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ABSTRACT. In this paper, we define the notion of graph A,-contraction pair and generalized ¢-
weak G contraction on subsets of a metric space involving a graph. Using such contractions, the
existence as well as uniqueness of common fixed point for set valued mappings with set valued
domain involving a directed graph have been examined. Suitable examples are presented to
validate the non-triviality the results. We particularly generalize and extend the results due
to Zhang and Song [Fixed point theory for generalized ¢-weak contractions. Appl. Math.
Lett., 22:75-78, 2009)].
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1. Introduction

Boyd and Wong [6] investigated fixed points of nonlinear contractions. Ran and Reur-
ings [19] combined the Banach’s and Kanster-Tarski’s fixed point theorems for contin-
uous functions. Motivated by the work of Ran and Reurings, Neito & Rodriguez-Lopez
[16, 17] proved the uniqueness of fixed point without monotonicity and continuity
properties. Jachymski [11] introduced the structure of graph on a metric space (MS,
in short) by replacing the order structure. A few relevant work in this context are
[5, 7, 14, 23].

Nadler [13] established the set valued version of Banach’s theorem in a complete
MS. Study of common fixed point (CFP, in short) has attracted researchers over the
years [9, 10, 12, 15, 18, 22].

Generalized p-weak contractions were introduced by Zhang and Song [24] to prove
some CFP results for single valued maps in a complete MS. Akram et. al [3] estab-
lished a characterization for metric completeness with the help of A-contractions. In
the current paper, we define the notions of graph A,-contraction pair and generalized
p-weak G contraction on bounded and closed subsets of a MS involving the directed
graph. Using such contractions, we obtain some new CFP results in a complete MS.
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2. Preliminaries

Let (X, d) be a MS and W (X) be the collection of all nonempty closed and bounded
subsets of X. If
H(E,F) = max{supd(v, E),supd(u, F)},E, F € W(X)
veEF uck
where d(u, F') = inf,cp d(u,v). Then H is called Hausdorfl metric induced by d and
(W(X), H) forms a metric space.

A directed graph G is an ordered pair (V(G), E(G)), where V(G) is the set of
vertices and E(G) is the set of edges. We consider G as V(G) = X and the set
E(G) of its edges also contains all its loops. Also, we assume that G does not contain
parallel edges.

The conversion of a graph G is termed as G~! and can be found from G by
considering the reverse direction of edges of G. Also, the undirected graph is termed
as G and it can be found from G by ignoring the directions. If we consider a directed
graph G such that the set of edges is symmetric, then we get

E(G) = E(G)UE(G™).
If a,b are two vertices of G, then a path in G from a to b is a finite sequence {a;}7,
of n + 1 vertices such that ag = a, a, = b and (a;_1,a;) € E(G) fori =1,2,...,n.

The graph G is said to be connected if there is at least one path between every
pair of vertices in G. Further, G is weakly connected if G is connected.

For more fixed point results in the similar setting we refer to [1, 2, 8] .

Suppose P,Q C X(P,Q # ¢). Then, by (P,Q) C E(G), we mean that ‘there is
an edge between P and @’ , i.e., there is an edge between some p € P and ¢ € Q.
Moreover, by, ‘there is a path between P and )’ , we mean that there is a path

between some p € P and q € Q.
For S, R : W(X) — W(X), the set Xgg is defined as below:

Xsr={P € W(X):(P,S(P)) C E(G) and (S(P),RS(P)) C E(G)}.

Definition 2.1. [3] Suppose A is the collection of all functions « : Ri — R, satisfying
(i) a is continuous on R3.
(ii) p < kq for some 0 < k € 1 whenever p < a(p,q,q) or p < «a(gq,p,q) or p <
a(q, q,p) for each p,q.

Definition 2.2. [3] Suppose that (X,d) is a MS and R is a self map on X. R is
called an A-contraction if

d(Rao, Rbo) S O[(d(ao, bo), d(ao, Rao), d(bo, Rbo))
for each ag, by € X and some o € A.

Definition 2.3. [21] Consider the class of functions ® = {¢|¢ : R — Ry} , which
satisfies the following assertions:
(i) 1 < up implies (us) < @(u);
(i) (¢™(w))nen — 0 for each u > 0;
(iii) > ¢™(u) converges for each t > 0;

When (i-ii) are true, then ¢ is said to be a comparison function (CF). If (iii) is
true as well, then ¢ is called a strong CF.
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Definition 2.4. [4] A self mapping R : X — X on an MS (X,d) is called be a
p-weak contraction if there exists a map ¢ : Ry — Ry with ¢(0) = 0 and ¢(u) > 0
for each u > 0 satisfying

d(Ra, Rb) < d(a,b) — ¢(d(a,b)), for each a,b € X.
Rhoades [20] generalized of Banach’s principle as follows.

Theorem 2.1. [20] Suppose that (X,d) is an MS and R is a self-map on X satisfying
d(Ra, Rb) < d(a,b) — ¢(d(a,b)), for each a,b e X

where ¢ : Ry — Ry is a continuous and non decreasing function with ¢(0) = 0 and
o(u) > 0 for each uw > 0. Then R has a unique fized point.

Definition 2.5. [24] Suppose that (X,d) is an MS. Two self maps S, R on X are
said to be generalized ¢-weak contractions if there exists a map ¢ : Ry — Ry with
©(0) =0 and @(u) > 0 for each u > 0 satisfying

d(Rag, Sbo) < N(ag,bo) — ¢(N(ag,bp)); for each ag,by € X
1
where N (ag,by) = max{d(ag,bo),d(ag, Rag),d(bo, Sby), i(d(ao, Sbo) + d(bo, Raop))}.

The following was proved by Zhang and Song [24].

Theorem 2.2. Suppose that (X, d) is an MS and S, R are two self maps on X such
that for all a,b € X

d(Rav Sb) < N(aa b) - QO(N(UH b))a
where ¢ : Ry — Ry is a lower semi continuous function with ¢(0) =0 and ¢(u) > 0
for each w > 0. Then R and S have a unique CFP.

3. Common fixed point of set valued graph A -contraction pair

In this section, we prove a CFP theorem by defining graph A,-contraction pair.

Definition 3.1. Let A, be the collection of all functions o : R3 — Ry which satisfy
the following conditions:
(i) « is continuous on R3.

(ii) for each p,q € Ry, p < a(p,q,q) or p < alg,p, q) or p < a(g, q,p), then p < ¢(q),
where ¢ is a strong CF.

In this definition, if we take ¢(u) = ku as 0 < k < 1 for each u > 0, then we obtain
a€ A

Definition 3.2. Suppose S, R: W(X) — W (X) are two set valued maps on W (X).
The pair (S, R) of maps is called graph A,-contraction pair if the assertions hold
which are given below:

(i) for each Py € W(X), (FPo, S(FPy)) C E(G) and (S(F), RS(PRy)) C E(G);

(ii) there exists some a € A, and (Py, Qo) C E(G) such that

H(S(Py), R(Qo)) < a(H(Py,Qo), H(FPy,S(F)), H(Qo, R(Qo))).

Remark 3.1. If a pair (S, R) of maps on W(X) is graph A,-contraction for graph
G, then the pair is also graph A,-contraction for the graph G~ and G.
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Definition 3.3. Let S, R be set valued maps on W(X). We say that G is a u-graph
whenever for each sequence { Ay} >0 in X with Ay — A and (Aag, Ask11) C E(G) for
each k > 0, there is a subsequence {Agg, } of {Aax} such that either R is continuous
and (A, Agk.4+1) C E(G) for each r > 0 or S is continuous and (Asgy,., A) C E(G) for
each r > 0.

Theorem 3.1. Suppose (W(X),H) is a complete MS involving a directed graph G
and S, R set valued maps on W(X). Suppose that:
(i) G is a p-graph;
(ii) there is a sequence {Ay}ren in X such that
(Ao, S(A2k)) C E(G) = (Azkt2, S(A2k+2)) C E(G)
and
(Agk+1, R(Aog+1)) C E(G) = (Askys, R(Askts)) C E(G);
(iii) the pair (S, R) is graph A,-contraction.
Then S, R have a CFP. Moreover, if for any two CFPs Py, Qo of S and R respectively,

there exists W € W(X) such that (Py, W) C E(G) and (W,Qo) C E(G), then S,R
have a unique CFP.

Proof. Let Ey be an arbitrary element in W(X). So from assumption (Ey, S(Ep)) C
E(G) and (S(Ey), RS(Fy)) C E(G). These imply that there exists some zg € Ey
such that there is an edge between ¢ and some 1 € S(Ey).

Let By = S(Eyp), then the inclusion (Eq, R(E1)) C E(G) gives the existence of an
edge between z7 and xo € R(F1).

Next assume that Fy = R(F;). Continuing this way, we take Eq = S(Ep), Ea =
R(E1>7...,E2k+1 = S(Egk),Engrg = R(E2k+1), for K € N. Since (E(),S(Eo)) -
E(G) and (Eq, R(Ey)) C E(G) for Ey, E1 € W(X). Then from the assumption for
E,,E3 € W(X), we get (B2, S(E2)) C E(G) and (Es5, R(E3)) C E(G). Continuing
this way, we have (Fak, S(Eqr)) C E(G) and (Eagt1, R(E2r+1)) C E(G) for each
k € N. Thus (Eao, Fog+1) C E(G) and (Eagt1, Eogt2) C E(G), for each k € N.

Now from (iii), we have

H(Eapt1, Eaki2) = H(S(Ear), R(E2k+1))
< a(H (B2, Bagt1), H(E2p, S(E2r)), H(E2pt1, R(E2k11)))
= a(H (Eak, Eokt1), H(Eok, Bogy1), H(Eaky1, Eop2)).

From the definition of «,
H(Esp11, Fogro) < o(H(Eak, Eok11)), for all k € N.
Similarly, from (ii) (E2k, S(Ea2k)) C E(G) = (Eagt2,S(Eaky2)) C E(G). ie.,

(Eak42, Eak13) C E(G). Thus by using (i4)

H(Eak+2, Bogy3) = H(R(E2k+1), S(E2k+2))
H(S(Eokt2), R(E2p+1))

(H(EBakt2, Bag11), H(Bakr2, S(Eagy2), H(Eagt1, R(E2r41)))
H(Eapy1, Exy2), H(Bogya, Earys), H(Eopy1, Bog2))-

Q,

IN

I
N

From the definition o
H(Eapy2, Eopt3) < @(H(Eapq1, Earyz)), for all k € N.
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Continuing this way, we get,
H(Eapy2, Eogpys) < 9(H(Eagt1, Bary2))
< p((H (B2, Ear+1)))
= ¢*(H(Eay, Bary1))

< @ 2(H(Ey, Ev)).
Thus
H(Ey, Exy1) < @"(H(Fo, Ey)), for all k € N.
Since H(Ey, E1) > 0. So, from the Definition 2.3 (i%), we get klim gpk (H(Ey, F)) =
—00

0.
Now for any € > 0, there is a kg € N such that for each k > kg
¢"(H(Eo, E1)) < ¢ — ¢(e).
Hence
H(Ey, Exy1) < ¢ — p(e), for each k > ko . (3.1)
Also for any positive integer m, k € N with m > k > kg, we prove that
H(Ey, En) < e. (3.2)

We prove the inequality 3.2 by using mathematical induction on m. The inequality 3.2
holds for m = k+1 by using 3.1. Assume that 3.2 is true for m = [. i.e., H(Ey, E}) < €.
So that m =1+ 1, we have

H(Ey, Em) < H(Ey, Exy1) + H(Eg41, Ei41)

<e—(e) + H(Ek+1, Eig1)

<e—¢(e) + p(H(Ey, Er))

<e—p(e) +ole)

=e.
Hence using mathematical induction on m, we see that 3.2 holds for m > k > ky. Thus
{E)} is a Cauchy sequence in W (X). As (W(X),H) is complete, we get Ey — P,
for some Py € W(X).

Next, we assert that Py is a CFP of S and R. As E; — Py and for Fy, € W(X),
we have (Fak, Far+1) C E(G) for each k € N. Because G is a u-graph, there exists
a subsequence {Eyy, } of {Ea} such that either R is continuous and (FPy, Ea,+1) C
E(G) or S is continuous and (Eag,, Po) C E(G).

Assume that R is continuous and (P, Eax,+1) C E(G). Since every subsequence
of a convergent sequence is convergent and has the same limit. Therefore,

Py = pli_{go(EQkp+1) = R(P)= pli{Iolo R(Eak,+1) = ph_{go(Eka-&-Z) = .
That is R(Py) = Py. Moreover, from (iii) we get,
H(S(Po), R(E2k,+1)) < a(H(Py, Bak,+1), H(FPo, S(Fo)), H(Eak,+1, R(Fak,+1)))-
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Taking p — oo, we obtain
H(S(P0)7P0)SO‘(OvH(POaS(PO)vO) = H(S(Po),Po)S(p(O):O

That is S(Py) = Py. Thus Py is a CFP of S and R. Similarly, assume that S is
continuous and (Eyy,, Py) C E(G). Thus

Py = lim Egkp+2 = S(Po) = lim S(Egkp+2) = lim Egkp+3 = F.
p—00 p—00 p—00

That is S(Py) = Py. Again, from (iii) we have,

H(S(Eag,, R(P)) < a(H(Eag,, o), H(E2k,, S(Eak,)), H(Fo, R(R))).-
Taking p — oo, we obtain

H(Py, R(Fy)) < (0,0, H(Py, R(Py))) = H(Po, R(Fp)) < ¢(0) =0.

That is R(Py) = Pyp. Thus P, is a CFP of S and R.

Finally, we prove that P, is unique. Suppose V is another fixed point of S and
R. Then (Py,W) C E(G) and (W, Qo) C E(G). Being G a directed graph, we get
(P()7Q0) C E(G) Now,

H(Py, Qo)

H(S(Po), R(Qo))
H(Po, Qo), H(Po, S(Fo)), H(Qo, R(Qo)))
H(P,,Qo),0,0)

ININ A
S5 2 2
e

Thus Py = Q9. Hence Py is the unique CFP of S and R. O

Corollary 3.2. Let (W(X), H) be a complete MS endowed with a directed graph G
and S,R: W(X) = W(X) be set valued mappings satisfying:
(i) G is a p-graph ;
(i) there is a sequence {Ay}tren in X such that
(Azk, S(A2k)) C E(G) = (Askt2, S(Azkt2)) C E(G)
and
(Azk+1, R(A2k41)) C E(G) = (A2k+3, R(A2k43)) C E(G);
(1) there exists some o € A such that
H(S(PO)7 R(QO)) S Oé(H(PO, Q0>7 H(P07 S(PO))7 H(Q07 R(QO))>7

for each (Py, Qo) C E(G);
(2) Xgg is nonempty.
Then S, R have a CFP.

Following example demonstrates the conditions of Theorem 3.1.
Example 3.1. Suppose X = {1,2,3,4} = V(G) and
E(G) ={(1,3),(1,4),(3,2),(2,4),(3,3), (4,3), (4,4)}.
Assume that V(G) is endowed with metric d which is defined as
d(3,3) =d(4,4) =0,
1

d(4,3) = ey
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k+1

d(1,3) =d(1,4) = d(2,3) = d(2,4) = 2

Define the Hausdorfl metric as follows
10 lfPO7QOg{374}W1thPO7AQO
+

H(Py, Qo) = { T3, if Poor Qo € {3,4} with Py # Qo
0. i P =0

The mappings S, R : W(X) — W(X) are defined as:

{3}, if Py C {3,4}
S(P0>:{ {4}, if ng{3,4}.

R(Ry) { (3}, if Py C{3,4}

‘ [l

T
e

{3,4}, if Py € {3,4}.
Now for each Py, Qo € W(X), consider the cases given below:
(1) T Po, Qo C (3,4}, H(S(Ps), R(Qo)) = H({3},{3}) = 0
(2) If Py € {3,4} and Qo C {3,4}, we get

1
H(S(Po), R(Qo)) = H({4},{3}) = 1=
Since
1 S0[(1434—1,19’4—1’ 1 )
k+1 k+2 k+2 k+1

= H(S(Py), R(Qo)) < a(H(Py,Qo), H(Py,S(Fy)), H(Qo, R(Qo))).

Hence all the conditions of Theorem 3.1 are satisfied, where ¢(t) = E. Moreover, {3}
is the unique CFP of S and R.

4. Generalized p-weak G-contraction

In this section, we establish another CFP theorem by defining generalized p-weak
G contraction.

Definition 4.1. Suppose that S, R : W(X) — W(X) are two set valued maps. The
pair (S, R) is called a generalized ¢ weak G-contraction if the following assertions
hold:
(i) for each Py € W(X), (P, S(Fy)) C E(G) and (S(P),RS(Py)) C E(G);
(i) there is a lower semi continuous function ¢ : Ry — Ry with ¢(¢) > 0 for
t € (0,00) and ¢(0) = 0 such that for each (Fy, Qo) C E(G)

H(S(Py), R(Qo)) < Ms,r(Po, Qo) — ¢(Ms,r(Fo, Qo)) (4.1)
where

Mg, r = max{H (P, Qo), H(Py, S(Py)), H(Qo, R(Qo)), H(Qo, 5(R)) —;H(PO’ R(QO))}

Theorem 4.1. Suppose (W(X),H) is a complete MS with a directed graph G and
S, R set valued maps on W(X). If
(i) G is a p-graph;
(ii) the pair (S, R) is generalized ¢ weak G-contraction.
Then S and R have a CFP.
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Proof. Let Ep be an arbitrary element in W (X). So from assumption (Ey, S(Ep)) C
E(G) and (S(Ey), RS(Ey)) C E(G). These imply that there exists some xzg € Ey
such that there is an edge between xy and some x; € S(FEjp).

Let By = S(Ey), then the inclusion (Eq, R(E1)) C E(G) gives the existence of an
edge between x1 and x2 € R(E1).
Let B = R(E4). Continuing this way, we take Fy = S(Ey), E2 = R(E1), ..., Fary1 =
S(Ezk),E2k+2 = R(E2k+1), for k € N. Since (EQ,S(E())) C E(G) and (El,R(El)) C
E(G) for Eg, By € W(X). Then from the assumption for Es, B3 € W(X), we
get (Es,S(E2)) C E(G) and (E3, R(E3)) C E(G). Preceding in this way, we get
(Egk, S(Egk)) C E(G) and (E2k+1, R(E2k+1)) C .E(G)7 for all £ € N.

Thus (Egk,E2k+1) C E(G) and (E2k+1,E2k+2) C E(G), for all £ € N.

Now from (4.1) we have

H(Espi1, Eogy2) = H(S(Eak), R(Eaogt1)) < Mg r(Eak, Boky1)—0(Mgs r(Eok, Eart1))
(4.2)
where

Ms r(Eok, Eog+1) = max{H (Eak, Eog+1), H(Eax, S(Ea)), H(Eak+1, R(Eagt1)),

H(Esp41,S(Eax)) + H(Eak, R(Eagt1)) }
2
=max{H (FEo, Eox+1), H(Eok, Eog+1), H(Eogt1, Eogt2),

H(Esgt1, Eopt1) + H(Eak, Eog12) )
H(Esy, Eopy2)

2
=max{H (Fay, Fak+1), H(Eaki1, Eort2), f}
<max{H(Ea, Eopt1), H(Eopt1, Eopt2),

H(Ea, Eogy1) + H(Eag11, Bogy2) )
2

=max{H (Ea, Eort1), H(Eopg1, Borpg2)}-

Thus (4.2) becomes

H(Eap1, Eopg2) <max{H(Ea, Fopt1), H(Eaky1, Fort2)}
— pmax{H (Eay, Eapy1), H(E2py1, Bory2)}]
=H(Eoy, Eak11).
That is
H(Eogt1, Bory2) < H(Eok, Eag11).

Similarly,

H(Esp12, Eopys) = H(R(Eakt1), S(Eary2))
= H(S(Eak+2), R(Ear+1))
< Ms r(Eokt2, Bort1) — ¢(Ms, r(Eak+t2, Eoky1))
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where

Ms r(Eopt2, Bogt1) = max{H (Eaky2, Eory1), H(Eogt2, S(Eok+2)), H(Eogt1, R(Eak+1)),

H(Eag11,9(E2rt2)) + H(Faky2, R(E2g+1)) )
2
=max{H (Eaky2, Eory1), H(Eagr2, Bog+3), H(Fakt1, Bakt2),

H(Eogt1, Bogys) + H(Eogy2, Eogy2) )
H(Eap1, Eort3)

2
=max{H (Esx+2, Eoxy1), H(E2kt2, Eokt3), 5 }

< max{H (Eay2, Fary1), H(Eaky2, Eakys),

H(Esk41, Eogy2) + H(Eagt2, Eaky3) )
2
= max{H (Fapt2, Boky1), H(Eokt2, Foris)}-

Thus from ( 4.2), we have

H(Eapt2, Eogys) < H(Eapq1, Eapyo), for all k € N.
Hence
H(E,,E,+1) <H(E,_1,E,), for all k € N.

Thus {H(E), Ex+1)} is a decreasing sequence of non negative real numbers. So it is
convergent to some b > 0. i.e., klim H(E), Ep+1) = b. We claim that b = 0.
— 00

AISO, lim H(Ek,Ek+1) = lim MS,R(E/C717E/€) =b.
k—o0 k—o0

Now, by lower semi continuity of ¢, we have
o(b) < Jm info(Ms,r(Ex-1, Ey)).
Taking limit as £ — oo in the following inequality
H(Ey, Epi1) < Mg r(Eg—1,Er) — (Mg, r(Ex—1, Ey))
we get
b<b—pd) = pb) <0.
Thus ¢(b) = 0, by the property of the function . Hence kl;rr;o H(Ey,Ep+1) =b=0.

Next, we show that {Ej} is a Cauchy sequence. If {Ey} is not a Cauchy sequence,
then there exists € > 0 and subsequences {k,} and {m,} of positive integers such that

kr >m, > T7H(EmmEkr—1) < gaH(EmT;Ek,‘) > g,

forallr € N .
Then
€< H(Emra Ekr) < H(Emra Ekr—l) + H(Ekr—17 Ekr)~ (43)
From (4.3) it follows that H(E,, ,Ey. ) — € as k — oo. If we take Eoryq1 =
En.,, Eokto = B, in 4.2, we get the next relation

H(Ep,, Ey,) < Ms r(Ey, -2, Em,) — ¢(Ms r(Ek,—2, Em,)) (4.4)
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where
Mg r(Ek,—2, Em,) =max{H(Ey, _2,Ey,, ), H(Ey,—2,S(Ek,—2)), H(Er,,., R(Ep,)),
H(Ep,,S(Ek,—2)) + H(Eg,—2, R(Emr))}

2
:ma'X{H(EkT—QaE )7 (Ek —QaEkT—l)aH(Emr7Emr+1)a

H(Emr7Ek7‘_1)+H(Ek —Qa 7‘+1)}
5 .

Now we consider the following cases:
If Mg r(Ek,.—2, Em,.) = H(Eg,—2, Ep,), then taking limit as » — oo in 4.4, we get
e<e—pe) = p(e)=0.
By our assumption about ¢, we have € = 0, which is a contradiction.
When Mg g(Ek,—2, Em,) = H(Eg,—2, Ex,—1), then taking limit as r — oo in 4.4,
we get
e <0—¢(0), gives a contradiction.

If Mg r(Ek,—2,Em,.) = H(Em,., Em,+1), then taking limit as r — oo in 4.4, we get
e <0—p(0), gives a contradiction.

Finally, if Mg p(Ey, o, Ep,) = 2EmeBrn )t HEr 2 Bmei) - then taking limit as
r — oo in 4.4, we have

e<1/2(e+e)—(1/2(e +¢)),
which is a contradiction. Hence {Fjy} must be a Cauchy sequence in W(X). As
(W(X), H) is complete, we get Fr — P, for some P € W(X).

Next we prove that P is a CFP of S and R. Since Ej, — P and for Fq, € W(X),
we have (Eay, Eop+1) C E(G), for each k € N. Because G is a p- graph, there exists a
subsequence { Fay, } of { Eox } such that either R is continuous and (P, Ea, 1) C E(G)
or S is continuous and (Ea,, P) C E(G).

Assume that R is continuous and (P, Eox,11) C E(G). Since

P = lim (Bo,1) = R(P) = lim R(Ea,41) = lim (Eap,42) = P

That is R(P) = P. Now from 4.1, we get
H(S(P), R(Eap,+1)) < Ms r(P, Eop,41) — ¢(Mg r(P, E2k,11)) (4.5)
where
MS,R(Pa E2kp+1) = HlaX{H(P7 E2kp+1)7 H(Pv S(P))7 H(E2kp+17 R(EQkp-i-l))v
H(Esk,41,5(P)) + H(P, R(E2kp+1))}
2
=max{H (P, Eox, 1), H(P, S(P)), H(Eak, 11, Eok,+2),
H(Es,41,5(P)) + H(P, E2k,,+2)}
5 .
Taking limit as p — oo in 4.5 and apply the same procedure as in 4.4, we get
H(S(P),P)=0. Thus P = S(P). Hence P is a CFP of S and R.

Similarly, assume that S is continuous and (Ea,, P) C E(G). Using the same
procedure we get P is a CFP of S and R. (|
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Corollary 4.2. Suppose (W(X), H) is a complete MS involving a directed graph G
and R a set valued map on W(X). If
(i) G is a p-graph;
(ii) R is generalized p- weak G- contraction.
Then R has a fixed point.

5.

G

Conclusion

We put forward the notions of graph A -contraction pair and generalized ¢-weak
contraction on bounded and closed subsets of a metric space and established some

CFP results. We assumed certain conditions such as the underlying graph G is a
p-graph. Obtaining the results by relaxing that condition is a suggested future work.
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