressons ensuite aux conditions nécessaires et suffisantes de blocage du fluide. Le problème

antiplan est considéré et une formulation variationnelle en contraintes est obtenue et utilisée.

Des propriétés concernant les zones stagnantes du fluide ainsi que celles où le fluide se comporte
localement comme un corps rigide sont établies.
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1. Introduction

Due the importance of evaluation of landslide risk, great efforts have been devoted
to analyzing, modeling, and predicting such phenomena in the last decades. A sta-
bility analysis, which treats the geologic material as a rigid viscoplastic body, may
provide information on the safety factor of stable mass of soil. One of the simplest
and convenient viscoplastic constitutive relation is the one modeling a Bingham fluid,
exhibiting viscosity and yield stress.

Recently, the inhomogeneous (or density-dependent) Bingham fluid was considered
in landslides modeling [2, 1, 3, 6]. In this work, the inhomogeneous yield limit is a
key point in describing a natural slope. Indeed, due to their own weight, the geoma-
terials are compacted (i.e., their density increase with depth), so that the mechanical
properties also vary with depth. Therefore the choice of a Bingham model in which
the yield limit g and the viscosity coefficient η vary with density is motivated.

A particularity of the Bingham model lies in the presence of rigid zones located
in the interior of the flow of the Bingham solid/fluid. As the yield limit g increases,
these rigid zones become larger and may completely block the flow. This property
is called the blocking property. When considering oil transport in pipelines, in the
process of oil drilling or in the case of metal forming, the blocking of the solid/fluid is
a catastrophic event to be avoided. In a completely opposite context, when modeling
landslides, the solid is blocked in its natural configuration and the beginning of a flow
can be seen as a disaster.

This paper deals with some boundary-value problems describing the flow of an
inhomogeneous Bingham fluid through a bounded domain in R

3. We focus on the
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blocking phenomenon, the description of the rigid zones and also the stagnant regions
(i.e., the zones near the boundary of the domain where the fluid does not move). More
precisely, we study the link between the yield limit distribution and the external forces
distribution (or the mass density distribution) for which the flow of the Bingham fluid
is blocked or exhibits rigid zones. In opposition to the previous works dealing only
with homogeneous Bingham fluids [5, 7, 8], we are interested in a fluid whose yield
limit is inhomogeneous.

An outline of the paper is as follows. The equations modeling the flow of a Bingham
fluid are introduced in section 2 and the corresponding variational formulation is
recalled. Section 3 is concerned with the blocking property in the threedimensional
context. There we give a necessary and sufficient condition which characterizes the
blocking property in the inhomogeneous case. The stationary anti-plane problem
(twodimensional) is considered in section 4. We obtain a variational formulation in
terms of stresses which is useful in the description of the rigid zones.

2. The mechanical problem

We consider here the evolution equations in the time interval (0, T ), T > 0 describ-
ing the flow of an inhomogeneous Bingham fluid in a domain D ⊂ R

3 with a smooth
boundary ∂D. The notation u stands for the velocity field, σ denotes the Cauchy
stress tensor field, p = − trace(σ)/3 represents the pressure and σ′ = σ + pI is the
deviatoric part of the stress tensor. The conservation of mass reads

∂ρ

∂t
+ u · ∇ρ = 0 in D × (0, T ). (1)

where ρ = ρ(t, x) ≥ ρ > 0 is the mass density distribution. We suppose that the we
deal with an incopressible flow

div u = 0, in D × (0, T ). (2)

If we denote by D(u) = (∇u+∇
T u)/2 the rate deformation tensor, the constitutive

equation of the Bingham fluid can be written as follows:

σ′ = 2ηD(u) + g
D(u)

|D(u)|
if |D(u)| 6= 0, (3)

|σ′| ≤ g if |D(u)| = 0, (4)

where η ≥ η0 > 0 is the viscosity distribution and g ≥ 0 is a nonnegative continuous
function which stands for the yield limit distribution in D. The type of behavior
described by equations (3–4) can be observed in the case of some oils or sediments
used in the process of oil drilling. The Bingham model, also denominated “Bingham
solid” (see for instance was considered in order to describe the deformation of many
solid bodies. Recently, the inhomogeneous (or density-dependent) Bingham fluid was
chosen in landslides modeling [2, 1, 3, 6].

When considering a density-dependent model, the viscosity coefficient η and the
yield limit g depend on the density ρ through two constitutive functions, i.e.,

η = η(ρ(t, x)), g = g(ρ(t, x)). (5)

We assume that ∂D is divided into two disjoint parts so that ∂D = ∂0D∪∂1D and

u = 0 on ∂0D × (0, T ), σn = 0 on ∂1D × (0, T ), (6)

where n stands for the outward unit normal on ∂D.
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Setting

V =
{

v ∈ H1(D)3, div v = 0 in D,v = 0 on ∂0D
}

,

we give the variational formulation for the velocity field is










































∀t ∈ (0, T ), u(t, ·) ∈ V,

∀v ∈ V,

∫

D

ρ
(∂u

∂t
+ (u · ∇)u

)

· (v − u)

+

∫

D

2ηD(u) : (D(v) − D(u))

+

∫

D

g|D(v)| −

∫

D

g|D(u)| ≥

∫

D

ρf · (v − u),

(7)

where f denotes the body forces.
Finally the initial conditions are given by

u|t=0 = u0, ρ|t=0 = ρ0. (8)

and the problem of the flow of a inhomogeneous Bingham fluid becomes:

Find the velocity field u and the mass density field ρ such that conditions (1), (5),
(8) and (7) hold.

As far as we know there does not exist any uniqueness result for this problem.
For the Navier-Stokes model (i.e., when g = 0) existence results can be found in
[4, 11, 10].

3. The blocking property

When considering a viscoplastic model of Bingham type, one can observe rigid
zones (i.e., zones where D(u) = 0) in the interior of the flow of the solid/fluid. When
g increases, the rigid zones are growing and if g becomes sufficiently large, the fluid
stops flowing. Commonly called the blocking property, such a behavior can lead to
unfortunate consequences in oil transport in pipelines, in the process of oil drilling or
in the case of metal forming. On the contrary, in landslides modeling, it is precisely
the blocking phenomenon which ensures stability of the slope.

We suppose in what follows that the volume forces are independent of time, i.e.
f = f(x). We say that the Bingham fluid is blocked if u ≡ 0 satisfies equations and
conditions (1), (5), (8), (7). One can easily check that the fluid is blocked if and only
if the density has no time evolution (i.e., ρ(t, x) = ρ0(x)) and fulfills:

∫

D

g(ρ0(x))|D(v(x))| dx ≥

∫

D

ρ0(x)f(x) · v(x) dx, ∀v ∈ V.

Hence the study of the blocking property consists in finding the link between ρ0 and f

such that the above inequality holds. Since in landslides modeling the yield limit
g = g(ρ) depends also on some other parameters (as water concentration), another
formulation of the blocking property is more adequate. Indeed if we define

b(x) = ρ0(x)f(x), g(x) = g(ρ0(x)),

then the blocking of the Bingham fluid can be characterized by:
∫

D

g(x)|D(v(x))| dx ≥

∫

D

b(x) · v(x) dx, ∀v ∈ V. (9)
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Now the main problem consists in finding properties on b and g such that inequality (9)
holds.

We suppose in what follows that

b ∈ L∞(D)3, and

∫

D

b · r = 0, ∀r ∈ R ∩ V, (10)

where R = kerD = {r : D → R
3 ; r(x) = m + n ∧ x} is the set of rigid motions. The

first condition in (10) is a natural assumption for the body forces. The second one,
which is implied by (9), is always satisfied if ∂0D 6= ∅.

In the homogeneous case, it is easy to check that the condition g ≥ g∗hom, with

g∗hom := sup
v∈V\R

∫

D

b · v
∫

D

|D(v)|
< +∞,

is a complete characterization of the blocking property. More precisely we have that if
(10) holds then g∗hom < +∞ and if g(x) ≥ g∗hom, a.e. x ∈ D then the blocking occurs,
i.e. (9) holds.

In the inhomogeneous case it is only a rough sufficient condition. Indeed the
following statement gives a more accurate condition for (9).

We define

H = {τ ∈ L2(D)3×3; τij = τji, trace(τ ) = 0 in D}

which stands for the deviatoric subspace of L2(D)3×3
S , and we consider

Ab =
{

τ ∈ H ; ∃p ∈ L2(D), div τ −∇p = −b in D, (τ − pI)n = 0 on ∂1D
}

,

where (τ − pI)n = 0 lies in H−1/2(∂D)3. Using the characterization of the gradient
of a distribution (see for instance [13], p.14) we obtain another characterization of the
set Ab:

Ab =

{

τ ∈ H ;

∫

D

τ : D(v) =

∫

D

b · v, ∀v ∈ V

}

.

In [6] it is proved the following result.

Theorem 3.1. The Bingham fluid is blocked, i.e., (9) holds, if and only if there exists
a function σ ∈ Ab such that g(x) ≥ |σ(x)|, a.e. x ∈ D.

4. The stationary anti-plane flow

We consider in this section the particular case of the stationary anti-plane flow.
Therefore, D = Ω × R where Ω is a bounded domain in R

2. The boundary of Ω,
denoted by Γ, is divided into two parts Γ = Γ0 ∪ Γ1, such that ∂0D = Γ0 × R,
∂1D = Γ1 × R. We are looking for a flow in the Ox3 direction, i.e. u = (0, 0, u),
which does not depend on x3 and t so that ρ = ρ(x1, x2) and u = u(x1, x2). Note
that under these assumptions the equations (1-2) are satisfied, hence the density ρ
represents now a parameter of the inhomogeneous problem and we cannot talk about
a density dependent model anymore. Indeed the density is implied only in the spatial
distribution of inhomogeneous parameters g, η and the body forces f are defined as
follows

η(x1, x2) = η(ρ(x1, x2)), g(x1, x2) = g(ρ(x1, x2)), f(x1, x2) = ρ(x1, x2)f3(x1, x2),
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where f3 denotes the component of the forces in the Ox3 direction. We suppose in
the following that

f, g, η ∈ L∞(Ω), g ≥ 0, η(x) ≥ η0 > 0, a.e. x ∈ Ω.

If we define

V = {v ∈ H1(Ω); v = 0 on Γ0}

then the variational formulation (7) for the anti-plane flow becomes

u ∈ V, ∀v ∈ V,

∫

Ω

η(x)∇u(x) · ∇(v(x) − u(x)) dx

+

∫

Ω

g(x)|∇v(x)| dx −

∫

Ω

g(x)|∇u(x)| dx ≥

∫

Ω

f(x)(v(x) − u(x)) dx. (11)

The above problem is a standard variational inequality. If meas(Γ0) > 0 then it has
a unique solution u. If Γ0 = ∅ and

∫

Ω
f(x) dx = 0 then a solution exists and it is

unique up to an additive constant. In the following we will always assume that one
of these cases holds.

In order to give the variational formulation in terms of stresses for (11) we define
H = (L2(Ω))2 and

Af = {τ ∈ H; div τ = −f in Ω, τ · n = 0 on Γ1}, (12)

where τ · n is considered in H− 1

2 (Γ). Let J : H → R be the following functional

J(τ ) =

∫

Ω

1

2η(x)
[|τ (x)| − g(x)]2+ dx. (13)

The variation formulation in terms of stresses is given in the next proposition,proved
in [6].

Proposition 4.1. There exists at least a σ ∈ Af minimizing J on Af , i.e. J(σ) ≤
J(τ ), for all τ ∈ Af , which is characterized by

σ ∈ Af and

∫

Ω

[|σ(x)| − g(x)]+
η(x)|σ(x)|

σ(x) · τ (x) dx = 0, ∀ τ ∈ A0 (14)

where A0 is Af with f = 0.

The following theorem, proved in[6], gives the connection between (11) and (14).

Theorem 4.1. Let u be the solution of (11) and let σ be a solution of (14). Then
we have

∇u(x) =
[|σ(x)| − g(x)]+

η(x)|σ(x)|
σ(x), a.e. x ∈ Ω. (15)

The above theorem gives the opportunity to describe the rigid zones Ωr and the
shearing zones Ωs defined by

Ωr = {x ∈ Ω; |∇u(x)| = 0}, Ωs = {x ∈ Ω; |∇u(x)| > 0}.

Indeed, from (15) we have the following result.

Corollary 4.1. The solution σ of (14) is unique in Ωs, i.e., if σ1,σ2 are two solutions
of (14) then σ1(x) = σ2(x) a.e. x ∈ Ωs. For any σ solution of (14) we have

Ωr = {x ∈ Ω; |σ(x)| ≤ g(x)}, Ωs = {x ∈ Ω; |σ(x)| > g(x)}. (16)
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The previous description of the rigid zones can be used to study the blocking
property, i.e., when the whole Ω is a rigid zone (Ω = Ωr). In this case u ≡ 0 is the
solution of (11) characterized by the following problem:
Find the link between f and g such that

∫

Ω

g(x)|∇v(x)| dx ≥

∫

Ω

f(x)v(x) dx, ∀v ∈ V. (17)

As in the threedimensional case, the blocking always occurs for large enough yield
distribution. Indeed, there exists an homogeneous yield limit g∗hom > 0 given by

g∗hom = sup
v∈V, v 6=const

∫

Ω

f(x)v(x) dx
∫

Ω

|∇v(x)| dx

such that if g(x) ≥ g∗hom, a.e. x ∈ Ω then the blocking occurs, i.e. (17) holds.
Moreover we have the the following complete characterization of the blocking property.

Proposition 4.2. The Bingham fluid is blocked if and only if there exists σ ∈ Af

such that |σ(x)| ≤ g(x) a.e. x ∈ Ω.
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(Patrick Hild) Laboratoire de Mathématiques
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