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A Tauberian condition under which convergence follows from
the weighted mean summability of sequences of fuzzy number

Zerrin Önder and İbrahim Çanak

Abstract. Let (un) be a sequence of fuzzy numbers and (pn) be a sequence of nonnegative

numbers such that p0 > 0 and

Pn :=

n∑
k=0

pk → ∞ as n → ∞.

The weighted mean of (un) is defined by

tn :=
1

Pn

n∑
k=0

pkuk for n = 0, 1, 2, ...

It is well known that convergence of (un) implies that of the sequence (tn) of its weighted

means. However, the converse of this implication is not true in general. In this paper, we
investigate under which conditions convergence of (un) follows from its weighted mean summa-

bility. We prove a Tauberian theorem including condition of slow decrease with respect to the

weighted mean summability method for sequences of fuzzy numbers.
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1. Introduction

In this section, we begin with some remarks about history of fuzzy set theory and its
applications to the (N, p) summability method, that is about the history from almost
fifty years ago until these days. After dwelling on study that encourages us to do this
research, we complete this section summarizing theorem attained in this article.

Improved based upon the fuzzy sets and fuzzy set operations which was introduced
by Zadeh [13], fuzzy set theory has increasingly received attention from researchers
in a diverse range of disciplines in the last few years. Aspiring to apply concept of
fuzziness to individual works with a broad viewpoint from theoretical to practical
in almost all sciences and technology, researchers have reached numerous and varied
applications of its in fields such as statistics, nuclear science, biomedicine, agriculture,
geography, weather prediction, finance and stock market, engineering, computer sci-
ence, artificial intelligence, pattern recognition, handwriting analysis, decision theory,
robotics etc. In addition to these, one of areas which the concept of fuzziness was car-
ried out is also pure mathematics and there have been several authors discussing many
important properties and applications of fuzzy sets. Dubois and Prade [4] introduced
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the fuzzy numbers and defined basic operations of addition, subtraction, multiplica-
tion and division. In [6], Goetschel and Voxman presented a less restrictive definition
of fuzzy numbers. Matloka [7] introduced bounded and convergent sequences of fuzzy
numbers, studied some of their properties and showed that every convergent sequence
of fuzzy numbers is bounded. Nanda [9] studied the spaces of bounded and convergent
sequence of fuzzy numbers and proved that they are complete metric spaces.

In recent years, there has been an increasing interest on summability methods of
sequences of fuzzy numbers. One of these summability methods which has attracted
the attention of many researchers is the (N, p) summability method. Tripathy and
Baruah [12] introduced the (N, p) summability method for sequences of fuzzy numbers
and obtained fuzzy analogues of classical Tauberian theorems for this method. Çanak
[3] investigated some conditions needed for the (N, p) summable sequences to be

convergent. Later, Önder et al. [10] established a Tauberian condition controlling one-
sided oscillatory behavior of a sequence of fuzzy numbers for the (N, p) summability
method.

Besides the studies mentioned up to now, the study that encourages us to do
this research is in fact that including some results obtained by Móricz [8] for the
(N, p) summability method for sequences of real numbers. In [8], Móricz defined the
classes of all upper and lower allowed sequences with respect to (pn) and obtained
necessary and sufficient conditions for the (N, p) summable sequences of real numbers
by means of defined classes. Here, our aim extend the results presented by Móricz for
the (N, p) summable sequences of real numbers to the (N, p) summable sequences of
fuzzy numbers using these classes.

In this paper, we establish a Tauberian theorem which convergence follows from
the (N, p) summability under condition of slow decrease with respect to the (N, p)
method.

2. Preliminaries

In this section, we begin with basic definitions and notations with respect to fuzzy
numbers that will be used throughout this paper. In the sequel, we mention its
linear structure, set operations on the space of fuzzy numbers and some algebraic
properties related to its. We recall metric on the space of fuzzy numbers and exhibit
a list of fundamental properties of its. We end this section by giving some definitions
concerning the sequences of fuzzy numbers. For the sake of completeness of the paper,
we give our study in Section 3.

In [6], Goetschel and Voxman introduced concept of fuzzy numbers as follows:

Definition 2.1. Consider a fuzzy subset of real line u : R→ [0, 1]. Then the mapping
u is a fuzzy number if it satisfies following additional properties:

(i) u is normal; i.e., there exists a t0 ∈ R such that u(t0) = 1.
(ii) u is fuzzy convex; i.e., for any t0, t1 ∈ R and for any α ∈ [0, 1], u(αt0 + (1 −

α)t1) ≥ min{u(t0), u(t1)}.
(iii) u is upper semicontinuous on R.

(iv) The support of u, [u]0 := {t ∈ R : u(t) > 0} is compact, where {t ∈ R : u(t) > 0}
denotes the closure of the set {t ∈ R : u(t) > 0} in usual topology of R.
The set of all fuzzy numbers on R is denoted by E1.
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We recall the linear structure of E1 as follows. For u ∈ E1, the α-level set of u is
defined by

[u]α :=

{
{x ∈ R : u(x) ≥ α} , 0 < α ≤ 1,

{x ∈ R : u(x) > α}, α = 0.

Then, it is easily established (see [5]) that u is a fuzzy number if and only if [u]α is a
closed, bounded and nonempty interval for each α ∈ [0, 1] with [u]β ⊆ [u]α if 0 ≤ α ≤
β ≤ 1. From this characterization of fuzzy numbers, it follows that a fuzzy number
u is completely determined by the end points of the intervals [u]α = [u−(α), u+(α)]
where u−(α) ≤ u+(α) and u−(α), u+(α) ∈ R for each α ∈ [0, 1].

In the sequel, Goetschel and Voxman [6] presented another representation of a
fuzzy number as a pair of functions that satisfy some properties.

Theorem 2.1. [6] Let u ∈ E1 and [u]α = [u−(α), u+(α)]. Then the functions u−, u+ :
[0, 1]→ R, defining the endpoints of the α-level sets, satisfy following conditions:

(i) u−(α) ∈ R is a bounded, non-decreasing and left continuous function on (0, 1].
(ii) u+(α) ∈ R is a bounded, non-increasing and left continuous function on (0, 1].
(iii) The functions u−(α) and u+(α) are right continuous at α = 0.
(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions f and g satisfies the above conditions (i)-(iv), then
there exists a unique fuzzy number u such that [u]α := [f(α), g(α)] for each α ∈ [0, 1]
and u(x) := sup

α∈[0,1]

{α : f(α) ≤ x ≤ g(α)} .

Suppose that u, v ∈ E1 are represented by [u−(α), u+(α)] and [v−(α), v+(α)] for
each α ∈ [0, 1], respectively. Then, the operations addition, subtraction and scalar
multiplication on the set of fuzzy numbers are defined as follows:

[u+ v]α :=
[
u−(α) + v−(α), u+(α) + v+(α)

]
,

[u− v]α :=
[
u−(α)− v+(α), u+(α)− v−(α)

]
,

[ku]α = k[u]α :=

{
[ku−(α), ku+(α)] , k ≥ 0,
[ku+(α), ku−(α)] , k < 0.

The set of all real numbers can be embedded in E1. For r ∈ R, r̄ ∈ E1 is defined by

r̄(x) :=

{
1, x = r,
0, x 6= r.

The following lemma deals with the algebraic properties of fuzzy numbers.

Lemma 2.2. [2] On the set of fuzzy numbers there are two binary operations, denoted
by +, . and called addition, scaler multiplication, respectively. These operations satisfy
following properties:

(i) The addition of fuzzy numbers is associative and commutative, i.e.,
u+ v = v + u and u+ (v + w) = (u+ v) + w, for any u, v, w ∈ E1.

(ii) 0̄ ∈ E1 is neutral element with respect to +, i.e., u + 0̄ = 0̄ + u = u, for any
u ∈ E1.

(iii) With respect to +, none of u ∈ E1 \ R has opposite in E1.
(iv) 1̄ ∈ E1 is neutral element with respect to ., i.e., u1̄ = 1̄u = u, for any u ∈ E1.
(v) For any a, b ∈ R with ab ≥ 0 and any u ∈ E1, we have (a+ b)u = au+ bu. For

general a, b ∈ R, this property does not hold.
(vi) For any a ∈ R and u, v ∈ E1, we have a(u+ v) = au+ av.
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(vii) For any a, b ∈ R and u ∈ E1, we have (ab)u = a(bu).

As a conclusion, we attain by Lemma 2.2 that the space of fuzzy numbers is not a
linear space.

Concept of metric space may be defined as an arbitrary fuzzy set which a distance
between all elements of the set are described. It is possible to define several different
metrics on the space of fuzzy numbers; however, the most well known and preferential
metric among these metrics is the Hausdorff distance for fuzzy numbers based on the
classical Hausdorff distance between compact convex subsets of Rn. Let W denote the
set of all closed and bounded intervals. For the case when A = [a−, a+], B = [b−, b+]
are the two intervals, the Hausdorff distance on W is defined by

d(A,B) := max
{∣∣a− − b−∣∣, ∣∣a+ − b+

∣∣} .
It can be noted that W is a complete separable metric space on the basis of the
Haussdorff distance (cf. Nanda [9]). Now, we may define the metric D on the space
of fuzzy numbers with the help of the Hausdorff metric d.

Definition 2.2. ([2]) Let D : E1 × E1 → R+ and let u, v ∈ E1 represented respec-
tively by [u−(α), u+(α)] and [v−(α), v+(α)] for each α ∈ [0, 1]

D(u, v) = sup
α∈[0,1]

d([u]α, [v]α).

Then D is called the Hausdorff distance between fuzzy numbers u and v.

It is easy to see that

D(u, 0̄) = sup
α∈[0,1]

max
{∣∣u−(α)

∣∣ , ∣∣u+(α)
∣∣} = max

{∣∣u−(0)
∣∣ , ∣∣u+(0)

∣∣} .
The following proposition presents some fundamental properties of the Hausdorff

distance between fuzzy numbers.

Proposition 2.3. [2] Let u, v, w, z ∈ E1 and k ∈ R. Then following statements hold
true.

(i) (E1, D) is a complete metric space.
(ii) D(u+ w, v + w) = D(u, v); i.e., D is translation invariant.
(iii) D(ku, kv) = |k|D(u, v).
(iv) D(u+ v, w + z) ≤ D(u,w) +D(v, z).
(v) |D(u, 0̄)−D(v, 0̄)| ≤ D(u, v) ≤ D(u, 0̄) +D(v, 0̄).

For u, v ∈ E1, partial ordering relation on E1 is defined as follows:([1])
� u � v if and only if [u]α � [v]α, i.e. u−(α) ≤ v−(α) and u+(α) ≤ v+(α) for any

α ∈ [0, 1].
� We say that u ≺ v if u � v and there exists α0 ∈ [0, 1] such that u−(α0) < v−(α0)

or u+(α0) < v+(α0).
� We say that u, v ∈ E1 are incomparable if neither u � v nor v � u.

Lemma 2.4. [1] Given two fuzzy numbers u and v the following statements are
equivalent:

(i) D(u, v) ≤ ε,
(ii) u− ε̄ � v � u+ ε̄,

where ε > 0.

Lemma 2.5. [11] Let u, v, w ∈ E1. If u+ w � v + w, then u � v.
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We now refer following definitions concerning sequences of fuzzy numbers which
will be needed in the sequel.

Definition 2.3. [7] A sequence u = (un) of fuzzy numbers is a function u from the
set N = {0, 1, 2, ...} into the set E1. The fuzzy number un denotes the value of the
function at a point n ∈ N and is called the n-th term of the sequence. The set of all
sequences of fuzzy numbers is denoted by ω(F ).

Definition 2.4. [7] A sequence u = (un) of fuzzy numbers is said to be convergent
to the fuzzy number µ0, written as lim

n→∞
un = µ0, if for every ε > 0 there exists a

positive integer n0 = n0(ε) such that

D(un, µ0) < ε whenever n ≥ n0. (1)

The number µ0 is called the limit of (un). The set of all convergent sequences of fuzzy
numbers is denoted by c(F ).

Definition 2.5. [12] Let u = (un) be a sequence of fuzzy numbers and p = (pn) be
a sequence of nonnegative numbers such that p0 > 0 and

Pn :=

n∑
k=0

pk →∞ as n→∞. (2)

The weighted means of (un) ∈ ω(F ) is defined by

tn :=
1

Pn

n∑
k=0

pkuk for n ∈ N.

The sequence (un) is said to be summable by weighted mean method determined by
the sequence (pn) to the fuzzy number µ0 if for every ε > 0 there exists a positive
integer n0 = n0(ε) such that

D(tn, µ0) < ε whenever n ≥ n0.

The weighted mean methods are also called Riesz methods or the (N, p) methods
in the literature. The (N, p) summability method is regular if and only if condition
(2) is satisfied. In other words, every convergent sequence of fuzzy numbers is also
(N, p) summable to the same number under condition (2). However, converse of
this statement is not true in general. Truth of that is possible under some suitable
condition which is so-called a Tauberian condition on the sequence. Any theorem
stating that convergence of a sequence follows from its (N, p) summability and some
Tauberian condition is said to be a Tauberian theorem for the (N, p) summability
method.

At present, we remind the classes of all upper and lower allowed sequences with
respect to (pn) and their natural subclasses given by Móricz [8].

Let (ρn) be a strictly increasing sequence of positive integers such that ρn → ∞
as n → ∞. The sequence (ρn) is an upper allowed sequence with respect to (pn) if
condition

lim inf
n→∞

Pρn
Pn

> 1 (3)
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is satisfied. Similarly, the sequence (ρn) is a lower allowed sequence with respect to
(pn) if condition

lim inf
n→∞

Pn
Pρn

> 1 (4)

is satisfied. In this case, the classes of all upper and lower allowed sequence with
respect to (pn) is denoted by Λu and Λ`, respectively. The natural subclasses of these
classes are constructed as follows. Define

ρun(λ) := min

{
m > n :

m∑
k=n+1

pk
Pk
≥ λ− 1

}
for λ > 1,

then we have

Pρun(λ) = Pn +

ρun(λ)∑
k=n+1

pk
Pk
Pk ≥ Pn + Pn

ρun(λ)∑
k=n+1

pk
Pk
≥ λPn.

In this case, it may be considered Λ̃u := {(ρun(λ))n, λ > 1} instead of Λu.
Similarly, we define

ρ`n(λ) := max

{
m < n :

n∑
k=m+1

pk
Pk
≥ λ− 1

}
for λ > 1,

then we have

Pn = Pρ`n(λ) +

n∑
k=ρ`n(λ)+1

pk
Pk
Pk ≥ Pρ`n(λ) + Pρ`n(λ)

n∑
k=ρ`n(λ)+1

pk
Pk
≥ λPρ`n(λ).

In this case, it may be considered Λ̃` :=
{

(ρ`n(λ))n, λ > 1
}

instead of Λ`.
At present, we define a fuzzy analogue of concept of slow decrease with respect to

the (N, p) method by means of defined classes.

Definition 2.6. A sequence u = (un) of fuzzy numbers is said to be slowly decreasing
with respect to the (N, p) method if for every ε > 0 there exist n0 = n0(ε) and λ > 1
such that for all n ≥ n0

uk � un − ε̄ whenever n < k ≤ ρun(λ). (5)

Equivalently, it can be said that if a sequence (un) of fuzzy numbers is slowly
decreasing with respect to the (N, p) method if for every ε > 0 there exist n0 = n0(ε)
and λ > 1 such that for all n ≥ n0

un � uk − ε̄ whenever ρ`n(λ) < k ≤ n. (6)

As a matter of fact, if we assume that (un) is slowly decreasing with respect to the
(N, p) method, then there would exist an ε1 > 0 such that for all λ > 1 and n1 ∈ N,
we have for n ≥ n1,

un � uk − ε̄1 whenever ρ`n(λ) < k ≤ n.

Therefore, there exists α0 ∈ [0, 1] such that

u−n (α0) < u−k (α0)− ε1 or u+
n (α0) < u+

k (α0)− ε1.
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If we consider the case u−n (α0) < u−k (α0)− ε1, then we can see that condition of slow

decrease with respect to the (N, p) method given for sequences of real numbers

lim
λ→1+

lim inf
n→∞

min
ρ`n(λ)<k≤n

(un − uk) ≥ 0

is not satisfied for the sequence (u−n (α0)) of real numbers. In other words, (u−n (α0))
is not slowly decreasing with respect to the (N, p) method. Similarly, we can say that
(u+
n (α0)) is not slowly decreasing with respect to the (N, p) method. This contradicts

the hypothesis that (un) is slowly decreasing with respect to the (N, p) method.

3. Main Result

In this section, we establish a Tauberian theorem which convergence follows from
the (N, p) summability under condition of slow decrease with respect to the (N, p)
method.

Theorem 3.1. Let (un) be a sequence of fuzzy numbers. If (un) is (N, p) summable to
µ0 ∈ E1 and slowly decreasing with respect to the (N, p) method, then (un) converges
to µ0.

Proof. Assume that (un) ∈ ω(F ) is (N, p) summable to µ0 ∈ E1 and slowly decreasing
with respect to the (N, p) method. For each n such that (ρn) ∈ Λu,

Pρn
Pρn − Pn

tρn + tn =
Pρn

Pρn − Pn

(
1

Pρn

ρn∑
k=0

pkuk

)
+

1

Pn

n∑
k=0

pkuk

=
1

Pρn − Pn

(
n∑
k=0

pkuk +

ρn∑
k=n+1

pkuk

)
+

1

Pn

n∑
k=0

pkuk

=

(
1

Pρn − Pn
+

1

Pn

) n∑
k=0

pkuk +
1

Pρn − Pn

ρn∑
k=n+1

pkuk

=
Pρn

Pρn − Pn

(
1

Pn

n∑
k=0

pkuk

)
+

1

Pρn − Pn

ρn∑
k=n+1

pkuk

=
Pρn

Pρn − Pn
tn +

1

Pρn − Pn

ρn∑
k=n+1

pkuk. (7)

By using (3), we have

lim sup
n→∞

Pρn
Pρn − Pn

= lim sup
n→∞

1

1− Pn
Pρn

=

{
lim inf
n→∞

(
1− Pn

Pρn

)}−1

=

{
1− lim sup

n→∞

Pn
Pρn

}−1

=

1− 1

lim inf
n→∞

Pρn
Pn


−1

<∞. (8)
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Then by taking into account (8) and the assumed summability (N, p) of (un) to µ0,
we obtain

lim sup
n→∞

D

(
Pρn

Pρn − Pn
tρn ,

Pρn
Pρn − Pn

tn

)
= lim sup

n→∞

Pρn
Pρn − Pn

D(tρn , tn)

= lim sup
n→∞

Pρn
Pρn − Pn

D(tρn + µ0, tn + µ0)

≤ lim sup
n→∞

Pρn
Pρn − Pn

[D(tρn , µ0) +D(tn, µ0)]

≤ lim sup
n→∞

Pρn
Pρn − Pn

lim sup
n→∞

[D(tρn , µ0) +D(tn, µ0)]

≤ lim sup
n→∞

Pρn
Pρn − Pn

[
lim sup
n→∞

D(tρn , µ0) + lim sup
n→∞

D(tn, µ0)

]
≤ lim sup

n→∞

Pρn
Pρn − Pn

[
lim
n→∞

D(tρn , µ0) + lim
n→∞

D(tn, µ0)
]

= 0.

From this point of view, for large enough n and ε > 0 we can write

D

(
Pρn

Pρn − Pn
tρn ,

Pρn
Pρn − Pn

tn

)
<
ε

3
.

Thus, by Lemma 2.4, we obtain that

Pρn
Pρn − Pn

tn −
ε

3
� Pρn

Pρn − Pn
tρn

� Pρn
Pρn − Pn

tn +
ε

3
. (9)

Since (un) is (N, p) summable to µ0, we have lim
n→∞

D(tn, µ0) = 0. Then, for each

ε > 0, D(tn, µ0) <
ε

3
. Hence, by Lemma (2.4), we obtain

µ0 −
ε

3
� tn

� µ0 +
ε

3
. (10)

In addition, since (un) is slowly decreasing with respect to the (N, p) method, (ρn) ∈
Λu and we may consider Λ̃u instead of Λu by the mentioned construction, we get

1

Pρn − Pn

ρn∑
k=n+1

pkuk � 1

Pρn − Pn

ρn∑
k=n+1

pk(un −
ε

3
)

= un −
ε

3
. (11)
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By using the identity (7) and combining (9), (10) and (11) we obtain for each ε > 0
that

Pρn
Pρn − Pn

tn +
2ε

3
+ µ0 �

Pρn
Pρn − Pn

tρn + tn =
Pρn

Pρn − Pn
tn +

1

Pρn − Pn

ρn∑
k=n+1

pkuk

� Pρn
Pρn − Pn

tn + un −
ε

3
.

Therefore, by Lemma 2.5 we get

ε+ µ0 � un. (12)

On the other hand, for each n such that (ρn) ∈ Λ`,

Pρn
Pn − Pρn

tρn+
1

Pn − Pρn

n∑
k=ρn+1

pkuk =
Pρn

Pn − Pρn

(
1

Pρn

ρn∑
k=0

pkuk

)

+
1

Pn − Pρn

n∑
k=ρn+1

pkuk

=
1

Pn − Pρn

 ρn∑
k=0

pkuk +

n∑
k=ρn+1

pkuk

 =
1

Pn − Pρn

n∑
k=0

pkuk

=
Pn

Pn − Pρn
tn =

(
1 +

Pρn
Pn − Pρn

)
tn

=
Pρn

Pn − Pρn
tn + tn. (13)

By using (4), we get

lim sup
n→∞

Pρn
Pn − Pρn

= lim sup
n→∞

1
Pn
Pλn

− 1
=

{
lim inf
n→∞

Pn
Pλn

− 1

}−1

<∞ (14)

Then going through the similar process above and by taking into account (14), we
get

lim
n→∞

D

(
Pρn

Pn − Pρn
tρn ,

Pρn
Pn − Pρn

tn

)
= 0.

Hence, for sufficiently large n and ε > 0, we can write

D

(
Pρn

Pn − Pρn
tρn ,

Pρn
Pn − Pρn

tn

)
<
ε

3
.

So, By Lemma (2.4), we obtain that

Pρn
Pn − Pρn

tρn −
ε

3
� Pρn
Pn − Pρn

tn �
Pρn

Pn − Pρn
tρn +

ε

3
. (15)

Furthermore, since (un) is slowly decreasing with respect to the (N, p) method, (ρn) ∈
Λ` and we may consider Λ̃` instead of Λ` by the mentioned construction, we have

1

Pn − Pρn

n∑
k=ρn+1

pkuk �
1

Pn − Pρn

n∑
k=ρn+1

pk(un +
ε

3
) = un +

ε

3
. (16)
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Combining (10),(15) and (16), we obtain by the identity (13) that, for each ε > 0

Pρn
Pn − Pρn

tρn − 2ε

3
+ µ0 � Pρn

Pn − Pρn
tn + tn =

Pρn
Pn − Pρn

tρn +
1

Pn − Pρn

n∑
k=ρn+1

pkuk

� Pρn
Pn − Pρn

tρn + un +
ε

3
.

Therefore, by Lemma 2.5, we get

µ0 − ε � un. (17)

Combining (12) and (17), for each ε > 0 we obtain

µ0 − ε � un � ε+ µ0.

By Lemma 2.4, we conclude that

D(un, µ0) ≤ ε.
This implies that lim

n→∞
un = µ0. �
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