Common fixed point of set valued graph A_{φ}-contraction pair and generalized φ-weak G-contraction on metric space endowed with a graph

Murchana Neog, Pradip Debnath, and Stojan Radenović

Abstract

In this paper, we define the notion of graph A_{φ}-contraction pair and generalized φ weak G contraction on subsets of a metric space involving a graph. Using such contractions, the existence as well as uniqueness of common fixed point for set valued mappings with set valued domain involving a directed graph have been examined. Suitable examples are presented to validate the non-triviality the results. We particularly generalize and extend the results due to Zhang and Song [Fixed point theory for generalized φ-weak contractions. Appl. Math. Lett., 22:75-78, 2009].

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. common fixed point, set valued mapping, set valued domain, μ-graph, graph A_{φ}-contraction pair, generalized φ-weak G contraction.

1. Introduction

Boyd and Wong [6] investigated fixed points of nonlinear contractions. Ran and Reurings [19] combined the Banach's and Kanster-Tarski's fixed point theorems for continuous functions. Motivated by the work of Ran and Reurings, Neito \& Rodríguez-López $[16,17]$ proved the uniqueness of fixed point without monotonicity and continuity properties. Jachymski [11] introduced the structure of graph on a metric space (MS, in short) by replacing the order structure. A few relevant work in this context are [5, 7, 14, 23].

Nadler [13] established the set valued version of Banach's theorem in a complete MS. Study of common fixed point (CFP, in short) has attracted researchers over the years $[9,10,12,15,18,22]$.

Generalized φ-weak contractions were introduced by Zhang and Song [24] to prove some CFP results for single valued maps in a complete MS. Akram et. al [3] established a characterization for metric completeness with the help of A-contractions. In the current paper, we define the notions of graph A_{φ}-contraction pair and generalized φ-weak G contraction on bounded and closed subsets of a MS involving the directed graph. Using such contractions, we obtain some new CFP results in a complete MS.

2. Preliminaries

Let (X, d) be a MS and $W(X)$ be the collection of all nonempty closed and bounded subsets of X. If

$$
H(E, F)=\max \left\{\sup _{v \in F} d(v, E), \sup _{u \in E} d(u, F)\right\}, E, F \in W(X)
$$

where $d(u, F)=\inf _{v \in F} d(u, v)$. Then H is called Hausdorff metric induced by d and $(W(X), H)$ forms a metric space.

A directed graph G is an ordered pair $(V(G), E(G))$, where $V(G)$ is the set of vertices and $E(G)$ is the set of edges. We consider G as $V(G)=X$ and the set $E(G)$ of its edges also contains all its loops. Also, we assume that G does not contain parallel edges.

The conversion of a graph G is termed as G^{-1} and can be found from G by considering the reverse direction of edges of G. Also, the undirected graph is termed as \tilde{G} and it can be found from G by ignoring the directions. If we consider a directed graph G such that the set of edges is symmetric, then we get

$$
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right)
$$

If a, b are two vertices of G, then a path in G from a to b is a finite sequence $\left\{a_{i}\right\}_{i=0}^{n}$ of $n+1$ vertices such that $a_{0}=a, a_{n}=b$ and $\left(a_{i-1}, a_{i}\right) \in E(G)$ for $i=1,2, \ldots, n$.

The graph G is said to be connected if there is at least one path between every pair of vertices in G. Further, G is weakly connected if \tilde{G} is connected.

For more fixed point results in the similar setting we refer to $[1,2,8]$.
Suppose $P, Q \subset X(P, Q \neq \phi)$. Then, by $(P, Q) \subset E(G)$, we mean that 'there is an edge between P and Q^{\prime}, i.e., there is an edge between some $p \in P$ and $q \in Q$. Moreover, by, 'there is a path between P and Q ', we mean that there is a path between some $p \in P$ and $q \in Q$.

For $S, R: W(X) \rightarrow W(X)$, the set $X_{S R}$ is defined as below:

$$
X_{S R}=\{P \in W(X):(P, S(P)) \subset E(G) \text { and }(S(P), R S(P)) \subset E(G)\}
$$

Definition 2.1. [3] Suppose A is the collection of all functions $\alpha: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}$satisfying
(i) α is continuous on \mathbb{R}_{+}^{3}.
(ii) $p \leq k q$ for some $0 \leq k \in 1$ whenever $p \leq \alpha(p, q, q)$ or $p \leq \alpha(q, p, q)$ or $p \leq$ $\alpha(q, q, p)$ for each p, q.
Definition 2.2. [3] Suppose that (X, d) is a MS and R is a self map on $X . R$ is called an A-contraction if

$$
d\left(R a_{0}, R b_{0}\right) \leq \alpha\left(d\left(a_{0}, b_{0}\right), d\left(a_{0}, R a_{0}\right), d\left(b_{0}, R b_{0}\right)\right)
$$

for each $a_{0}, b_{0} \in X$ and some $\alpha \in A$.
Definition 2.3. [21] Consider the class of functions $\Phi=\left\{\varphi \mid \varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\right\}$, which satisfies the following assertions:
(i) $u_{1} \leq u_{2}$ implies $\varphi\left(u_{1}\right) \leq \varphi\left(u_{2}\right)$;
(ii) $\left(\varphi^{n}(u)\right)_{n \in N} \rightarrow 0$ for each $u>0$;
(iii) $\sum \varphi^{n}(u)$ converges for each $t>0$;

When (i-ii) are true, then φ is said to be a comparison function (CF). If (iii) is true as well, then φ is called a strong CF.

Definition 2.4. [4] A self mapping $R: X \rightarrow X$ on an MS (X, d) is called be a φ-weak contraction if there exists a map $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(0)=0$ and $\varphi(u)>0$ for each $u>0$ satisfying

$$
d(R a, R b) \leq d(a, b)-\varphi(d(a, b)), \text { for each } a, b \in X
$$

Rhoades [20] generalized of Banach's principle as follows.
Theorem 2.1. [20] Suppose that (X, d) is an $M S$ and R is a self-map on X satisfying

$$
d(R a, R b) \leq d(a, b)-\varphi(d(a, b)), \text { for each } a, b \in X
$$

where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous and non decreasing function with $\varphi(0)=0$ and $\varphi(u)>0$ for each $u>0$. Then R has a unique fixed point.

Definition 2.5. [24] Suppose that (X, d) is an MS. Two self maps S, R on X are said to be generalized φ-weak contractions if there exists a map $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(0)=0$ and $\varphi(u)>0$ for each $u>0$ satisfying

$$
d\left(R a_{0}, S b_{0}\right) \leq N\left(a_{0}, b_{0}\right)-\varphi\left(N\left(a_{0}, b_{0}\right)\right) ; \text { for each } a_{0}, b_{0} \in X
$$

where $N\left(a_{0}, b_{0}\right)=\max \left\{d\left(a_{0}, b_{0}\right), d\left(a_{0}, R a_{0}\right), d\left(b_{0}, S b_{0}\right), \frac{1}{2}\left(d\left(a_{0}, S b_{0}\right)+d\left(b_{0}, R a_{0}\right)\right)\right\}$.
The following was proved by Zhang and Song [24].
Theorem 2.2. Suppose that (X, d) is an $M S$ and S, R are two self maps on X such that for all $a, b \in X$

$$
d(R a, S b) \leq N(a, b)-\varphi(N(a, b))
$$

where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a lower semi continuous function with $\varphi(0)=0$ and $\varphi(u)>0$ for each $u>0$. Then R and S have a unique CFP.

3. Common fixed point of set valued graph A_{φ}-contraction pair

In this section, we prove a CFP theorem by defining graph A_{φ}-contraction pair.
Definition 3.1. Let A_{φ} be the collection of all functions $\alpha: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}$which satisfy the following conditions:
(i) α is continuous on \mathbb{R}_{+}^{3}.
(ii) for each $p, q \in \mathbb{R}_{+}, p \leq \alpha(p, q, q)$ or $p \leq \alpha(q, p, q)$ or $p \leq \alpha(q, q, p)$, then $p \leq \varphi(q)$, where φ is a strong CF.

In this definition, if we take $\varphi(u)=k u$ as $0 \leq k<1$ for each $u>0$, then we obtain $\alpha \in A$.

Definition 3.2. Suppose $S, R: W(X) \rightarrow W(X)$ are two set valued maps on $W(X)$. The pair (S, R) of maps is called graph A_{φ}-contraction pair if the assertions hold which are given below:
(i) for each $P_{0} \in W(X),\left(P_{0}, S\left(P_{0}\right)\right) \subset E(G)$ and $\left(S\left(P_{0}\right), R S\left(P_{0}\right)\right) \subset E(G)$;
(ii) there exists some $\alpha \in A_{\varphi}$ and $\left(P_{0}, Q_{0}\right) \subset E(G)$ such that

$$
H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right) \leq \alpha\left(H\left(P_{0}, Q_{0}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(Q_{0}, R\left(Q_{0}\right)\right)\right)
$$

Remark 3.1. If a pair (S, R) of maps on $W(X)$ is graph A_{φ}-contraction for graph G, then the pair is also graph A_{φ}-contraction for the graph G^{-1} and \widetilde{G}.

Definition 3.3. Let S, R be set valued maps on $W(X)$. We say that G is a μ-graph whenever for each sequence $\left\{A_{k}\right\}_{k \geq 0}$ in X with $A_{k} \rightarrow A$ and $\left(A_{2 k}, A_{2 k+1}\right) \subset E(G)$ for each $k \geq 0$, there is a subsequence $\left\{A_{2 k_{r}}\right\}$ of $\left\{A_{2 k}\right\}$ such that either R is continuous and $\left(A, A_{2 k_{r}+1}\right) \subset E(G)$ for each $r \geq 0$ or S is continuous and $\left(A_{2 k_{r}}, A\right) \subset E(G)$ for each $r \geq 0$.

Theorem 3.1. Suppose $(W(X), H)$ is a complete $M S$ involving a directed graph G and S, R set valued maps on $W(X)$. Suppose that:
(i) G is a μ-graph;
(ii) there is a sequence $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ in X such that

$$
\left(A_{2 k}, S\left(A_{2 k}\right)\right) \subset E(G) \Rightarrow\left(A_{2 k+2}, S\left(A_{2 k+2}\right)\right) \subset E(G)
$$

and

$$
\left(A_{2 k+1}, R\left(A_{2 k+1}\right)\right) \subset E(G) \Rightarrow\left(A_{2 k+3}, R\left(A_{2 k+3}\right)\right) \subset E(G)
$$

(iii) the pair (S, R) is graph A_{φ}-contraction.

Then S, R have a CFP. Moreover, if for any two CFPs P_{0}, Q_{0} of S and R respectively, there exists $W \in W(X)$ such that $\left(P_{0}, W\right) \subset E(G)$ and $\left(W, Q_{0}\right) \subset E(G)$, then S, R have a unique CFP.

Proof. Let E_{0} be an arbitrary element in $W(X)$. So from assumption $\left(E_{0}, S\left(E_{0}\right)\right) \subset$ $E(G)$ and $\left(S\left(E_{0}\right), R S\left(E_{0}\right)\right) \subset E(G)$. These imply that there exists some $x_{0} \in E_{0}$ such that there is an edge between x_{0} and some $x_{1} \in S\left(E_{0}\right)$.

Let $E_{1}=S\left(E_{0}\right)$, then the inclusion $\left(E_{1}, R\left(E_{1}\right)\right) \subset E(G)$ gives the existence of an edge between x_{1} and $x_{2} \in R\left(E_{1}\right)$.

Next assume that $E_{2}=R\left(E_{1}\right)$. Continuing this way, we take $E_{1}=S\left(E_{0}\right), E_{2}=$ $R\left(E_{1}\right), \ldots, E_{2 k+1}=S\left(E_{2 k}\right), E_{2 k+2}=R\left(E_{2 k+1}\right)$, for $k \in \mathbb{N}$. Since $\left(E_{0}, S\left(E_{0}\right)\right) \subset$ $E(G)$ and $\left(E_{1}, R\left(E_{1}\right)\right) \subset E(G)$ for $E_{0}, E_{1} \in W(X)$. Then from the assumption for $E_{2}, E_{3} \in W(X)$, we get $\left(E_{2}, S\left(E_{2}\right)\right) \subset E(G)$ and $\left(E_{3}, R\left(E_{3}\right)\right) \subset E(G)$. Continuing this way, we have $\left(E_{2 k}, S\left(E_{2 k}\right)\right) \subset E(G)$ and $\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right) \subset E(G)$ for each $k \in \mathbb{N}$. Thus $\left(E_{2 k}, E_{2 k+1}\right) \subset E(G)$ and $\left(E_{2 k+1}, E_{2 k+2}\right) \subset E(G)$, for each $k \in \mathbb{N}$.

Now from (iii), we have

$$
\begin{aligned}
H\left(E_{2 k+1}, E_{2 k+2}\right) & =H\left(S\left(E_{2 k}\right), R\left(E_{2 k+1}\right)\right) \\
& \leq \alpha\left(H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k}, S\left(E_{2 k}\right)\right), H\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right)\right) \\
& =\alpha\left(H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right)\right) .
\end{aligned}
$$

From the definition of α,

$$
H\left(E_{2 k+1}, E_{2 k+2}\right) \leq \varphi\left(H\left(E_{2 k}, E_{2 k+1}\right)\right), \text { for all } k \in \mathbb{N}
$$

Similarly, from (ii) $\left(E_{2 k}, S\left(E_{2 k}\right)\right) \subset E(G) \Rightarrow\left(E_{2 k+2}, S\left(E_{2 k+2}\right)\right) \subset E(G)$. i.e., $\left(E_{2 k+2}, E_{2 k+3}\right) \subset E(G)$. Thus by using (iii)

$$
\begin{aligned}
H\left(E_{2 k+2}, E_{2 k+3}\right) & =H\left(R\left(E_{2 k+1}\right), S\left(E_{2 k+2}\right)\right) \\
& =H\left(S\left(E_{2 k+2}\right), R\left(E_{2 k+1}\right)\right) \\
& \leq \alpha\left(H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, S\left(E_{2 k+2}\right), H\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right)\right)\right. \\
& =\alpha\left(H\left(E_{2 k+1}, E_{k+2}\right), H\left(E_{2 k+2}, E_{2 k+3}\right), H\left(E_{2 k+1}, E_{2 k+2}\right)\right) .
\end{aligned}
$$

From the definition of α,

$$
H\left(E_{2 k+2}, E_{2 k+3}\right) \leq \varphi\left(H\left(E_{2 k+1}, E_{2 k+2}\right)\right), \text { for all } k \in \mathbb{N}
$$

Continuing this way, we get,

$$
\begin{aligned}
H\left(E_{2 k+2}, E_{2 k+3}\right) & \leq \varphi\left(H\left(E_{2 k+1}, E_{2 k+2}\right)\right) \\
& \leq \varphi\left(\varphi\left(H\left(E_{2 k}, E_{2 k+1}\right)\right)\right) \\
& =\varphi^{2}\left(H\left(E_{2 k}, E_{2 k+1}\right)\right)
\end{aligned}
$$

$$
\leq \varphi^{2 k+2}\left(H\left(E_{0}, E_{1}\right)\right)
$$

Thus

$$
H\left(E_{k}, E_{k+1}\right) \leq \varphi^{k}\left(H\left(E_{0}, E_{1}\right)\right), \text { for all } k \in \mathbb{N} .
$$

Since $H\left(E_{0}, E_{1}\right) \geq 0$. So, from the Definition $2.3(i i)$, we get $\lim _{k \rightarrow \infty} \varphi^{k}\left(H\left(E_{0}, E_{1}\right)\right)=$ 0.

Now for any $\varepsilon>0$, there is a $k_{0} \in \mathbb{N}$ such that for each $k \geq k_{0}$

$$
\varphi^{k}\left(H\left(E_{0}, E_{1}\right)\right)<\varphi-\varphi(\varepsilon)
$$

Hence

$$
\begin{equation*}
H\left(E_{k}, E_{k+1}\right)<\varphi-\varphi(\varepsilon), \text { for each } k \geq k_{0} \tag{3.1}
\end{equation*}
$$

Also for any positive integer $m, k \in \mathbb{N}$ with $m>k>k_{0}$, we prove that

$$
\begin{equation*}
H\left(E_{k}, E_{m}\right)<\varepsilon \tag{3.2}
\end{equation*}
$$

We prove the inequality 3.2 by using mathematical induction on m. The inequality 3.2 holds for $m=k+1$ by using 3.1. Assume that 3.2 is true for $m=l$. i.e., $H\left(E_{k}, E_{l}\right)<\varepsilon$. So that $m=l+1$, we have

$$
\begin{aligned}
H\left(E_{k}, E_{m}\right) & \leq H\left(E_{k}, E_{k+1}\right)+H\left(E_{k+1}, E_{l+1}\right) \\
& <\varepsilon-\varphi(\varepsilon)+H\left(E_{k+1}, E_{l+1}\right) \\
& <\varepsilon-\varphi(\varepsilon)+\varphi\left(H\left(E_{k}, E_{l}\right)\right) \\
& <\varepsilon-\varphi(\varepsilon)+\varphi(\varepsilon) \\
& =\varepsilon
\end{aligned}
$$

Hence using mathematical induction on m, we see that 3.2 holds for $m>k \geq k_{0}$. Thus $\left\{E_{k}\right\}$ is a Cauchy sequence in $W(X)$. As $(W(X), H)$ is complete, we get $E_{k} \rightarrow P_{0}$, for some $P_{0} \in W(X)$.

Next, we assert that P_{0} is a CFP of S and R. As $E_{k} \rightarrow P_{0}$ and for $E_{2 k} \in W(X)$, we have $\left(E_{2 k}, E_{2 k+1}\right) \subset E(G)$ for each $k \in \mathbb{N}$. Because G is a μ-graph, there exists a subsequence $\left\{E_{2 k_{p}}\right\}$ of $\left\{E_{2 k}\right\}$ such that either R is continuous and $\left(P_{0}, E_{2 k_{p}+1}\right) \subset$ $E(G)$ or S is continuous and $\left(E_{2 k_{p}}, P_{0}\right) \subset E(G)$.

Assume that R is continuous and $\left(P_{0}, E_{2 k_{p}+1}\right) \subset E(G)$. Since every subsequence of a convergent sequence is convergent and has the same limit. Therefore,

$$
P_{0}=\lim _{p \rightarrow \infty}\left(E_{2 k_{p}+1}\right) \Rightarrow R\left(P_{0}\right)=\lim _{p \rightarrow \infty} R\left(E_{2 k_{p}+1}\right)=\lim _{p \rightarrow \infty}\left(E_{2 k_{p}+2}\right)=P_{0}
$$

That is $R\left(P_{0}\right)=P_{0}$. Moreover, from (iii) we get,

$$
H\left(S\left(P_{0}\right), R\left(E_{2 k_{p}+1}\right)\right) \leq \alpha\left(H\left(P_{0}, E_{2 k_{p}+1}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(E_{2 k_{p}+1}, R\left(E_{2 k_{p}+1}\right)\right)\right)
$$

Taking $p \rightarrow \infty$, we obtain

$$
H\left(S\left(P_{0}\right), P_{0}\right) \leq \alpha\left(0, H\left(P_{0}, S\left(P_{0}\right), 0\right) \quad \Rightarrow \quad H\left(S\left(P_{0}\right), P_{0}\right) \leq \varphi(0)=0\right.
$$

That is $S\left(P_{0}\right)=P_{0}$. Thus P_{0} is a CFP of S and R. Similarly, assume that S is continuous and $\left(E_{2 k_{p}}, P_{0}\right) \subset E(G)$. Thus

$$
P_{0}=\lim _{p \rightarrow \infty} E_{2 k_{p}+2} \Rightarrow S\left(P_{0}\right)=\lim _{p \rightarrow \infty} S\left(E_{2 k_{p}+2}\right)=\lim _{p \rightarrow \infty} E_{2 k_{p}+3}=P_{0}
$$

That is $S\left(P_{0}\right)=P_{0}$. Again, from (iii) we have,

$$
H\left(S\left(E_{2 k_{p}}, R\left(P_{0}\right)\right) \leq \alpha\left(H\left(E_{2 k_{p}}, P_{0}\right), H\left(E_{2 k_{p}}, S\left(E_{2 k_{p}}\right)\right), H\left(P_{0}, R\left(P_{0}\right)\right)\right)\right.
$$

Taking $p \rightarrow \infty$, we obtain

$$
H\left(P_{0}, R\left(P_{0}\right)\right) \leq \alpha\left(0,0, H\left(P_{0}, R\left(P_{0}\right)\right)\right) \quad \Rightarrow \quad H\left(P_{0}, R\left(P_{0}\right)\right) \leq \varphi(0)=0 .
$$

That is $R\left(P_{0}\right)=P_{0}$. Thus P_{0} is a CFP of S and R.
Finally, we prove that P_{0} is unique. Suppose V is another fixed point of S and R. Then $\left(P_{0}, W\right) \subset E(G)$ and $\left(W, Q_{0}\right) \subset E(G)$. Being G a directed graph, we get $\left(P_{0}, Q_{0}\right) \subset E(G)$. Now,

$$
\begin{aligned}
H\left(P_{0}, Q_{0}\right) & =H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right) \\
& \leq \alpha\left(H\left(P_{0}, Q_{0}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(Q_{0}, R\left(Q_{0}\right)\right)\right) \\
& \leq \alpha\left(H\left(P_{0}, Q_{0}\right), 0,0\right) \\
& \leq \varphi(0) \\
& =0
\end{aligned}
$$

Thus $P_{0}=Q_{0}$. Hence P_{0} is the unique CFP of S and R.
Corollary 3.2. Let $(W(X), H)$ be a complete $M S$ endowed with a directed graph G and $S, R: W(X) \rightarrow W(X)$ be set valued mappings satisfying:
(i) G is a μ-graph ;
(ii) there is a sequence $\left\{A_{k}\right\}_{k \in N}$ in X such that

$$
\left(A_{2 k}, S\left(A_{2 k}\right)\right) \subset E(G) \Rightarrow\left(A_{2 k+2}, S\left(A_{2 k+2}\right)\right) \subset E(G)
$$

and

$$
\left(A_{2 k+1}, R\left(A_{2 k+1}\right)\right) \subset E(G) \Rightarrow\left(A_{2 k+3}, R\left(A_{2 k+3}\right)\right) \subset E(G)
$$

(1) there exists some $\alpha \in A$ such that

$$
H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right) \leq \alpha\left(H\left(P_{0}, Q_{0}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(Q_{0}, R\left(Q_{0}\right)\right)\right)
$$

for each $\left(P_{0}, Q_{0}\right) \subset E(G)$;
(2) $X_{S R}$ is nonempty.

Then S, R have a CFP.
Following example demonstrates the conditions of Theorem 3.1.
Example 3.1. Suppose $X=\{1,2,3,4\}=V(G)$ and

$$
E(G)=\{(1,3),(1,4),(3,2),(2,4),(3,3),(4,3),(4,4)\}
$$

Assume that $V(G)$ is endowed with metric d which is defined as

$$
\begin{gathered}
d(3,3)=d(4,4)=0 \\
d(4,3)=\frac{1}{k+1}
\end{gathered}
$$

$$
d(1,3)=d(1,4)=d(2,3)=d(2,4)=\frac{k+1}{k+2}
$$

Define the Hausdorff metric as follows

$$
H\left(P_{0}, Q_{0}\right)= \begin{cases}\frac{1}{k+1}, & \text { if } P_{0}, Q_{0} \subseteq\{3,4\} \text { with } P_{0} \neq Q_{0} \\ \frac{k+1}{k+2}, & \text { if } P_{0} \text { or } Q_{0} \nsubseteq\{3,4\} \text { with } P_{0} \neq Q_{0} \\ 0, & \text { if } P_{0}=Q_{0}\end{cases}
$$

The mappings $S, R: W(X) \rightarrow W(X)$ are defined as:

$$
\begin{gathered}
S\left(P_{0}\right)= \begin{cases}\{3\}, & \text { if } P_{0} \subseteq\{3,4\} \\
\{4\}, & \text { if } P_{0} \nsubseteq\{3,4\} .\end{cases} \\
R\left(P_{0}\right)= \begin{cases}\{3\}, & \text { if } P_{0} \subseteq\{3,4\} \\
\{3,4\}, & \text { if } P_{0} \nsubseteq\{3,4\} .\end{cases}
\end{gathered}
$$

Now for each $P_{0}, Q_{0} \in W(X)$, consider the cases given below:
(1) If $P_{0}, Q_{0} \subseteq\{3,4\}, H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right)=H(\{3\},\{3\})=0$
(2) If $P_{0} \nsubseteq\{3,4\}$ and $Q_{0} \subseteq\{3,4\}$, we get

$$
H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right)=H(\{4\},\{3\})=\frac{1}{k+1}
$$

Since

$$
\begin{aligned}
\frac{1}{k+1} & \leq \alpha\left(\frac{k+1}{k+2}, \frac{k+1}{k+2}, \frac{1}{k+1}\right) \\
\Rightarrow H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right) & \leq \alpha\left(H\left(P_{0}, Q_{0}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(Q_{0}, R\left(Q_{0}\right)\right)\right) .
\end{aligned}
$$

Hence all the conditions of Theorem 3.1 are satisfied, where $\varphi(t)=\frac{4 t}{5}$. Moreover, $\{3\}$ is the unique CFP of S and R.

4. Generalized φ-weak G-contraction

In this section, we establish another CFP theorem by defining generalized φ-weak G contraction.

Definition 4.1. Suppose that $S, R: W(X) \rightarrow W(X)$ are two set valued maps. The pair (S, R) is called a generalized ϕ weak G-contraction if the following assertions hold:
(i) for each $P_{0} \in W(X),\left(P_{0}, S\left(P_{0}\right)\right) \subset E(G)$ and $\left(S\left(P_{0}\right), R S\left(P_{0}\right)\right) \subset E(G)$;
(ii) there is a lower semi continuous function $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\phi(t)>0$ for $t \in(0, \infty)$ and $\phi(0)=0$ such that for each $\left(P_{0}, Q_{0}\right) \subset E(G)$

$$
\begin{equation*}
H\left(S\left(P_{0}\right), R\left(Q_{0}\right)\right) \leq M_{S, R}\left(P_{0}, Q_{0}\right)-\phi\left(M_{S, R}\left(P_{0}, Q_{0}\right)\right) \tag{4.1}
\end{equation*}
$$

where

$$
M_{S, R}=\max \left\{H\left(P_{0}, Q_{0}\right), H\left(P_{0}, S\left(P_{0}\right)\right), H\left(Q_{0}, R\left(Q_{0}\right)\right), \frac{H\left(Q_{0}, S\left(P_{0}\right)\right)+H\left(P_{0}, R\left(Q_{0}\right)\right)}{2}\right\}
$$

Theorem 4.1. Suppose $(W(X), H)$ is a complete $M S$ with a directed graph G and S, R set valued maps on $W(X)$. If
(i) G is a μ-graph;
(ii) the pair (S, R) is generalized ϕ weak G-contraction.

Then S and R have a CFP.

Proof. Let E_{0} be an arbitrary element in $W(X)$. So from assumption $\left(E_{0}, S\left(E_{0}\right)\right) \subset$ $E(G)$ and $\left(S\left(E_{0}\right), R S\left(E_{0}\right)\right) \subset E(G)$. These imply that there exists some $x_{0} \in E_{0}$ such that there is an edge between x_{0} and some $x_{1} \in S\left(E_{0}\right)$.

Let $E_{1}=S\left(E_{0}\right)$, then the inclusion $\left(E_{1}, R\left(E_{1}\right)\right) \subset E(G)$ gives the existence of an edge between x_{1} and $x_{2} \in R\left(E_{1}\right)$.
Let $E_{2}=R\left(E_{1}\right)$. Continuing this way, we take $E_{1}=S\left(E_{0}\right), E_{2}=R\left(E_{1}\right), \ldots, E_{2 k+1}=$ $S\left(E_{2 k}\right), E_{2 k+2}=R\left(E_{2 k+1}\right)$, for $k \in \mathbb{N}$. Since $\left(E_{0}, S\left(E_{0}\right)\right) \subset E(G)$ and $\left(E_{1}, R\left(E_{1}\right)\right) \subset$ $E(G)$ for $E_{0}, E_{1} \in W(X)$. Then from the assumption for $E_{2}, E_{3} \in W(X)$, we get $\left(E_{2}, S\left(E_{2}\right)\right) \subset E(G)$ and $\left(E_{3}, R\left(E_{3}\right)\right) \subset E(G)$. Preceding in this way, we get $\left(E_{2 k}, S\left(E_{2 k}\right)\right) \subset E(G)$ and $\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right) \subset E(G)$, for all $k \in \mathbb{N}$.

Thus $\left(E_{2 k}, E_{2 k+1}\right) \subset E(G)$ and $\left(E_{2 k+1}, E_{2 k+2}\right) \subset E(G)$, for all $k \in \mathbb{N}$.
Now from (4.1) we have
$H\left(E_{2 k+1}, E_{2 k+2}\right)=H\left(S\left(E_{2 k}\right), R\left(E_{2 k+1}\right)\right) \leq M_{S, R}\left(E_{2 k}, E_{2 k+1}\right)-\varphi\left(M_{S, R}\left(E_{2 k}, E_{2 k+1}\right)\right)$
where

$$
\begin{aligned}
M_{S, R}\left(E_{2 k}, E_{2 k+1}\right)= & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k}, S\left(E_{2 k}\right)\right), H\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right),\right. \\
& \left.\frac{H\left(E_{2 k+1}, S\left(E_{2 k}\right)\right)+H\left(E_{2 k}, R\left(E_{2 k+1}\right)\right)}{2}\right\} \\
= & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right),\right. \\
& \left.\frac{H\left(E_{2 k+1}, E_{2 k+1}\right)+H\left(E_{2 k}, E_{2 k+2}\right)}{2}\right\} \\
= & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right), \frac{H\left(E_{2 k}, E_{2 k+2}\right)}{2}\right\} \\
\leq & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right),\right. \\
& \left.\frac{H\left(E_{2 k}, E_{2 k+1}\right)+H\left(E_{2 k+1}, E_{2 k+2}\right)}{2}\right\} \\
= & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right)\right\} .
\end{aligned}
$$

Thus (4.2) becomes

$$
\begin{aligned}
H\left(E_{2 k+1}, E_{2 k+2}\right) \leq & \max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right)\right\} \\
& -\varphi\left[\max \left\{H\left(E_{2 k}, E_{2 k+1}\right), H\left(E_{2 k+1}, E_{2 k+2}\right)\right\}\right] \\
= & H\left(E_{2 k}, E_{2 k+1}\right)
\end{aligned}
$$

That is

$$
H\left(E_{2 k+1}, E_{2 k+2}\right) \leq H\left(E_{2 k}, E_{2 k+1}\right)
$$

Similarly,

$$
\begin{aligned}
H\left(E_{2 k+2}, E_{2 k+3}\right) & =H\left(R\left(E_{2 k+1}\right), S\left(E_{2 k+2}\right)\right) \\
& =H\left(S\left(E_{2 k+2}\right), R\left(E_{2 k+1}\right)\right) \\
& \leq M_{S, R}\left(E_{2 k+2}, E_{2 k+1}\right)-\varphi\left(M_{S, R}\left(E_{2 k+2}, E_{2 k+1}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M_{S, R}\left(E_{2 k+2}, E_{2 k+1}\right)= & \max \left\{H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, S\left(E_{2 k+2}\right)\right), H\left(E_{2 k+1}, R\left(E_{2 k+1}\right)\right),\right. \\
& \left.\frac{H\left(E_{2 k+1}, S\left(E_{2 k+2}\right)\right)+H\left(E_{2 k+2}, R\left(E_{2 k+1}\right)\right)}{2}\right\} \\
= & \max \left\{H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, E_{2 k+3}\right), H\left(E_{2 k+1}, E_{2 k+2}\right),\right. \\
& \left.\frac{H\left(E_{2 k+1}, E_{2 k+3}\right)+H\left(E_{2 k+2}, E_{2 k+2}\right)}{2}\right\} \\
= & \max \left\{H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, E_{2 k+3}\right), \frac{H\left(E_{2 k+1}, E_{2 k+3}\right)}{2}\right\} \\
\leq & \max \left\{H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, E_{2 k+3}\right),\right. \\
& \left.\frac{H\left(E_{2 k+1}, E_{2 k+2}\right)+H\left(E_{2 k+2}, E_{2 k+3}\right)}{2}\right\} \\
& =\max \left\{H\left(E_{2 k+2}, E_{2 k+1}\right), H\left(E_{2 k+2}, E_{2 k+3}\right)\right\} .
\end{aligned}
$$

Thus from (4.2), we have

$$
H\left(E_{2 k+2}, E_{2 k+3}\right) \leq H\left(E_{2 k+1}, E_{2 k+2}\right), \text { for all } k \in \mathbb{N} .
$$

Hence

$$
H\left(E_{n}, E_{n+1}\right) \leq H\left(E_{n-1}, E_{n}\right), \text { for all } k \in \mathbb{N} .
$$

Thus $\left\{H\left(E_{k}, E_{k+1}\right)\right\}$ is a decreasing sequence of non negative real numbers. So it is convergent to some $b \geq 0$. i.e., $\lim _{k \rightarrow \infty} H\left(E_{k}, E_{k+1}\right)=b$. We claim that $b=0$.

Also, $\lim _{k \rightarrow \infty} H\left(E_{k}, E_{k+1}\right)=\lim _{k \rightarrow \infty} M_{S, R}\left(E_{k-1}, E_{k}\right)=b$.
Now, by lower semi continuity of φ, we have

$$
\varphi(b) \leq \lim _{k \rightarrow \infty} \inf \varphi\left(M_{S, R}\left(E_{k-1}, E_{k}\right)\right)
$$

Taking limit as $k \rightarrow \infty$ in the following inequality

$$
H\left(E_{k}, E_{k+1}\right) \leq M_{S, R}\left(E_{k-1}, E_{k}\right)-\varphi\left(M_{S, R}\left(E_{k-1}, E_{k}\right)\right)
$$

we get

$$
b \leq b-\varphi(b) \Rightarrow \varphi(b) \leq 0
$$

Thus $\varphi(b)=0$, by the property of the function φ. Hence $\lim _{k \rightarrow \infty} H\left(E_{k}, E_{k+1}\right)=b=0$.
Next, we show that $\left\{E_{k}\right\}$ is a Cauchy sequence. If $\left\{E_{k}\right\}$ is not a Cauchy sequence, then there exists $\varepsilon>0$ and subsequences $\left\{k_{r}\right\}$ and $\left\{m_{r}\right\}$ of positive integers such that

$$
k_{r}>m_{r}>r, H\left(E_{m_{r}}, E_{k_{r}-1}\right)<\varepsilon, H\left(E_{m_{r}}, E_{k_{r}}\right) \geq \varepsilon
$$

for all $r \in \mathbb{N}$.
Then

$$
\begin{equation*}
\varepsilon \leq H\left(E_{m_{r}}, E_{k_{r}}\right) \leq H\left(E_{m_{r}}, E_{k_{r}-1}\right)+H\left(E_{k_{r}-1}, E_{k_{r}}\right) \tag{4.3}
\end{equation*}
$$

From (4.3) it follows that $H\left(E_{m_{r}}, E_{k_{r}}\right) \rightarrow \varepsilon^{+}$as $k \rightarrow \infty$. If we take $E_{2 k+1}=$ $E_{m_{r}}, E_{2 k+2}=E_{k_{r}}$ in 4.2, we get the next relation

$$
\begin{equation*}
H\left(E_{m_{r}}, E_{k_{r}}\right) \leq M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)-\varphi\left(M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)\right) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)= & \max \left\{H\left(E_{k_{r}-2}, E_{m_{r}}\right), H\left(E_{k_{r}-2}, S\left(E_{k_{r}-2}\right)\right), H\left(E_{m_{r}}, R\left(E_{m_{r}}\right)\right),\right. \\
& \left.\frac{H\left(E_{m_{r}}, S\left(E_{k_{r}-2}\right)\right)+H\left(E_{k_{r}-2}, R\left(E_{m_{r}}\right)\right)}{2}\right\} \\
= & \max \left\{H\left(E_{k_{r}-2}, E_{m_{r}}\right), H\left(E_{k_{r}-2}, E_{k_{r}-1}\right), H\left(E_{m_{r}}, E_{m_{r}+1}\right),\right. \\
& \left.\frac{H\left(E_{m_{r}}, E_{k_{r}-1}\right)+H\left(E_{k_{r}-2}, E_{m_{r}+1}\right)}{2}\right\} .
\end{aligned}
$$

Now we consider the following cases:
If $M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)=H\left(E_{k_{r}-2}, E_{m_{r}}\right)$, then taking limit as $r \rightarrow \infty$ in 4.4, we get

$$
\varepsilon \leq \varepsilon-\varphi(\varepsilon) \Rightarrow \varphi(\varepsilon)=0
$$

By our assumption about φ, we have $\varepsilon=0$, which is a contradiction.
When $M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)=H\left(E_{k_{r}-2}, E_{k_{r}-1}\right)$, then taking limit as $r \rightarrow \infty$ in 4.4, we get

$$
\varepsilon \leq 0-\varphi(0), \quad \text { gives a contradiction. }
$$

If $M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)=H\left(E_{m_{r}}, E_{m_{r}+1}\right)$, then taking limit as $r \rightarrow \infty$ in 4.4, we get

$$
\varepsilon \leq 0-\varphi(0), \quad \text { gives a contradiction. }
$$

Finally, if $M_{S, R}\left(E_{k_{r}-2}, E_{m_{r}}\right)=\frac{H\left(E_{m_{r}}, E_{k_{r}-1}\right)+H\left(E_{k_{r}-2}, E_{m_{r}+1}\right)}{2}$, then taking limit as $r \rightarrow \infty$ in 4.4, we have

$$
\varepsilon \leq 1 / 2(\varepsilon+\varepsilon)-\varphi(1 / 2(\varepsilon+\varepsilon))
$$

which is a contradiction. Hence $\left\{E_{k}\right\}$ must be a Cauchy sequence in $W(X)$. As $(W(X), H)$ is complete, we get $E_{k} \rightarrow P$, for some $P \in W(X)$.

Next we prove that P is a CFP of S and R. Since $E_{k} \rightarrow P$ and for $E_{2 k} \in W(X)$, we have $\left(E_{2 k}, E_{2 k+1}\right) \subset E(G)$, for each $k \in \mathbb{N}$. Because G is a μ-graph, there exists a subsequence $\left\{E_{2 k_{p}}\right\}$ of $\left\{E_{2 k}\right\}$ such that either R is continuous and $\left(P, E_{2 k_{p}+1}\right) \subset E(G)$ or S is continuous and $\left(E_{2 k_{p}}, P\right) \subset E(G)$.

Assume that R is continuous and $\left(P, E_{2 k_{p}+1}\right) \subset E(G)$. Since

$$
P=\lim _{p \rightarrow \infty}\left(E_{2 k_{p}+1}\right) \Rightarrow R(P)=\lim _{p \rightarrow \infty} R\left(E_{2 k_{p}+1}\right)=\lim _{p \rightarrow \infty}\left(E_{2 k_{p}+2}\right)=P
$$

That is $R(P)=P$. Now from 4.1, we get

$$
\begin{equation*}
H\left(S(P), R\left(E_{2 k_{p}+1}\right)\right) \leq M_{S, R}\left(P, E_{2 k_{p}+1}\right)-\phi\left(M_{S, R}\left(P, E_{2 k_{p}+1}\right)\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{S, R}\left(P, E_{2 k_{p}+1}\right)= & \max \left\{H\left(P, E_{2 k_{p}+1}\right), H(P, S(P)), H\left(E_{2 k_{p}+1}, R\left(E_{2 k_{p}+1}\right)\right),\right. \\
& \left.\frac{H\left(E_{2 k_{p}+1}, S(P)\right)+H\left(P, R\left(E_{2 k_{p}+1}\right)\right)}{2}\right\} \\
= & \max \left\{H\left(P, E_{2 k_{p}+1}\right), H(P, S(P)), H\left(E_{2 k_{p}+1}, E_{2 k_{p}+2}\right),\right. \\
& \left.\frac{H\left(E_{2 k_{p}+1}, S(P)\right)+H\left(P, E_{2 k_{p}+2}\right)}{2}\right\} .
\end{aligned}
$$

Taking limit as $p \rightarrow \infty$ in 4.5 and apply the same procedure as in 4.4, we get $H(S(P), P)=0$. Thus $P=S(P)$. Hence P is a CFP of S and R.

Similarly, assume that S is continuous and $\left(E_{2 k_{p}}, P\right) \subset E(G)$. Using the same procedure we get P is a CFP of S and R.

Corollary 4.2. Suppose $(W(X), H)$ is a complete $M S$ involving a directed graph G and R a set valued map on $W(X)$. If
(i) G is a μ-graph;
(ii) R is generalized φ-weak G-contraction.

Then R has a fixed point.

5. Conclusion

We put forward the notions of graph A_{φ}-contraction pair and generalized φ-weak G contraction on bounded and closed subsets of a metric space and established some CFP results. We assumed certain conditions such as the underlying graph G is a μ-graph. Obtaining the results by relaxing that condition is a suggested future work.

Acknowledgments

The authors are thankful to the reviewers for their suggestions.

References

[1] M. Abbas, M.R. Alfuraidan, A.R. Khan, T. Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl. 14 (2015), doi:10.1186/s13663-015-0263-z.
[2] M. Abbas, T. Nazir, T.A. Lampert, S. Radenović, Common fixed points of set-valued Fcontraction mappings on domain of sets endowed with directed graph, Comput. Appl. Math. $\mathbf{3 6}$ (2016), no. 4, 1607-1622.
[3] M. Akram, A.A. Zafar, A.A. Siddiqui, A general class of contractions: A-contractions, Novi Sad J. Math. 38 (2008), no. 1, 25-33.
[4] Y.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New results in Operator Theory, Advances and Appl. 98 (1997), 7-22.
[5] S.M.A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl. 159 (2012), no. 3, 569-663.
[6] D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
[7] P. Debnath, Fixed points of contractive set valued mappings with set valued domains on a metric space with graph, TWMS J. App. Eng. Math. 4 (2014), no. 2, 169-174.
[8] P. Debnath, B.S. Choudhury, M. Neog, Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph, Fixed Point Theory Appl. 5 (2017), doi: 10.1186/s13663-017-05988.
[9] D. Dorić, Common fixed point for generalized (φ, ψ)-weak contractions, Appl. Math. Lett. 22 (2009), no. 12, 1896-1900.
[10] D. Esi, P.K. Das, and P. Debnath, Coupled coincidence and couple common fixed point theorems on metric spaces with a directed graph, Fixed Point Theory Appl. 37 (2016), doi:10.1186/s13663-016-0530-7.
[11] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1359-1373.
[12] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010), no. 9, 3148-3159.
[13] S.B. Nadler, Multi-valued contraction mappings, Pac. J. Math. 30 (1969), no. 2, 475-488.
[14] M. Neog, P. Debnath, Fixed points of set valued mappings in terms of start point on a metric space endowed with a directed graph, Mathematics 5 (2017), no. 2, 24.
[15] M. Neog, P. Debnath, S. Radenović, New extension of some common fixed point theorems in complete metric spaces, Fixed Point Theory 20 (2019), no. 2, 567-580.
[16] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223-239.
[17] J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Act. Math. Sin. English Series 23 (2007), 2205-2212.
[18] V. Parvaneh, Some common fixed point theorems in complete metric spaces, Int. J. Pure Appl. Math. 76 (2012), no. 1, 1-8.
[19] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443.
[20] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693.
[21] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj Univ. Press, 2008.
[22] W. Sintunavarat, A. Petrusel, P. Kumam, Common coupled fixed point theorems for $w^{*}-$ compatible mappings without mixed monotone property, Rend. Circ. Mat. Palermo(2) 61 (2012), 361-383.
[23] H.M. Srivastava, S.V. Bedre, S.M. Khairnar, B.S. Desale, Krasnosel'skii type hybrid fixed point theorems and their applications to fractional integral equations, Abstr. Appl. Anal. 2014 (2014), Article ID 7107461-9.
[24] Q. Zhang, Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22 (2009), no. 12, 75-78.
(Murchana Neog) Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh - 791109, India
E-mail address: murchananeog@gmail.com
(Pradip Debnath, Corresponding Author) Department of Applied Science and Humanities, Assam University, Silchar, Assam - 788011, India
E-mail address: debnath.pradip@yahoo.com
(Stojan Radenović) Department of Mathematics, College of Science, King Saud
University, Riyadh - 11451, Saudi Arabia
E-mail address: radens@beotel.rs

