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On solutions of functional equations with linear translations

Mitrofan M. Choban and Larisa M. Sali

Abstract. In this paper we study the polynomial functional equations of the form af(a1x+

a0) + bf(b1x + b0) = g(x), where g(x) is a polynomial of the degree n ≥ 0. Theorem 2.3

affirms that the given equation has a unique polynomial solution provided if aai1 + bbi1 6= 0 for
each integer i ≥ 0. Other non-polynomial solution depends on solutions of the homogeneous

equation af(a1x + a0) + bf(b1x + b0) = 0.
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1. Introduction

Theory of functional equations is a large and important domain of mathematics [1,
4, 5, 7]. Formally, a functional equation is a relation between concrete variables where
some variables are functions or functions with their derivatives. Some properties of
solutions of a given differential equation may be determined without finding their
exact form [8]. We study the functional equations without derivatives of functions.
One of the general forms of a functional equation is the following:
F (x1, x2, ..., xn, f(g1(x1, x2, ..., xn)), ..., f(gm(x1, x2, ..., xn))) = 0,

where g1, g2, ..., gm are given functions. A solution of this equation is a function f(x),
which satisfies the functional equation.

Our aim is to analyze the functional equations with linear translations of the form:
af(a1x+ a0) + bf(b1x+ b0) = g(x),

where g(x) is a given function and a, b, a1, b1, a0, b0 are given numbers. The equations
of that form are subject of interest for mathematical competitions of diverse level.
There are many books which analyze concrete functional equations, but propose only
outline of solving ways [3, 5, 6].

We present a general approach of solving functional equations with linear transla-
tions. We study the case when the function g(x) is a polynomial. This approach is
important from the didactic point of view. The process of composing problems has
the goal of forming the capability to analyze notions and their properties, of con-
solidating knowledge, of creating premises for their application, of developing school
students’ mathematical creativity etc. The notions of equation and function are fun-
damental in the course of elementary mathematics and encapsulate a rich potential
for solving problems of an inter- and trans-disciplinary character. The general ap-
proach allows the structuring of the algorithm of composing concrete equations, whose
”spicy” character arises from the way of selecting the coefficients a, a1, b, b1 and the
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degrees of polynomial g(x). Some problems of this type sometimes are declared as
”trick problems”. The polynomials are considered on the field of reals R. But the
main results are true for the field of complex number too and, more general, for
topological commutative fields of characteristic zero.

2. Equations with linear translations

Fix an equation

af(a1x+ a0) + bf(b1x+ b0) = g(x), (1)

where g(x) is a polynomial.
The problem consists of finding the solutions f(t) of equation (1). The equation

(1) determines the homogeneous equation

af(a1x+ a0) + bf(b1x+ b0) = 0. (2)

Let S be the set of solutions of the equation (1) and S0 the set of solutions of the
equation (2). Obviously, S0 6= ∅, since 0 ∈ S0.

The following elementary fact establishes the relation between S and S0.

Proposition 2.1. If S 6= ∅ and f0 ∈ S, then S = {f0 + h : h ∈ S0}.

Corollary 2.2. Either S = ∅, or |S| = |S0|.

If b = 0 and aa1 6= 0, then f(x) = a−1g(a−1
1 (x− a0)) is the unique solution of the

equation (1).
Assume that aba1 6= 0 and b1 = 0. In this case, equation (1) has the form af(a1x+

a0) + bf(b0) = g(x). Putting t = a1x+ a0, we obtain af(t) + bf(b0) = g(a−1
1 (t− a0))

and (a + b)f(b0) = g(a−1
1 (b0 − a0)). If a + b = 0 and g(a−1

1 (b0 − a0)) 6= 0, then the
equation (1) doesn’t have any solution. If a + b = 0 and g(a−1

1 (b0 − a0)) = 0, then
f(t) = a−1g(a−1

1 (t− a0)) + c, where c is an arbitrary constant, is the general solution
and the equation (1) has an infinite number of solutions. If a + b 6= 0 , then f(b0)
= (a + b)−1g(a−1

1 (b0 − a0)) and f(t) = a−1g(a−1
1 (t − a0)) − a−1bf(b0) is the unique

solution of the equation (1).
Hence, is important the case aba1b1 6= 0 and a+ b 6= 0.
Let ∆n = aan1 + bbn1 , n ∈ N = {0, 1, 2, ...}.
One of the main results is the following theorem.

Theorem 2.3. Let g(x) = cnx
n + cn−1x

n−1 + ...+ c1x+ c0 (cn 6= 0) be a polynomial
of degree deg(g) = n ≥ 0 and m ≥ n. If ∆i 6= 0 for any i ≤ m then in the class P (m)
of all polynomials of the degree ≤ m there exists a unique polynomial solution f(x) of
the equation (1). The polynomial degree deg(f) = n.

Proof. Assume that the polynomial f(x) = epx
p+ep−1x

p−1+...+e1x+e0 is a solution
of the equation (1) and p ≤ m. Then af(a1x+a0) = aepa

p
1x

p+dp−1x
p−1+...+d1x+d0

and bf(b1x+ b0) = bepb
p
1x

p + lp−1x
p−1 + ...+ l1x+ l0.

If p > n, then ep(aan1 + bbn1 ) = 0 and ep = 0.
Thus, we can assume that p = n. In this case, en = (aan1 + bbn1 )−1cn. Newton’s

binomial formulas permit to calculate in a unique way all coefficients ej for j ≤ n.
The proof is complete.
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If ∆i = 0 for some i ≤ n, then the existence of the polynomial solutions depends on
the case. The method from the proof of the theorem allows to obtain all polynomial
solutions of the equation (1). �

Further, we propose concrete examples in which the polynomial g(x) has different
degrees.

Example 2.1. Consider the equation 4f(x− 3)− f(2x+ 1) = x , where deg(g) = 1.
We find that ∆0 = 4·10−1·20 = 3 6= 0, ∆1 = 4·11−1·21 = 2 6= 0, ∆2 = 4·12−1·22 =
0 and ∆i = 4 ·1i−1 ·2i = 4−2i < 0, for all i ≥ 3. Assume that the polynomial f(x) =
e2x

2+e1x+e0 is a solution of the given equation. It follows that 4f(x−3)−f(2x+1)
= 4e2x

2+(−24e2+4e1)x+36e2−12e1+4e0−(4e2x
2+(4e2+2e1)x+e2+e1+e0) and

0e2x
2 + (−28e2 + 2e1)x+ (35e2 − 13e1 + 3e0) = x. Fix e2 = c. Then e1 = 1

2 (28c+ 1)

and e0 = 49c + 13
6 . In this case, the equation has an infinite number of polynomial

solutions of the degree ≤ 2: S(2) = {cx2 + (14c + 1
2 )x + 49c + 13

6 | c ∈ R}. The

function f(x) = 1
2x+ 13

6 is the unique solution of the degree 1. The equation has not
polynomials solutions of the degree ≥ 3.

Example 2.2. Consider an equation where deg(g) = 2, for instance 4f(x − 3) −
f(2x+ 1) = x2 + x− 2. In this case, ∆0 = 3 6= 0, ∆1 = 2 6= 0, ∆2 = 4 · 12− 1 · 22 = 0
and ∆i = 4 ·1i−1 ·2i = 4−2i < 0 for all i ≥ 3. If f(x) = e2x

2 +e1x+e0 is a solution,
we have 4f(x − 3) − f(2x + 1) = 40e2x

2 + (−28e2 + 2e1)x + (35e2 − 13e1 + 3e0) =
x2 + x − 2. We obtain the contradiction 0 · e2 = 1. Since ∆i 6= 0 for n ≥ 3, then
en∆n = 0 if and only only if en = 0 and the equation has not polynomials solutions.

Example 2.3. Consider the equation 4f(x)− f(2x) = g(x). In this case, we obtain:
∆0 = 3 6= 0, ∆1 = 2 6= 0, ∆2 = 0 and ∆i = 4 − 2i < 0 for any i ≥ 3. Fix
some polynomial solution f(x) = e3x

3 + e2x
2 + e1x+ e0 with deg(f) = 3. If g(x) =

c3x
3 + c2x

2 + c1x+ c0, then 4f(x)− f(2x) = −4e3x
3 + 0e2x

2 + 2e1x+ 3e0. Therefore
e3 = − 1

4c3, 0 · e2 = c2, e1 = 1
2c1, e0 = 1

3c0.

For this example we have the following conclusions.
Conclusion 2.1. For c2 = 0 there exists an infinite number of solutions of degree 3:

f(x) = −1

4
e3x

3 + e2x
2 +

1

2
e1x+

1

3
e0.

Conclusion 2.2. For c2 6= 0 the equation has no polynomial solutions.
Conclusion 2.3. Any polynomial solution f(x) of the given equation has deg(f) ≤ 3.

Remark 2.1. We have a similar situation in the case when g(x) is a polynomial of
degree ≥ 4.

Example 2.4. Consider the equation 4f(x − 1) − f(2x) = g(x). In this case, we
obtain: ∆0 6= 0, ∆1 6= 0, ∆2 = 0 and ∆i = 4 − 2i < 0 for any for all i ≥ 3. Any
polynomial solution is of the order 6 3.

Let g(x) = c3x
3 + c2x

2 + c1x + c0. Fix some polynomial solution f(x) = e3x
3 +

e2x
2 + e1x+ e0 with deg(f) = 3. We obtain f(2x) = 8c3x

3 + 4c2x
2 + 2e1x+ e0 and

4f(x− 1)− f(2x) = −4e3x
3− 12e2x

2 + (2e1− 8e2 + 12e3)x+ (3e0− 4e1 + 4e2− 4e3).
Therefor −4e3 = c3, 0 · e2 − 12e3 = c2, 2e1 − 8e2 + 12e3 = c1, 3e0 − 4e1 + 4e2 − 4e3
= c0.
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If c2 = 3c3, then the equation has an infinite number of polynomial solutions of
degree 3 with e3 = − 1

4c3, e2 - arbitrary, e1 = 1
2 (c1 + 8e2 − 12e3), e0 = 1

3 (c0 + 4e1 −
4e2 + 4e3).

If c2 6= 3c3, then the equation has no solutions.

Example 2.5. Consider the equation 2f(x+1)+f(−2x) = g(x). We obtain: ∆0 6= 0,
∆1 = 2 · 11 + 1 · (−2)1 = 0 and ∆i = 2 · 1i − 1 · (−2)i = 2 + (−2)i 6= 0, i ≥ 2.

If g(x) = c4x
4 +c3x

3 +c2x
2 +c1x+c0, then any polynomial solution is of the order

6 4.
Let f(x) = e4x

4 + e3x
3 + e2x

2 + e1x+ e0 be some polynomial solution. We obtain
2f(x + 1) = 2e4x

4 + (8e4 + 2e3)x3 + (12e4 + 6e3 + 2e2)x2 + (8e4 + 6e3 + 4e2 +
2e1)x + 2(e4 + e3 + e2 + e1 + e0), f(2x) = 16e4x

4 − 8e3x
3 + 4e2x

2 − 2e1x + e0 and
2f(x+ 1) + f(−2x) = 18c4x

4 + (8e4 − 6e3)x3 + (12e4 + 6e3 − 2e2)x2 + (8e4 + 6e3 +
4e2 + 0 · e1)x+ (2e4 + 2e3 + 2e2 + 2e1 + 3e0).

Hence, we have the relations: 18e4 = c4, 8e4 − 6e3 = c3, 12e4 + 6e3 − 2e2 = c2,
8e4 + 6e3 + 4e2 + 0 · e1 = c1, 2e4 + 2e3 + 2e2 + 2e1 + 3e0 = c0.

Therefore e4 = 1
18c4, e3 = 2

27c4−
1
6c3, e2 = 5

9c4−
1
2c3−

1
2c2, c1 = 28

9 c4−3c3−2c2+0·e1,

e1 - is arbitrary and e0 = − 37
81c4 + 4

9c3 + 1
3c2 + 2

3e1 −
1
3c0.

If c1 = 28
9 c4 − 3c3 − 2c2, then the equation has an infinite number of polynomial

solutions of degree 4.
If c1 6= 28

9 c4 − 3c3 − 2c2, then the equation has no solution.

Remark 2.2. We have similar situations in the case when g(x) is a polynomial of
the degree > 4.

3. Periodicity and non-polynomial solutions

Consider the functional equation (1) where g(x) is a polynomial and |a1| = |b1| .
If ∆0 = a + b 6= 0 and ∆1 = aa1 + bb1 6= 0, then ∆i 6= 0 for each i ∈ N and the
functional equation has a unique polynomial solution. In other cases, the functional
equation either has an infinite number of polynomial solutions or has no polynomial
solution.

Let f0(x) be a given polynomial solution of the functional equation (1).
Consider the homogeneous functional equation (2). After the substitution t =

a1x+ a0 we obtain the equation af(t) + bf( b1
a1
t+ b0 − a0b1

a1
) = 0.

We set c = b1
a1

, k = − b
a and d = b0 − ka0.

In this case, the equation (2) has the form

f(t) = kf(ct+ d) (3)

If in the equation (3) we have c = ±1, we can distinguish few cases:
1. c = 1 and d = 0;
2. c = −1, d = 0;
3. c = 1 and d 6= 0;
4. c = −1, d 6= 0 and k = 1;
5. c = −1, d 6= 0 and k = −1;
6. c = −1, d 6= 0 and k /∈ {−1, 1};
7. c = 1, d 6= 0 and k /∈ {−1, 1}.

Case 1. c = 1 and d = 0.
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If k = 1 the equation (3) has the form f(t) = f(t) and has an infinite number of
solutions.

If c = 1, k 6= 1 and d = 0, the function f(x) = 0 is the unique solution of the
functional equation (1).
Case 2. c = −1, d = 0. In this case equation (3) has the form f(t) = kf(−t).

If k = 1, any even (symmetric) function is a solution of equation (3).
We denote by F1 the class of all functions with the property f(t) = f(−t).

Conclusion 3.1. If k = −1, c = −1 and d = 0, then F = {f0 + f : f ∈ F1} is the
class of all solutions of the functional equation (1).

For k = −1 we obtain f(−t) = −f(t) that any odd function is a solution of equation
(3).

We denote by F−1 the class of all functions with the property f(−t) = −f(t).
Conclusion 3.2. If k = −1, c = −1 and d = 0, then F = {f0 + f : f ∈ F−1} is
the class of all the solutions of the functional equation (1).
Conclusion 3.3. For k /∈ {−1, 1}, d = 0, c /∈ {−1, 1} the function f = 0 is the
unique solution of the functional equation (2) and the functional equation (1) has a
unique polynomial solution f0.
Case 3. c = 1 and d 6= 0.

In this case, equation (3) has the form f(t) = kf(t+ d).
On the semi-interval I0 = [0, d) fix some function h0. Let In = [nd, (n + 1)d),

n ∈ Z = {0,±1,±2, ...}. On In we construct the function hn(x) = k−nf0(x− nd) for
any x ∈ In. We say that such function h is (d, k)-periodic.

Let F(k,d) = {f : f(t) be (d, k)-periodic}.
If k = 1, then the (d, 1)-periodic function is periodic with period d.

Conclusion 3.4. If c = 1, d 6= 0, then F = {f0 + f : f ∈ F(k,d)} is the class of all
solutions of the functional equation (1).
Case 4. c = −1, d 6= 0 and k = 1.

In this case, equation (3) has the form f(t) = f(−t+ d).
Consider the intervals In = (nd, (n+ 1)d), where n ∈ Z .
Let h(x) be a function on the space of reals R with the properties: h(0) = h(d) and

h((n+ 1)d) = h(−nd) for each n ∈ Z = {0,±1,±2, ...}; if x ∈ (0, d) = I0, then h(x)
= h(d − x); if n ∈ N, then h is constructed on (nd, (n + 1)d) = In in an arbitrary
way; if n ∈ N and x ∈ I−n−1 = ((−n− 1)d,−nd), then h(x) = h(−x+ d) ∈ In.

Since −(−x+ d) + d = x, the function h is defined correctly as the solution of the
equation f(t) = f(−t+d). Let Fd be the class of such functions. Then Fd is the class
of all solutions of the equation (2).
Conclusion 3.5. If c = −1, d 6= 0 and k = 1, then F = {f0 + h : h ∈ Fd} is the
class of all solutions of the equation (1).
Case 5. c = −1, d 6= 0 and k = −1.

In this case, f(t) = −f(−t + d). As in the case 4, we denote In = (nd, (n + 1)d),
where n ∈ Z .

On the space of reals R consider the function h defined as follows:
- h(nd) = −h(−nd+ d) for any n ∈ Z ;
- if t ∈ I0, then h(d− t) = −h(t) and h(d

2 ) = 0;
- if n ∈ N , then the restriction h | In is any arbitrary function on In;
- if t ∈ I−n−1 = ((−n− 1)d,−nd), then h(t) = −h(−t+ d).
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The function h is correctly defined. The class Fd of such functions is the class of
all solutions of the equation (2), and F = {f0 +h : h ∈ Fd} is the class of all solutions
of the equation (1).
Case 6. c = −1, k /∈ {−1, 1} and d 6= 0.

In this case, f(t) = kf(−t+ d).
Fix a number t ∈ R. We put λ(t) = −t + d. We observe that λ(λ(t)) = t. The

equation (3) has the form f(t) = kf(λ(t)). Since λ(λ(t)) = t we observe that f(t) =
kf(λ(t)) = k ·kf(λ(λ(t))) = k2f(t). Since k /∈ {−1, 1}, then f(t) = 0 . Hence, in this
case h = 0 is the unique solution of the equation (2) and the equation (1) has only
polynomial solutions.

Example 3.1. Consider the equation f(2x+2)−f(2x) = 24x2+16x+2. In this case,
we obtain: ∆n = 1 · 2n − 1 · 2n = 0 for each n ≥ 0. After the substitution t = 2x we
obtain the equation f(t+2)−f(t) = 6t2+8t+2. Let f(t) = pt3+qt2+rt+s be a solution
of the equation. Since f(t+2) = pt3+(6p+q)t2+(12p+4q+r)t+(8p+4q+2r+s) we
obtain f(t+2)−f(t) =6pt2+(12p+2q)t+(8p+4q+2r). Hence p = 1, q = −1, r = −1
and f(x) = x3 − x2 − x + s is a polynomial solution of the degree 3. The equation
has not solutions of the degree ≤ 2. Assume that the function g(x) is a solution
of the given equation. Then h(x) = g(x) − f(x) is a solution of the homogeneous
equation h(x+ 2)− h(x) = 0 and h(x+ 2) = h(x). Hence h(x) is a periodic function
of the period 2. If h(x) is given on the semi-interval [0, 2), then h(x) and g(x) are
determined uniquely.

Example 3.2. Consider the equation f(2x+ 2) + f(2x) = 6x2 + 4x+ 2. In this case,
we obtain: ∆n = 1 · 2n + 1 · 2n = 22+1 > 0 for each n ≥ 0. After the substitution t
= 2x we obtain the equation f(t + 2) − f(t) = t2 + 2t + 2. Let f(t) = pt2 + qt + r
be a solution of the equation. Since f(t + 2) = pt2 + (4p + q)t + (4p + 2q + r) we
obtain f(t + 2) + f(t) =2pt2 + (4p + 2q)t + (4p + 2q + 2r), p = 3, q = −4, r = −1.
Hence f(x) = 3x2−4x−1 is the unique polynomial solution of the given equation. If
g(x) is a given solution of the equation, then h(x) = g(x)− f(x) is a solution of the
homogeneous equation h(x + 2) + h(x) = 0 and h(x + 2) = −h(x). Hence h(x) is a
periodic function of the period 4. On the interval [−2, 2] we have h(x) = −h(x+ 2).
If h0 is constructed on [−2, 0) then for x ∈ [0, 2) we put h0(x) = −h(x − 2). Then
from h(x+ 4) = h(x) we determine the whole function h(x). For instance, if h0(x) =
x(x+ 2) for any x ∈ [−2, 0), then h0(x) = −x(x− 2). Then from h(x) = h(x+ 4) it
follows that h(x) and g(x) are determined uniquely. In this case the function h(x) and
g(x) are continuous and g(x) = 2x2−2x−1 for any x ∈ [0, 2) and g(x) = 4x2−6x−1
for x ∈ [−2, 0).
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