Common fixed point of set valued graph A_{φ} -contraction pair and generalized φ -weak *G*-contraction on metric space endowed with a graph

Murchana Neog, Pradip Debnath, and Stojan Radenović

ABSTRACT. In this paper, we define the notion of graph A_{φ} -contraction pair and generalized φ -weak G contraction on subsets of a metric space involving a graph. Using such contractions, the existence as well as uniqueness of common fixed point for set valued mappings with set valued domain involving a directed graph have been examined. Suitable examples are presented to validate the non-triviality the results. We particularly generalize and extend the results due to Zhang and Song [Fixed point theory for generalized φ -weak contractions. Appl. Math. Lett., 22:75-78, 2009].

2010 Mathematics Subject Classification. 47H10, 54H25. Key words and phrases. common fixed point, set valued mapping, set valued domain, μ -graph, graph A_{φ} -contraction pair, generalized φ -weak G contraction.

1. Introduction

Boyd and Wong [6] investigated fixed points of nonlinear contractions. Ran and Reurings [19] combined the Banach's and Kanster-Tarski's fixed point theorems for continuous functions. Motivated by the work of Ran and Reurings, Neito & Rodríguez-López [16, 17] proved the uniqueness of fixed point without monotonicity and continuity properties. Jachymski [11] introduced the structure of graph on a metric space (MS, in short) by replacing the order structure. A few relevant work in this context are [5, 7, 14, 23].

Nadler [13] established the set valued version of Banach's theorem in a complete MS. Study of common fixed point (CFP, in short) has attracted researchers over the years [9, 10, 12, 15, 18, 22].

Generalized φ -weak contractions were introduced by Zhang and Song [24] to prove some CFP results for single valued maps in a complete MS. Akram et. al [3] established a characterization for metric completeness with the help of A-contractions. In the current paper, we define the notions of graph A_{φ} -contraction pair and generalized φ -weak G contraction on bounded and closed subsets of a MS involving the directed graph. Using such contractions, we obtain some new CFP results in a complete MS.

Received August 17, 2018. Accepted May 26, 2019.

2. Preliminaries

Let (X, d) be a MS and W(X) be the collection of all nonempty closed and bounded subsets of X. If

$$H(E,F) = \max\{\sup_{v\in F} d(v,E), \sup_{u\in E} d(u,F)\}, E,F\in W(X)$$

where $d(u, F) = \inf_{v \in F} d(u, v)$. Then H is called Hausdorff metric induced by d and (W(X), H) forms a metric space.

A directed graph G is an ordered pair (V(G), E(G)), where V(G) is the set of vertices and E(G) is the set of edges. We consider G as V(G) = X and the set E(G) of its edges also contains all its loops. Also, we assume that G does not contain parallel edges.

The conversion of a graph G is termed as G^{-1} and can be found from G by considering the reverse direction of edges of G. Also, the undirected graph is termed as \tilde{G} and it can be found from G by ignoring the directions. If we consider a directed graph G such that the set of edges is symmetric, then we get

$$E(G) = E(G) \cup E(G^{-1}).$$

If a, b are two vertices of G, then a path in G from a to b is a finite sequence $\{a_i\}_{i=0}^n$ of n+1 vertices such that $a_0 = a$, $a_n = b$ and $(a_{i-1}, a_i) \in E(G)$ for i = 1, 2, ..., n.

The graph G is said to be connected if there is at least one path between every pair of vertices in G. Further, G is weakly connected if \tilde{G} is connected.

For more fixed point results in the similar setting we refer to [1, 2, 8].

Suppose $P, Q \subset X(P, Q \neq \phi)$. Then, by $(P, Q) \subset E(G)$, we mean that 'there is an edge between P and Q', i.e., there is an edge between some $p \in P$ and $q \in Q$. Moreover, by, 'there is a path between P and Q', we mean that there is a path between some $p \in P$ and $q \in Q$.

For $S, R: W(X) \to W(X)$, the set X_{SR} is defined as below:

$$X_{SR} = \{P \in W(X) : (P, S(P)) \subset E(G) \text{ and } (S(P), RS(P)) \subset E(G)\}.$$

Definition 2.1. [3] Suppose A is the collection of all functions $\alpha : \mathbb{R}^3_+ \to \mathbb{R}_+$ satisfying

- (i) α is continuous on \mathbb{R}^3_+ .
- (ii) $p \leq kq$ for some $0 \leq k \in 1$ whenever $p \leq \alpha(p,q,q)$ or $p \leq \alpha(q,p,q)$ or $p \leq \alpha(q,p,q)$ for each p,q.

Definition 2.2. [3] Suppose that (X, d) is a MS and R is a self map on X. R is called an A-contraction if

 $d(Ra_0, Rb_0) \le \alpha(d(a_0, b_0), d(a_0, Ra_0), d(b_0, Rb_0))$

for each $a_0, b_0 \in X$ and some $\alpha \in A$.

Definition 2.3. [21] Consider the class of functions $\Phi = \{\varphi | \varphi : \mathbb{R}_+ \to \mathbb{R}_+\}$, which satisfies the following assertions:

- (i) $u_1 \leq u_2$ implies $\varphi(u_1) \leq \varphi(u_2)$;
- (ii) $(\varphi^n(u))_{n \in \mathbb{N}} \to 0$ for each u > 0;
- (iii) $\sum \varphi^n(u)$ converges for each t > 0;

When (i-ii) are true, then φ is said to be a comparison function (CF). If (iii) is true as well, then φ is called a strong CF.

Definition 2.4. [4] A self mapping $R : X \to X$ on an MS (X, d) is called be a φ -weak contraction if there exists a map $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(0) = 0$ and $\varphi(u) > 0$ for each u > 0 satisfying

$$d(Ra, Rb) \le d(a, b) - \varphi(d(a, b)), \text{ for each } a, b \in X.$$

Rhoades [20] generalized of Banach's principle as follows.

Theorem 2.1. [20] Suppose that (X, d) is an MS and R is a self-map on X satisfying

$$d(Ra, Rb) \leq d(a, b) - \varphi(d(a, b)), \text{ for each } a, b \in X$$

where $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous and non decreasing function with $\varphi(0) = 0$ and $\varphi(u) > 0$ for each u > 0. Then R has a unique fixed point.

Definition 2.5. [24] Suppose that (X, d) is an MS. Two self maps S, R on X are said to be generalized φ -weak contractions if there exists a map $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(0) = 0$ and $\varphi(u) > 0$ for each u > 0 satisfying

$$d(Ra_0, Sb_0) \le N(a_0, b_0) - \varphi(N(a_0, b_0));$$
 for each $a_0, b_0 \in X$

where $N(a_0, b_0) = \max\{d(a_0, b_0), d(a_0, Ra_0), d(b_0, Sb_0), \frac{1}{2}(d(a_0, Sb_0) + d(b_0, Ra_0))\}.$

The following was proved by Zhang and Song [24].

Theorem 2.2. Suppose that (X, d) is an MS and S, R are two self maps on X such that for all $a, b \in X$

$$d(Ra, Sb) \le N(a, b) - \varphi(N(a, b));$$

where $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a lower semi continuous function with $\varphi(0) = 0$ and $\varphi(u) > 0$ for each u > 0. Then R and S have a unique CFP.

3. Common fixed point of set valued graph A_{φ} -contraction pair

In this section, we prove a CFP theorem by defining graph A_{φ} -contraction pair.

Definition 3.1. Let A_{φ} be the collection of all functions $\alpha : \mathbb{R}^3_+ \to \mathbb{R}_+$ which satisfy the following conditions:

- (i) α is continuous on \mathbb{R}^3_+ .
- (ii) for each $p, q \in \mathbb{R}_+$, $p \leq \alpha(p, q, q)$ or $p \leq \alpha(q, p, q)$ or $p \leq \alpha(q, q, p)$, then $p \leq \varphi(q)$, where φ is a strong CF.

In this definition, if we take $\varphi(u) = ku$ as $0 \le k < 1$ for each u > 0, then we obtain $\alpha \in A$.

Definition 3.2. Suppose $S, R : W(X) \to W(X)$ are two set valued maps on W(X). The pair (S, R) of maps is called graph A_{φ} -contraction pair if the assertions hold which are given below:

- (i) for each $P_0 \in W(X), (P_0, S(P_0)) \subset E(G)$ and $(S(P_0), RS(P_0)) \subset E(G);$
- (ii) there exists some $\alpha \in A_{\varphi}$ and $(P_0, Q_0) \subset E(G)$ such that

 $H(S(P_0), R(Q_0)) \le \alpha(H(P_0, Q_0), H(P_0, S(P_0)), H(Q_0, R(Q_0))).$

Remark 3.1. If a pair (S, R) of maps on W(X) is graph A_{φ} -contraction for graph G, then the pair is also graph A_{φ} -contraction for the graph G^{-1} and \tilde{G} .

Definition 3.3. Let S, R be set valued maps on W(X). We say that G is a μ -graph whenever for each sequence $\{A_k\}_{k\geq 0}$ in X with $A_k \to A$ and $(A_{2k}, A_{2k+1}) \subset E(G)$ for each $k \geq 0$, there is a subsequence $\{A_{2k_r}\}$ of $\{A_{2k}\}$ such that either R is continuous and $(A, A_{2k_r+1}) \subset E(G)$ for each $r \geq 0$ or S is continuous and $(A_{2k_r}, A) \subset E(G)$ for each $r \geq 0$.

Theorem 3.1. Suppose (W(X), H) is a complete MS involving a directed graph G and S, R set valued maps on W(X). Suppose that:

- (i) G is a μ -graph;
- (ii) there is a sequence $\{A_k\}_{k\in\mathbb{N}}$ in X such that

$$(A_{2k}, S(A_{2k})) \subset E(G) \Rightarrow (A_{2k+2}, S(A_{2k+2})) \subset E(G)$$

and

$$(A_{2k+1}, R(A_{2k+1})) \subset E(G) \Rightarrow (A_{2k+3}, R(A_{2k+3})) \subset E(G);$$

(iii) the pair (S, R) is graph A_{φ} -contraction.

Then S, R have a CFP. Moreover, if for any two CFPs P_0, Q_0 of S and R respectively, there exists $W \in W(X)$ such that $(P_0, W) \subset E(G)$ and $(W, Q_0) \subset E(G)$, then S, R have a unique CFP.

Proof. Let E_0 be an arbitrary element in W(X). So from assumption $(E_0, S(E_0)) \subset E(G)$ and $(S(E_0), RS(E_0)) \subset E(G)$. These imply that there exists some $x_0 \in E_0$ such that there is an edge between x_0 and some $x_1 \in S(E_0)$.

Let $E_1 = S(E_0)$, then the inclusion $(E_1, R(E_1)) \subset E(G)$ gives the existence of an edge between x_1 and $x_2 \in R(E_1)$.

Next assume that $E_2 = R(E_1)$. Continuing this way, we take $E_1 = S(E_0), E_2 = R(E_1), \ldots, E_{2k+1} = S(E_{2k}), E_{2k+2} = R(E_{2k+1})$, for $k \in \mathbb{N}$. Since $(E_0, S(E_0)) \subset E(G)$ and $(E_1, R(E_1)) \subset E(G)$ for $E_0, E_1 \in W(X)$. Then from the assumption for $E_2, E_3 \in W(X)$, we get $(E_2, S(E_2)) \subset E(G)$ and $(E_3, R(E_3)) \subset E(G)$. Continuing this way, we have $(E_{2k}, S(E_{2k})) \subset E(G)$ and $(E_{2k+1}, R(E_{2k+1})) \subset E(G)$ for each $k \in \mathbb{N}$. Thus $(E_{2k}, E_{2k+1}) \subset E(G)$ and $(E_{2k+1}, E_{2k+2}) \subset E(G)$, for each $k \in \mathbb{N}$.

Now from (iii), we have

$$H(E_{2k+1}, E_{2k+2}) = H(S(E_{2k}), R(E_{2k+1}))$$

$$\leq \alpha(H(E_{2k}, E_{2k+1}), H(E_{2k}, S(E_{2k})), H(E_{2k+1}, R(E_{2k+1})))$$

$$= \alpha(H(E_{2k}, E_{2k+1}), H(E_{2k}, E_{2k+1}), H(E_{2k+1}, E_{2k+2})).$$

From the definition of α ,

$$H(E_{2k+1}, E_{2k+2}) \le \varphi(H(E_{2k}, E_{2k+1})), \text{ for all } k \in \mathbb{N}.$$

Similarly, from (ii) $(E_{2k}, S(E_{2k})) \subset E(G) \Rightarrow (E_{2k+2}, S(E_{2k+2})) \subset E(G)$. i.e., $(E_{2k+2}, E_{2k+3}) \subset E(G)$. Thus by using (*iii*)

$$H(E_{2k+2}, E_{2k+3}) = H(R(E_{2k+1}), S(E_{2k+2}))$$

= $H(S(E_{2k+2}), R(E_{2k+1}))$
 $\leq \alpha(H(E_{2k+2}, E_{2k+1}), H(E_{2k+2}, S(E_{2k+2}), H(E_{2k+1}, R(E_{2k+1}))))$
= $\alpha(H(E_{2k+1}, E_{k+2}), H(E_{2k+2}, E_{2k+3}), H(E_{2k+1}, E_{2k+2})).$

From the definition of α ,

$$H(E_{2k+2}, E_{2k+3}) \le \varphi(H(E_{2k+1}, E_{2k+2})), \text{ for all } k \in \mathbb{N}.$$

Continuing this way, we get,

Thus

$$H(E_k, E_{k+1}) \le \varphi^k(H(E_0, E_1)), \text{ for all } k \in \mathbb{N}$$

Since $H(E_0, E_1) \ge 0$. So, from the Definition 2.3 (*ii*), we get $\lim_{k \to \infty} \varphi^k(H(E_0, E_1)) = 0$.

Now for any $\varepsilon > 0$, there is a $k_0 \in \mathbb{N}$ such that for each $k \ge k_0$

$$\varphi^k(H(E_0, E_1)) < \varphi - \varphi(\varepsilon)$$

Hence

$$H(E_k, E_{k+1}) < \varphi - \varphi(\varepsilon), \text{ for each } k \ge k_0$$
. (3.1)

Also for any positive integer $m, k \in \mathbb{N}$ with $m > k > k_0$, we prove that

$$H(E_k, E_m) < \varepsilon. \tag{3.2}$$

We prove the inequality 3.2 by using mathematical induction on m. The inequality 3.2 holds for m = k+1 by using 3.1. Assume that 3.2 is true for m = l. i.e., $H(E_k, E_l) < \varepsilon$. So that m = l + 1, we have

$$H(E_k, E_m) \leq H(E_k, E_{k+1}) + H(E_{k+1}, E_{l+1})$$

$$< \varepsilon - \varphi(\varepsilon) + H(E_{k+1}, E_{l+1})$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(H(E_k, E_l))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon)$$

$$= \varepsilon.$$

Hence using mathematical induction on m, we see that 3.2 holds for $m > k \ge k_0$. Thus $\{E_k\}$ is a Cauchy sequence in W(X). As (W(X), H) is complete, we get $E_k \to P_0$, for some $P_0 \in W(X)$.

Next, we assert that P_0 is a CFP of S and R. As $E_k \to P_0$ and for $E_{2k} \in W(X)$, we have $(E_{2k}, E_{2k+1}) \subset E(G)$ for each $k \in \mathbb{N}$. Because G is a μ -graph, there exists a subsequence $\{E_{2k_p}\}$ of $\{E_{2k}\}$ such that either R is continuous and $(P_0, E_{2k_p+1}) \subset E(G)$ or S is continuous and $(E_{2k_p}, P_0) \subset E(G)$.

Assume that R is continuous and $(P_0, E_{2k_p+1}) \subset E(G)$. Since every subsequence of a convergent sequence is convergent and has the same limit. Therefore,

$$P_0 = \lim_{p \to \infty} (E_{2k_p+1}) \quad \Rightarrow \quad R(P_0) = \lim_{p \to \infty} R(E_{2k_p+1}) = \lim_{p \to \infty} (E_{2k_p+2}) = P_0.$$

That is $R(P_0) = P_0$. Moreover, from *(iii)* we get,

$$H(S(P_0), R(E_{2k_p+1})) \le \alpha(H(P_0, E_{2k_p+1}), H(P_0, S(P_0)), H(E_{2k_p+1}, R(E_{2k_p+1}))).$$

Taking $p \to \infty$, we obtain

$$H(S(P_0),P_0) \leq \alpha(0,H(P_0,S(P_0),0) \quad \Rightarrow \quad H(S(P_0),P_0) \leq \varphi(0) = 0.$$

That is $S(P_0) = P_0$. Thus P_0 is a CFP of S and R. Similarly, assume that S is continuous and $(E_{2k_v}, P_0) \subset E(G)$. Thus

$$P_0 = \lim_{p \to \infty} E_{2k_p+2} \quad \Rightarrow \quad S(P_0) = \lim_{p \to \infty} S(E_{2k_p+2}) = \lim_{p \to \infty} E_{2k_p+3} = P_0.$$

That is $S(P_0) = P_0$. Again, from *(iii)* we have,

$$H(S(E_{2k_p}, R(P_0)) \le \alpha(H(E_{2k_p}, P_0), H(E_{2k_p}, S(E_{2k_p})), H(P_0, R(P_0))).$$

Taking $p \to \infty$, we obtain

$$H(P_0, R(P_0)) \le \alpha(0, 0, H(P_0, R(P_0))) \Rightarrow H(P_0, R(P_0)) \le \varphi(0) = 0.$$

That is $R(P_0) = P_0$. Thus P_0 is a CFP of S and R.

Finally, we prove that P_0 is unique. Suppose V is another fixed point of S and R. Then $(P_0, W) \subset E(G)$ and $(W, Q_0) \subset E(G)$. Being G a directed graph, we get $(P_0, Q_0) \subset E(G)$. Now,

$$H(P_0, Q_0) = H(S(P_0), R(Q_0))$$

$$\leq \alpha(H(P_0, Q_0), H(P_0, S(P_0)), H(Q_0, R(Q_0)))$$

$$\leq \alpha(H(P_0, Q_0), 0, 0)$$

$$\leq \varphi(0)$$

$$= 0.$$

Thus $P_0 = Q_0$. Hence P_0 is the unique CFP of S and R.

Corollary 3.2. Let (W(X), H) be a complete MS endowed with a directed graph G and $S, R: W(X) \to W(X)$ be set valued mappings satisfying:

- (i) G is a μ -graph ;
- (ii) there is a sequence $\{A_k\}_{k \in \mathbb{N}}$ in X such that

$$(A_{2k}, S(A_{2k})) \subset E(G) \Rightarrow (A_{2k+2}, S(A_{2k+2})) \subset E(G)$$

and

$$(A_{2k+1}, R(A_{2k+1})) \subset E(G) \Rightarrow (A_{2k+3}, R(A_{2k+3})) \subset E(G);$$

(1) there exists some $\alpha \in A$ such that

$$H(S(P_0), R(Q_0)) \le \alpha(H(P_0, Q_0), H(P_0, S(P_0)), H(Q_0, R(Q_0))),$$

for each $(P_0, Q_0) \subset E(G)$; (2) X_{SR} is nonempty. Then S, R have a CFP.

Following example demonstrates the conditions of Theorem 3.1.

Example 3.1. Suppose $X = \{1, 2, 3, 4\} = V(G)$ and

$$E(G) = \{(1,3), (1,4), (3,2), (2,4), (3,3), (4,3), (4,4)\}.$$

Assume that V(G) is endowed with metric d which is defined as

$$d(3,3) = d(4,4) = 0,$$

$$d(4,3) = \frac{1}{k+1},$$

$$d(1,3) = d(1,4) = d(2,3) = d(2,4) = \frac{k+1}{k+2}.$$

Define the Hausdorff metric as follows

$$H(P_0, Q_0) = \begin{cases} \frac{1}{k+1}, & \text{if } P_0, Q_0 \subseteq \{3, 4\} \text{ with } P_0 \neq Q_0\\ \frac{k+1}{k+2}, & \text{if } P_0 \text{ or } Q_0 \nsubseteq \{3, 4\} \text{ with } P_0 \neq Q_0\\ 0, & \text{if } P_0 = Q_0. \end{cases}$$

The mappings $S, R: W(X) \to W(X)$ are defined as:

$$S(P_0) = \begin{cases} \{3\}, & \text{if } P_0 \subseteq \{3,4\} \\ \{4\}, & \text{if } P_0 \notin \{3,4\}. \end{cases}$$
$$R(P_0) = \begin{cases} \{3\}, & \text{if } P_0 \subseteq \{3,4\} \\ \{3,4\}, & \text{if } P_0 \notin \{3,4\}. \end{cases}$$

Now for each $P_0, Q_0 \in W(X)$, consider the cases given below:

(1) If $P_0, Q_0 \subseteq \{3, 4\}, H(S(P_0), R(Q_0)) = H(\{3\}, \{3\}) = 0$

(2) If $P_0 \not\subseteq \{3,4\}$ and $Q_0 \subseteq \{3,4\}$, we get

$$H(S(P_0), R(Q_0)) = H(\{4\}, \{3\}) = \frac{1}{k+1}$$

Since

$$\frac{1}{k+1} \le \alpha(\frac{k+1}{k+2}, \frac{k+1}{k+2}, \frac{1}{k+1})$$

$$\Rightarrow H(S(P_0), R(Q_0)) \le \alpha(H(P_0, Q_0), H(P_0, S(P_0)), H(Q_0, R(Q_0))).$$

Hence all the conditions of Theorem 3.1 are satisfied, where $\varphi(t) = \frac{4t}{5}$. Moreover, {3} is the unique CFP of S and R.

4. Generalized φ -weak G-contraction

In this section, we establish another CFP theorem by defining generalized φ -weak G contraction.

Definition 4.1. Suppose that $S, R : W(X) \to W(X)$ are two set valued maps. The pair (S, R) is called a generalized ϕ weak *G*-contraction if the following assertions hold:

- (i) for each $P_0 \in W(X), (P_0, S(P_0)) \subset E(G)$ and $(S(P_0), RS(P_0)) \subset E(G);$
- (ii) there is a lower semi continuous function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\phi(t) > 0$ for $t \in (0, \infty)$ and $\phi(0) = 0$ such that for each $(P_0, Q_0) \subset E(G)$

$$H(S(P_0), R(Q_0)) \le M_{S,R}(P_0, Q_0) - \phi(M_{S,R}(P_0, Q_0))$$
(4.1)

where

$$M_{S,R} = \max\{H(P_0, Q_0), H(P_0, S(P_0)), H(Q_0, R(Q_0)), \frac{H(Q_0, S(P_0)) + H(P_0, R(Q_0))}{2}\}$$

Theorem 4.1. Suppose (W(X), H) is a complete MS with a directed graph G and S, R set valued maps on W(X). If

- (i) G is a μ -graph;
- (ii) the pair (S, R) is generalized ϕ weak G-contraction.

Then S and R have a CFP.

Proof. Let E_0 be an arbitrary element in W(X). So from assumption $(E_0, S(E_0)) \subset E(G)$ and $(S(E_0), RS(E_0)) \subset E(G)$. These imply that there exists some $x_0 \in E_0$ such that there is an edge between x_0 and some $x_1 \in S(E_0)$.

Let $E_1 = S(E_0)$, then the inclusion $(E_1, R(E_1)) \subset E(G)$ gives the existence of an edge between x_1 and $x_2 \in R(E_1)$.

Let $E_2 = R(E_1)$. Continuing this way, we take $E_1 = S(E_0), E_2 = R(E_1), \ldots, E_{2k+1} = S(E_{2k}), E_{2k+2} = R(E_{2k+1})$, for $k \in \mathbb{N}$. Since $(E_0, S(E_0)) \subset E(G)$ and $(E_1, R(E_1)) \subset E(G)$ for $E_0, E_1 \in W(X)$. Then from the assumption for $E_2, E_3 \in W(X)$, we get $(E_2, S(E_2)) \subset E(G)$ and $(E_3, R(E_3)) \subset E(G)$. Preceding in this way, we get $(E_{2k}, S(E_{2k})) \subset E(G)$ and $(E_{2k+1}, R(E_{2k+1})) \subset E(G)$, for all $k \in \mathbb{N}$.

Thus $(E_{2k}, E_{2k+1}) \subset E(G)$ and $(E_{2k+1}, E_{2k+2}) \subset E(G)$, for all $k \in \mathbb{N}$. Now from (4.1) we have

$$H(E_{2k+1}, E_{2k+2}) = H(S(E_{2k}), R(E_{2k+1})) \le M_{S,R}(E_{2k}, E_{2k+1}) - \varphi(M_{S,R}(E_{2k}, E_{2k+1}))$$
(4.2)

where

$$\begin{split} M_{S,R}(E_{2k},E_{2k+1}) &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k},S(E_{2k})),H(E_{2k+1},R(E_{2k+1}))\\ &= \frac{H(E_{2k+1},S(E_{2k})) + H(E_{2k},R(E_{2k+1}))}{2}\}\\ &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\\ &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\frac{H(E_{2k},E_{2k+2})}{2}\}\\ &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\frac{H(E_{2k},E_{2k+2})}{2}\}\\ &\leq \max\{H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\frac{H(E_{2k},E_{2k+2})}{2}\}\\ &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\frac{H(E_{2k},E_{2k+2})}{2}\}\\ &= \max\{H(E_{2k},E_{2k+1}),H(E_{2k+1},E_{2k+2}),\frac{H(E_{2k},E_{2k+2})}{2}\}. \end{split}$$

Thus (4.2) becomes

$$H(E_{2k+1}, E_{2k+2}) \le \max\{H(E_{2k}, E_{2k+1}), H(E_{2k+1}, E_{2k+2})\} - \varphi[\max\{H(E_{2k}, E_{2k+1}), H(E_{2k+1}, E_{2k+2})\}] = H(E_{2k}, E_{2k+1}).$$

That is

$$H(E_{2k+1}, E_{2k+2}) \le H(E_{2k}, E_{2k+1}).$$

Similarly,

$$H(E_{2k+2}, E_{2k+3}) = H(R(E_{2k+1}), S(E_{2k+2}))$$

= $H(S(E_{2k+2}), R(E_{2k+1}))$
 $\leq M_{S,R}(E_{2k+2}, E_{2k+1}) - \varphi(M_{S,R}(E_{2k+2}, E_{2k+1}))$

where

$$\begin{split} M_{S,R}(E_{2k+2},E_{2k+1}) &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},S(E_{2k+2})),H(E_{2k+1},R(E_{2k+1})),\\ &\quad \frac{H(E_{2k+1},S(E_{2k+2})) + H(E_{2k+2},R(E_{2k+1}))}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),H(E_{2k+1},E_{2k+2}),\\ &\quad \frac{H(E_{2k+1},E_{2k+3}) + H(E_{2k+2},E_{2k+2})}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),\frac{H(E_{2k+1},E_{2k+3})}{2}\}\\ &\leq \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),\frac{H(E_{2k+1},E_{2k+3})}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),\frac{H(E_{2k+1},E_{2k+3})}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),\frac{H(E_{2k+1},E_{2k+3})}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3}),\frac{H(E_{2k+2},E_{2k+3})}{2}\}\\ &= \max\{H(E_{2k+2},E_{2k+1}),H(E_{2k+2},E_{2k+3})\}. \end{split}$$

Thus from (4.2), we have

$$H(E_{2k+2}, E_{2k+3}) \le H(E_{2k+1}, E_{2k+2}), \text{ for all } k \in \mathbb{N}.$$

Hence

$$H(E_n, E_{n+1}) \le H(E_{n-1}, E_n)$$
, for all $k \in \mathbb{N}$.

Thus $\{H(E_k, E_{k+1})\}$ is a decreasing sequence of non negative real numbers. So it is convergent to some $b \ge 0$. i.e., $\lim_{k \to \infty} H(E_k, E_{k+1}) = b$. We claim that b = 0. Also, $\lim_{k \to \infty} H(E_k, E_{k+1}) = \lim_{k \to \infty} M_{S,R}(E_{k-1}, E_k) = b$.

Now, by lower semi continuity of φ , we have

$$\varphi(b) \leq \lim_{k \to \infty} \inf \varphi(M_{S,R}(E_{k-1}, E_k)).$$

Taking limit as $k \to \infty$ in the following inequality

$$H(E_k, E_{k+1}) \le M_{S,R}(E_{k-1}, E_k) - \varphi(M_{S,R}(E_{k-1}, E_k))$$

we get

$$b \le b - \varphi(b) \Rightarrow \varphi(b) \le 0.$$

Thus $\varphi(b) = 0$, by the property of the function φ . Hence $\lim_{k \to \infty} H(E_k, E_{k+1}) = b = 0$. Next, we show that $\{E_k\}$ is a Cauchy sequence. If $\{E_k\}$ is not a Cauchy sequence,

then there exists $\varepsilon > 0$ and subsequences $\{k_r\}$ and $\{m_r\}$ of positive integers such that

$$k_r > m_r > r, H(E_{m_r}, E_{k_r-1}) < \varepsilon, H(E_{m_r}, E_{k_r}) \ge \varepsilon$$

for all $r \in \mathbb{N}$.

Then

$$\varepsilon \le H(E_{m_r}, E_{k_r}) \le H(E_{m_r}, E_{k_r-1}) + H(E_{k_r-1}, E_{k_r}).$$
 (4.3)

From (4.3) it follows that $H(E_{m_r}, E_{k_r}) \to \varepsilon^+$ as $k \to \infty$. If we take $E_{2k+1} =$ $E_{m_r}, E_{2k+2} = E_{k_r}$ in 4.2, we get the next relation

$$H(E_{m_r}, E_{k_r}) \le M_{S,R}(E_{k_r-2}, E_{m_r}) - \varphi(M_{S,R}(E_{k_r-2}, E_{m_r}))$$
(4.4)

where

$$\begin{split} M_{S,R}(E_{k_r-2},E_{m_r}) &= \max\{H(E_{k_r-2},E_{m_r}),H(E_{k_r-2},S(E_{k_r-2})),H(E_{m_r},R(E_{m_r})),\\ &\frac{H(E_{m_r},S(E_{k_r-2})) + H(E_{k_r-2},R(E_{m_r}))}{2}\}\\ &= \max\{H(E_{k_r-2},E_{m_r}),H(E_{k_r-2},E_{k_r-1}),H(E_{m_r},E_{m_r+1}),\\ &\frac{H(E_{m_r},E_{k_r-1}) + H(E_{k_r-2},E_{m_r+1})}{2}\}. \end{split}$$

Now we consider the following cases:

If
$$M_{S,R}(E_{k_r-2}, E_{m_r}) = H(E_{k_r-2}, E_{m_r})$$
, then taking limit as $r \to \infty$ in 4.4, we get $\varepsilon \le \varepsilon - \varphi(\varepsilon) \Rightarrow \varphi(\varepsilon) = 0.$

By our assumption about φ , we have $\varepsilon = 0$, which is a contradiction.

When $M_{S,R}(E_{k_r-2}, E_{m_r}) = H(E_{k_r-2}, E_{k_r-1})$, then taking limit as $r \to \infty$ in 4.4, we get

 $\varepsilon \leq 0 - \varphi(0),$ gives a contradiction.

If
$$M_{S,R}(E_{k_r-2}, E_{m_r}) = H(E_{m_r}, E_{m_r+1})$$
, then taking limit as $r \to \infty$ in 4.4, we get
 $\varepsilon \le 0 - \varphi(0)$, gives a contradiction.

Finally, if $M_{S,R}(E_{k_r-2}, E_{m_r}) = \frac{H(E_{m_r}, E_{k_r-1}) + H(E_{k_r-2}, E_{m_r+1})}{2}$, then taking limit as $r \to \infty$ in 4.4, we have

$$\varepsilon \le 1/2(\varepsilon + \varepsilon) - \varphi(1/2(\varepsilon + \varepsilon)),$$

which is a contradiction. Hence $\{E_k\}$ must be a Cauchy sequence in W(X). As (W(X), H) is complete, we get $E_k \to P$, for some $P \in W(X)$.

Next we prove that P is a CFP of S and R. Since $E_k \to P$ and for $E_{2k} \in W(X)$, we have $(E_{2k}, E_{2k+1}) \subset E(G)$, for each $k \in \mathbb{N}$. Because G is a μ - graph, there exists a subsequence $\{E_{2k_p}\}$ of $\{E_{2k}\}$ such that either R is continuous and $(P, E_{2k_p+1}) \subset E(G)$ or S is continuous and $(E_{2k_p}, P) \subset E(G)$.

Assume that R is continuous and $(P, E_{2k_p+1}) \subset E(G)$. Since

$$P = \lim_{p \to \infty} (E_{2k_p+1}) \quad \Rightarrow \quad R(P) = \lim_{p \to \infty} R(E_{2k_p+1}) = \lim_{p \to \infty} (E_{2k_p+2}) = P.$$

That is R(P) = P. Now from 4.1, we get

$$H(S(P), R(E_{2k_p+1})) \le M_{S,R}(P, E_{2k_p+1}) - \phi(M_{S,R}(P, E_{2k_p+1}))$$
(4.5)

where

$$\begin{split} M_{S,R}(P,E_{2k_p+1}) &= \max\{H(P,E_{2k_p+1}),H(P,S(P)),H(E_{2k_p+1},R(E_{2k_p+1})),\\ &\frac{H(E_{2k_p+1},S(P)) + H(P,R(E_{2k_p+1}))}{2}\}\\ &= \max\{H(P,E_{2k_p+1}),H(P,S(P)),H(E_{2k_p+1},E_{2k_p+2}),\\ &\frac{H(E_{2k_p+1},S(P)) + H(P,E_{2k_p+2})}{2}\}. \end{split}$$

Taking limit as $p \to \infty$ in 4.5 and apply the same procedure as in 4.4, we get H(S(P), P) = 0. Thus P = S(P). Hence P is a CFP of S and R.

Similarly, assume that S is continuous and $(E_{2k_p}, P) \subset E(G)$. Using the same procedure we get P is a CFP of S and R.

Corollary 4.2. Suppose (W(X), H) is a complete MS involving a directed graph G and R a set valued map on W(X). If

- (i) G is a μ -graph;
- (ii) R is generalized φ weak G- contraction.

Then R has a fixed point.

5. Conclusion

We put forward the notions of graph A_{φ} -contraction pair and generalized φ -weak G contraction on bounded and closed subsets of a metric space and established some CFP results. We assumed certain conditions such as the underlying graph G is a μ -graph. Obtaining the results by relaxing that condition is a suggested future work.

Acknowledgments

The authors are thankful to the reviewers for their suggestions.

References

- M. Abbas, M.R. Alfuraidan, A.R. Khan, T. Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, *Fixed Point Theory Appl.* 14 (2015), doi:10.1186/s13663-015-0263-z.
- [2] M. Abbas, T. Nazir, T.A. Lampert, S. Radenović, Common fixed points of set-valued Fcontraction mappings on domain of sets endowed with directed graph, *Comput. Appl. Math.* 36 (2016), no. 4, 1607–1622.
- [3] M. Akram, A.A. Zafar, A.A. Siddiqui, A general class of contractions: A-contractions, Novi Sad J. Math. 38 (2008), no. 1, 25–33.
- [4] Y.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New results in Operator Theory, Advances and Appl. 98 (1997), 7–22.
- [5] S.M.A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, *Topology Appl.* 159 (2012), no. 3, 569–663.
- [6] D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [7] P. Debnath, Fixed points of contractive set valued mappings with set valued domains on a metric space with graph, TWMS J. App. Eng. Math. 4 (2014), no. 2, 169–174.
- [8] P. Debnath, B.S. Choudhury, M. Neog, Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph, *Fixed Point Theory Appl.* 5 (2017), doi: 10.1186/s13663-017-05988.
- [9] D. Dorić, Common fixed point for generalized (φ, ψ)-weak contractions, Appl. Math. Lett. 22 (2009), no. 12, 1896–1900.
- [10] D. Esi, P.K. Das, and P. Debnath, Coupled coincidence and couple common fixed point theorems on metric spaces with a directed graph, *Fixed Point Theory Appl.* 37 (2016), doi:10.1186/s13663-016-0530-7.
- [11] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1359–1373.
- [12] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, *Comput. Math. Appl.* 59 (2010), no. 9, 3148–3159.
- [13] S.B. Nadler, Multi-valued contraction mappings, Pac. J. Math. 30 (1969), no. 2, 475–488.
- [14] M. Neog, P. Debnath, Fixed points of set valued mappings in terms of start point on a metric space endowed with a directed graph, *Mathematics* 5 (2017), no. 2, 24.
- [15] M. Neog, P. Debnath, S. Radenović, New extension of some common fixed point theorems in complete metric spaces, *Fixed Point Theory* **20** (2019), no. 2, 567–580.
- [16] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223–239.

- [17] J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Act. Math. Sin. English Series 23 (2007), 2205–2212.
- [18] V. Parvaneh, Some common fixed point theorems in complete metric spaces, Int. J. Pure Appl. Math. 76 (2012), no. 1, 1–8.
- [19] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* **132** (2004), no. 5, 1435–1443.
- [20] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683–2693.
- [21] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj Univ. Press, 2008.
- [22] W. Sintunavarat, A. Petrusel, P. Kumam, Common coupled fixed point theorems for w^{*}compatible mappings without mixed monotone property, *Rend. Circ. Mat. Palermo(2)* 61 (2012), 361–383.
- [23] H.M. Srivastava, S.V. Bedre, S.M. Khairnar, B.S. Desale, Krasnosel'skii type hybrid fixed point theorems and their applications to fractional integral equations, *Abstr. Appl. Anal.* 2014 (2014), Article ID 7107461–9.
- [24] Q. Zhang, Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22 (2009), no. 12, 75–78.

(Murchana Neog) DEPARTMENT OF MATHEMATICS, NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY, NIRJULI, ARUNACHAL PRADESH - 791109, INDIA *E-mail address*: murchananeog@gmail.com

(Pradip Debnath, Corresponding Author) DEPARTMENT OF APPLIED SCIENCE AND HUMANITIES, ASSAM UNIVERSITY, SILCHAR, ASSAM - 788011, INDIA *E-mail address*: debnath.pradip@yahoo.com

(Stojan Radenović) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY, RIYADH - 11451, SAUDI ARABIA *E-mail address*: radens@beotel.rs