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Abstract. The aim of this paper is to produce new examples of (semi-) Riemannian and

Finsler structures in dimension two having as model a scalar deformation of conics which

generalizes the rotation with a right angle. It continues [6] and [8] from the point of view of
relationship between quadratic polynomials (which provide equations of conics in dimension

2) and Finsler geometries. A type of two-dimensional Finslerian flow is introduced, based

on the previous deformation and we completely solve the corresponding particular case of
Riemannian flow.
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1. Introduction

Two recent papers [6] and [8], devoted to Finsler geometry, start with a deformation
of a conic Γ obtained by deforming the gradient vector field for the quadratic form
defining Γ. These deformation are inspired by the scaling (linear) transformation of
Computer Graphics: (x, y) ∈ R2 → (λx · x, λy · y) ∈ R2, following [13, p. 136]. The
well-known invariants from the Euclidean geometry of conics are computed for these
new conics which depend on two scalars denoted α and β.

In this following note we present another type of deformation based on the well-
known rotation of the plane. More precisely, we consider the consider the linear
transformation (x, y)→ (−αy, βx), which for α = β = 1 is the trigonometric rotation
with the right angles. We call (α, β)-rotated the new conic and the diagonal case
α = β is particularly analyzed, with a special view towards the trigonometric case
α = β = 1. Moreover, we treat this deformation in terms of complex numbers.

In the next section we move to the Riemann-Finslerian framework of dimension
two and consider the deformation inspired by the previous section. We finish this
paper with a type of Finslerian flows which can be the starting point of future studies
following the way opened by the famous Ricci flow of Riemannian geometry, [4]. Due
to the complex form of Finslerian deformation even in the Randers case, we can solve
completely only the corresponding particular case of Riemannian flows. The solution
is a time-dependent metric and a case of decreasing area is pointed out. We remark
that in dimension four some recent bi-metric approaches of spacetime geometries
appear in [1]-[2] and [3] while a geometrical study in arbitrary dimension is the very
old paper [10].
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2. The generalized rotation of conics

In the two-dimensional Euclidean space R2 let us consider the conic Γ implicitly
defined by f ∈ C∞

(
R2
)

as: Γ = {(x, y) ∈ R2 | f (x, y) = 0} where f is a quadratic

function of the form f(x, y) = r11x
2 + 2r12xy + r22y

2 + 2r10x + 2r20y + r00 with
r2
11 + r2

12 + r2
22 6= 0.

Definition 2.1. Fix the scalars α, β with αβ 6= 0. The (α, β)-rotation of Γ is the
conic:{

Γr = Γrα,β : fr(x, y) := f(−αy, βx) = 0,

fr(x, y) = (β2r22)x2 + 2(−αβr12)xy + (α2r11)y2 + 2(βr20)x+ 2(−αr10)y + r00.
(1.1)

Example 2.1. i) Fix other non-vanishing scalars a, b. The ellipse E(a, b) : x
2

a2 + y2

b2 −
1 = 0 and the hyperbola H(a, b) : x

2

a2 −
y2

b2 − 1 = 0 have the following (α, β)-rotation:

Erα,β :
β2x2

b2
+
α2y2

a2
− 1 = 0, Hr

α,β :
β2x2

b2
− α2y2

a2
+ 1 = 0. (1.2)

Hence Er is also an ellipse and Hr is a hyperbola. The equilateral hyperbola Γ : xy =
C = constant has the (α, β)-rotation:

Γr : αβxy = −C (1.3)

which is also an equilateral hyperbola.
ii) For p > 0 let the parabola P (p) : y2 − 2px = 0. Its (α, β)-rotation is:

P rα,β : x2 + 2
αp

β2
y = 0 (1.4)

which is also a parabola.
iii) Consider again the ellipse E(a, b) with a > b > 0. The family of all confocal conics
with E(a, b) is given by:

Γλ :
x2

a− λ
+

y2

b− λ
− 1 = 0 (1.5)

for λ ∈ R \ {a, b}. The (α, β)-rotation of Γλ is:

(Γλ)rα,β :
β2x2

b− λ
+
α2y2

a− λ
− 1 = 0. (1.6)

In order to study the (α, β)-rotations we recall the algebraic invariants associated
to Γ:

∆ =

∣∣∣∣∣∣
r11 r12 r10

r12 r22 r20

r10 r20 r00

∣∣∣∣∣∣ , D = δ+ Ir00−r2
10−r2

20, I = r11 +r22, δ = r11r22−r2
12.

(1.7)
More precisely, the main result of this Section follows directly:

Theorem 2.1. The new conic Γrα,β has the following invariants:

Ir = α2r11 + β2r22, δ
r = (αβ)2δ,Dr = (αβ)2δ + α2(r11r00 − r2

10) + β2(r22r00 − r2
20),

∆r = (αβ)2∆. (1.8)

Then the initial conic Γ and Γr have the same nature.
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A special attention deserves the diagonal case α = β for which we have:

Ir = α2I, δr = α4δ, Dr = (α4 − α2)δ + α2D, ∆r = α4∆. (1.9)

By performing a second rotation for this last case we obtain:(
Γrα,α

)r
α,α

: α4(r11x
2 + 2r12xy + r22y

2)− α2(2r10x+ 2r20y) + r00 = 0. (1.10)

The trigonometric case α = β = 1 gives for the last two equations:

Ir = I, δr = δ, Dr = D, ∆r = ∆,(
Γr1,1

)r
1,1

: r11x
2 + 2r12xy + r22y

2 − 2r10x− 2r20y + r00 = 0. (1.11)

Returning to the general case of α and β we treat the mixed deformation with
complex numbers following the model of [7]; a classification of conics written in the
complex plane appears in [9, p. 640]. More precisely, with the usual notation z =
x+ iy ∈ C we derive the complex expression of Γ:

Γ : F (z, z̄) := Az2 +Bzz̄ + Āz̄2 + Cz + C̄z̄ + r00 = 0 (1.12)

with:

A =
r11 − r22

4
− r12

2
i ∈ C, 2B = r11 + r22 = I ∈ R, C = r10 − r20i ∈ C. (1.13)

It follows that the usual rotation performed with the angle ϕ to eliminate the mixed
term xy has the meaning to reduce/rotate A in the real line while the translation
which eliminates the term y has a similar meaning with respect to C. The inverse
relationship between f and F is:

r11 = B + 2<A, r22 = B − 2<A, r12 = −2=A, r10 = <C, r20 = −=C (1.14)

with < and = respectively the real and imaginary part. Hence the angle ϕ is provided
by the formula:

tan 2ϕ :=
2r12

r11 − r22
= −=A
<A

= − tan argA→ 2ϕ = − argA. (1.15)

The expression of the invariants of Γ in terms of A,B,C is:

I = 2B, δ = B2 − 4|A|2, D = δ + 2r00I − |C|2 (1.161)

∆ = r00(B2−4|A|2)−B|C|2+2<C(<A<C+=A=C)+2=C(<C=A−<A=C). (1.162)

The transformation of the complex coefficients under the (α, β)-rotation is:

Ar =
β2 − α2

4
B − α2 + β2

2
<A− αβ=Ai,Br =

α2 + β2

2
B + (α2 − β2)<A,

C̃ = −β=C + α<Ci. (1.17)

For the considered particular case α = β we obtain:

Ar = −α2A, Br = α2B, C̃ = −αCi (1.18)

while the trigonometric case α = β = 1 yields:

Ar = −A, Br = B, C̃ = −Ci (1.19)

Returning to the general complex formalism above, in the case of a non-degenerate
Γ, which means ∆ 6= 0, we can also express the eccentricity e by:

e2 := 2− I

λ
= 1− δ

λ2
, λ2 − Iλ+ δ = 0. (1.20)
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It follows that µ and e are provided by:

λ± := B ± 2|A| → e2 =
±4|A|
B ± 2|A|

(1.21)

and hence the eccentricity is preserved by a diagonal rotation α = β since we use
(1.18).

We finish this section by discussing the commutation of a rotation with the previous
two gradient deformations of conics:
1) the (α, β)-deformation of Γ is the conic, [6, p. 87]:

Γ̃ = Γα,β : α

[
1

2
fx

]2

+ β

[
1

2
fy

]2

= 0. (1.22)

2) the (α, β)-mixed deformation of Γ is the conic, [8]:

Γm = Γmα,β : fm(x, y) := gα,β(In(x, y),
1

2
∇f(x, y)) = αy

[
1

2
fx

]
+ βx

[
1

2
fy

]
= 0.

(1.23)
A straightforward computation gives:
1+rotation)

(Γ̃)r : β2(αr2
12 + βr2

22)x2 − 2αβr12(αr11 + βr22)xy + α2(αr2
11+

βr2
12)y2 + 2β(αr12r10 +βr22r20)x−2α(αr11r10 +βr12r20)y+αr2

10 +βr2
20 = 0, (1.24)

Γ̃r : β2(αr2
12 + βr2

22)x2 − 2αβr12(αr11 + βr22)xy + α2(αr2
11 + βr2

12)y2+

+2β(αr12r10 + βr22r20)x− 2α(αr11r10 + βr12r20)y = 0, (1.25)

and then (Γ̃)r = Γ̃r if and only if αr2
10 + βr2

20 = 0 which for the diagonal case means
r10 = r20 = 0. Hence, in this diagonal case the new conic is:

(Γ̃)r = Γ̃r : (r2
12 + r2

22)x2 − 2Ir12xy + (r2
11 + r2

12)y2 = 0. (1.26)

2+rotation)

(Γm)r : βr12x
2 − 2(αr11 + βr22)xy + αr12y

2 − 2r10x− 2r20y = 0, (1.27)

(Γr)m : βr12x
2 − (αr11 + βr22)xy + αr12y

2 + r10x− r20y = 0, (1.28)

and then (Γm)r = (Γr)m if and only if r10 = r20 = αr11 + βr22 = 0 which means that
the new conic is:

(Γm)r = (Γr)m : r12(βx2 + αy2) = 0. (1.29)

Let us remark that the origin belongs to both conics (1.26) and (1.29).
For the completeness of the subject we include here the iterations of gradient

transformations 1 and 2:

Γ̃m : [r2
12 +

(αr11 + βr22)2

αβ
](βx2 +αy2) + 4r12(αr11 + βr22)xy+ 2[βr12r20+

+(αr11 + βr22)r10]x+ 2[(αr11 + βr22)r20 + αr12r10]y + αr2
10 + βr2

20 = 0, (1.30)

Γ̃m : (αr11+βr12)r12(βx2+αy2)+(α2r2
11+2αβr2

12+βr2
22)xy+β(αr12r10+βr22r20)x+

+α(αr11r10 + βr12r20)y = 0. (1.31)

In particular, the diagonal condition α = β gives:

Γ̃m : (r2
12+I2)(x2+y2)+4r12Ixy+2(r12r20+r10I)x+2(r20I+r12r10)y+r2

10+r2
20 = 0,
(1.32)
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Γ̃m : r12I(x2 + y2) + (r2
11 + 2r2

12 + r2
22)xy+ (r12r10 + r22r20)x+ (r11r10 + r12r20)y = 0.

(1.33)

3. The rotation of two-dimensional Finsler structures

Let M be an open subset of Rm considered as a smooth m-dimensional manifold
with m ≥ 2 and π : TM → M its tangent bundle. Let x = (xi) = (x1, ..., xm)
be the coordinates on M and (x, y) = (xi, yi) = (x1, ..., xm, y1, ...., ym) the induced
coordinates on TM . Denote by O the null-section of π.

Recall after [12] that a Finsler fundamental function on M is a map F : TM → R+

with the following properties:
F1) F is smooth on the slit tangent bundle T0M := TM \O and continuous on O,
F2) F is positive homogeneous of degree 1: F (x, λy) = λF (x, y) for every λ > 0,

F3) the matrix (gij) =
(

1
2
∂2F 2

∂yi∂yj

)
is invertible and its associated quadratic form is of

constant rank.
The tensor field g = {gij(x, y); 1 ≤ i, j ≤ m} is called the Finsler metric and the
homogeneity of F implies:

F 2(x, y) = gijy
iyj = yiy

i (2.1)

where yi = gijy
j . The pair (M,F ) is called Finsler manifold. We point out the

possibility of singular Finsler metrics as in [11].
Fix now the dimension m = 2 for which we change the notation: (x1, x2)→ (x, y),

(y1, y2) → (ẋ, ẏ). Fix also the vector ᾱ = (α, β) ∈ R2
+,+ with all strictly positive

components although there are cases when some of them can be null or even negative.
Inspired by the previous Section we introduce:

Definition 3.1. The ᾱ-rotation of F is F r = F rᾱ : TM → R given by:

F r(x, y, ẋ, ẏ) = F (x, y,−αẏ, βẋ). (2.2)

From (2.1) due to homogeneity it results a basic equation of Finsler geometry:

1

2
(F 2)yi = gijy

j (2.3)

This new Fislerian fundamental function yields a new Finslerian metric gr = gᾱ which
we call the ᾱ-rotation of g. A straightforward computation yields:

gr11 = β2g22, gr22 = α2g11, gr12 = −αβg12. (2.4)

Example 3.1. (Euclidean geometry) The Euclidean metric gcan is transformed into
the Riemannian metric: grcan = diag(β2, α2). Applying a second rotation we get
(grcan)r = α2β2gcan which is a homothetical transformation. Hence, if αβ = 1 we get
an involution on the positive cone of conformal Euclidean metrics ConfEuclidean =
{λgcan;λ ∈ (0,+∞)}.
Example 3.2. (Randers geometry) Let F be a Randers fundamental function of
Minkowski type:

Fb(x, y, ẋ, ẏ) = Fb(ẋ, ẏ) =
√
ẋ2 + ẏ2 + bẋ (2.5)

with 0 < b < 1. The corresponding Finsler metric is:

gb11 = 1 + b2 + b
2ẋ3 + 3ẋẏ2

(ẋ2 + ẏ2)
3
2

, gb12 =
bẏ3

(ẋ2 + ẏ2)
3
2

, gb22 = 1 +
bẋ3

(ẋ2 + ẏ2)
3
2

. (2.6)
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The new Finslerian metric with α = β = 1 is:

gr11 = gb22, gr12 = −gb12, gr22 = gb11. (2.7)

This proves that the new Finslerian structure F r defines a completely new Finsler
geometry on M .

Example 3.3. (Spherically symmetric Finsler functions) Let I ⊆ R+ be an interval
and A,B : I → R two smooth functions. We define the orthogonally invariant Finsler
function:

F (x, y, ẋ, ẏ) =
√
A(x2 + y2)(ẋ2 + ẏ2) +B(x2 + y2) < (x, y), (ẋ, ẏ) >2

can. (2.8)

Its Finsler metric is a non-diagonal Riemannian one:

g11 = A+Bx2, g12 = Bxy, g22 = A+By2. (2.9)

The new Finslerian fundamental function is:

Fm(x, y, ẋ, ẏ) =
√
A(β2ẋ2 + α2ẏ2) +B(−2αβxyẋẏ + β2y2ẋ2 + α2x2ẏ2) (2.10)

and hence the new Finslerian metric is again a non-diagonal Riemannian metric:

gm11 = β2(A+By2), gm12 = −αβBxy, gm22 = α2(A+Bx2). (2.11)

4. Finslerian flows

For the given manifold M let Finsler(M × R) be the infinite space of all possible
time-dependent Finslerian metrics on M as well as T s2 (TM × R) the space of all
time-dependent symmetric tensor fields of (0, 2)-type on TM . Following the theory
of geometric (more precisely Riemannian) flows we introduce:

Definition 4.1. A Finslerian flow on M is a dynamical system modeled by the
partial differential equations:

∂tgt = F(gt) (3.1)

where F : Finsler(M × R) → T s2 (TM × R) is a given map and gt is a family of
Finslerian metrics depending on the parameter t belonging to the interval I ⊆ R.

Example 4.1. i) (Special Riemannian flows) If we restrict the functional F to
Riemann(M × R) to be the (−2)Ricci curvature then we obtain the famous Ricci
flow provided the proof of two outstanding conjectures: Poincaré Conjecture and
Thurston Geometrization Conjecture. For a relationship between Randers metrics
and Ricci solitons via the Zermelo navigation problem see [5].
ii) Other famous Riemannian flows are: the Calabi flow and the Yamabe flow.
iii) Time-dependent Randers metrics are recently used in the study of causal relation-
ships on space-time manifolds in [14].

Returning to the general Finslerian framework and vector ᾱ of previous Section we
consider:

Definition 4.2. The Finslerian ᾱ-rotation flow is that given by:

F(g) = gr = gᾱ. (3.2)
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Inspired by [6, p. 96] we introduce the corresponding aria variation as the smooth
function
A : TM × R→ TM × R given by:

∂tA(x, y, ẋ, ẏ, t) =

2∑
i,j=1

grijg
ij (3.3)

where, as usual, gij are the components of inverse g−1.

Example 4.2. (Riemannian ᾱ-flow) With the computations of (2.4) we have:

∂ta11 = β2a22, ∂ta12 = −αβa12, ∂ta22 = α2a11. (3.4)

Then a12(t) = e−αβt on I = R, a11(t) = u(x, y) cosh(αβt) + v(x, y) sinh(αβt) and
a22(t) = α

β [v(x, y) cosh(αβt) + u(x, y) sinh(αβt).

We have immediately that:

∂tA(x, y, ẋ, ẏ, t) = α2a2
11 + 2αβa2

12 + β2a2
22 (3.5)

and hence we have:

∂tA = α2[(u2 + v2) cosh(2αβt) + uv sinh(2αβt)] + 2αβe−2αβt. (3.6)

It results:

A =
α

2β
[(u2 + v2) sinh(2αβt) + uv cosh(2αβt)]− e−2αβt. (3.7)

For αβ < 0 and uv > 0 it results a negative A which means an area-decreasing flow.

We finish with the following remark: in the reference [15], from two Finsler func-
tions F+, F−, it is obtained a bi-metric:

F =
√
F+ · F−. (3.8)

The negative result of [15] concerning the physical implications of this metric as well
as the considerations of our Section 1 suggests other two deformations:

F2,α,β =
√
αF 2

+ + βF 2
−, Fm,α,β = m

√
αFm+ + βFm− , m ∈ N∗ (3.9)

which will be studied in a future work.
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