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Abstract. We present some numerical simulations with a selective version of the original

Smagorinsky model on the 3D vortex tubes reconnection problem and the decaying 3D incom-

pressible isotropic turbulence case. The selective procedure used here follows an idea proposed

by the mecanicists [7] that we interpret through a mathematical criterium suggested by Con-

stantin & Fefferman [5] concerning the regularity of the vorticity field direction. Numerical

results show the efficiency of the selective model over the original model.
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1. Introduction

The understanding of turbulence, and implicitly, its prediction and control repre-
sent one of the most challenging problem in science and engineering.

It is generally accepted that the Navier-Stokes equations describe accurately the
motion of every incompressible viscous fluids. However, the mathematical theory of
these equations is still incomplete, the existence for all time of strong solutions or the
uniqueness of weak solutions in the three dimensional case, beeing classical examples
of open problems.

One natural computational method for solving these equations is to procede to a
direct numerical simulation (DNS), in which all the scales of motion including the en-
ergy dissipation scales are explicitly computed. The main difficulty with this method
is that its “computational cost” for typical engineering applications is too high for the
available computing ressources. Indeed, since the total number of degrees of freedom
necessary to represent a turbulent flow is of the order of Re9/4 in three-dimension,
where Re is the turbulent Reynolds number, it is clear that the direct simulation of
all scales of high Reynolds number flows is actually impractical1. However, DNS is a
very useful tool for studying simple flows at low and moderate Reynolds numbers, and
also in turbulence research, where it is used especially for the validation of turbulence
closure models.

A popular alternative to DNS is the technique of Large Eddy Simulation (LES),
which proposes to compute only the large scales of the motion, larger than some cutoff
wavenumber, and to model the effect of the small eddies, which are not very dependent
on the geometry of the considered flow. The basic idea of LES is to define a large scale
field through a filtering operation on the flow variables. Thus, the LES equations are
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1see [18] for a useful discussion about computational requirements in DNS
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formaly obtained by filtering the Navier- Stokes equations. The decomposition of the
flow variables into a space-averaged mean flow (large scales) and a perturbation field
(small scales), induces in the Navier-Stokes equations a closure problem, caused by the
nonlinear interactions between the large scales and the small ones. The main goal of
LES is to accurately model the effect of small scales (subgrid scales) on the dynamics
of large scales. Many LES models have been proposed along the time. Particularily
in recent years, there was a significant progress toward the development of turbulence
models which should guaranty the accuracy of the most physically relevant quantities
for real applications. An overview of the classical LES models, with their practical
capabilities and weaknesses, can be found in [6]. Since the LES models are supposed
to assure the closure of the filtred Navier-Stokes equations, it is natural to think that
they must ensure a certain regularity of the solution for these PDE and hence they
should solve the uniqueness problem of the weak solution. For almost all LES models,
no satisfactorily mathematical theory has yet been found. In [6] we show in a simple
manner that a LES model of p-laplacian type (the Smagorinsky model, which will be
presented in the following section) represents a good regularization for the Navier-
Stokes equations, in the sense that it “solves” the uniqueness question. For further
works on the mathematical properties of this model we refer to [11], [8]. On the
other hand, it is known that in practice, the Smagorinsky model turns out to be too
dissipative, especially close to walls. One possibility to remediate this drawback is to
compute “dynamically” the constant of the model during the simulation in terms of
the resolved velocity. It is the idea of dynamical models which gives generally good
results [9]. Another approach consists in shrinking the support of the eddy viscosity
of the original Smagorinsky model, by adding “dissipation” only in regions of the flow
characterized by important values of the vorticity magnitude and a strong variability
of the vorticity field direction. This idea, suggested by Bartello (1993) was firstly
implemented in the case of the selective structure model (see [7]). We implemented
it in the case of the Smagorinsky model, giving also a mathematical justification of
the proposed selective version.

The aim of this paper is to present numerical simulations with the selective version
of the Smagorinsky model, showing its efficiency by comparisons with the classical
Smagorinsky model and reference DNS results.

The outline of this paper is as follows. In section 2 we recall the LES equations
and we briefly present the concept of subgrid scale modeling. A selective variant of
the original Smagorinsky model is presented and justified through a mathematical
criterium suggested by Constantin and Fefferman as hypothesis which assures the
regularity, and hence existence of strong solutions for 3D Navier-Stokes equations [5].
Numerical results with the proposed model on two test cases: the 3D vortex tubes
reconnection and the decaying grid turbulence case are presented in section 3. Some
concluding remarks are finally proposed.

2. Subgrid Scale Modeling. Eddy-Viscosity Models

As we previously said, the idea of Large-Eddy Simulation is to use a spatial filter
in order to separate the large and small eddies which coexist in a turbulent flow.
Usually, the filtred variables of the flow (filtred velocity and pressure) are defined by
convolution with a smoothing kernel. Assuming that the considered filter commutes
with the differentiation operators, and applying it to the Navier-Stokes equations, we
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obtain a set of PDE which describes the motion of large scales in a turbulent flow
(LES equations) in a spatial domain Ω ⊂ R3 and for a time t > 0

∂tui + ∂j(uiuj) + ∂ip = ∂j(ν∂jui + Tij) (1)

∂iui = 0. (2)

with as unknows the resolved (filtred) velocity u and pressure p. ν is the kinematic
viscosity (we consider here the density of the fluid ρ = 1) and (Tij) the subgrid scale
tensor which “comes” from the filtering of the convection term in the Navier-Stokes
equations

Tij = uiuj − uiuj .

Usually, this tensor is splitted into a trace free component

τij = Tij − Tkkδij/3 where δ is the Kronecker symbol

and an isotropic one that is absorbed into a modified pressure P

P = p − Tkk/3.

The LES equations become in this case

∂tui + ∂j(uiuj) + ∂iP = ∂j(ν∂jui + τij) (3)

∂iui = 0 (4)

in which the modified subgrid stress τ has to be modeled. An important class of
subgrid scales models (SGS) are the eddy viscosity models based on the Boussinesq’s
hypothesis. This assumes that the SGS stress tensor is proportional to the filtered
strain-rate tensor S. Then, τ is represented as

τij = 2νtSij

where νt is the eddy-viscosity, which is not a constant and must be specified.

One of the most popular models for Large Eddy Simulation is the Smagorinsky model
[20] for which the eddy viscosity is assumed to be proportional to the filtred strain

rate |S| (=
√

2SijSij)

νsm
t = (Csm∆)2|S|. (5)

∆ is a characteristic length scale and Csm the model constant which depends on the
characteristics of the flow. It is usually evaluated so that the model reproduces the
Kolmogorov spectrum in simulations of the homogeneous isotropic turbulence. We
refer to [17] for a discussion on the evaluation of this parameter.

It is known that in this form, the classical Smagorinsky model performs rather
well for isotropic turbulence, but it does not predict satisfactorily the transition to
turbulence. To remedy its excessive dissipation, dynamical models were proposed with
a model constant computed as function of time and space, in terms of the resolved
scales. These models have been succesfully applied to various kinds of flows, but in
order to provide strict dissipation it requires, in general, to assume flow homogeneity
in at least one direction and thus does not readily apply to general geometries.

Another possibility to improve the qualities of this model, consists in applying it
only in regions of high values of the magnitude of the vorticity where the vorticity
field direction is not “regular enough”. This can be done by multiplying the eddy
viscosity with a filter able to detect the “turbulent regions” into a flow (we explain
later how we construct this filter). This procedure was already implemented in the
case of the structure function model (see [7]). One can understand this practical idea
in the light of a sharp result obtained by Constantin and Fefferman [5] which gives
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a necessary condition for the loss of regularity in the 3D Navier- Stokes equations.
It states that ”if in regions where the magnitude of the vorticity at locations x and
y (at time t) exceeds a certain value Ω̃, the sinus of the angle formed by the unit
vectors of direction of vorticity at x and y is small enough, then the solution of the
initial value problem for the Navier-Stokes equations is strong and hence smooth on
the time interval [0, T ]”.

Therefore, the idea of the selective variant of Smagorinsky’s model is to switch off
the eddy viscosity in regions where the vorticity field is coherent enough 2.

In practice we used the following algorithm for defining a filter “detector of turbu-
lence at small scales”: we compute the angle between the vorticity ω(x, t) at a given
grid point and the average vorticity at the six closest neighbouring points ω̃(x, t) by

β(x, t) = arcsin
ω(x, t) × ω̃(x, t)

|ω(x, t)||ω̃(x, t)|
. (6)

And we define the function filter as

Ψ(β) = χ(C{β/ sin β < sinβ0}) (7)

where β0 is a threshold angle such that sinβ0 is small enough. For practical com-
putations we choose β0 to be the most probable value according to DNS of isotropic
turbulence simulations at a resolution of 1283 which give a value arround 15◦. (χ
denotes the characteristic function of a considered set and CA the complementary of
a given set A).

Finally, we define the eddy viscosity of the selective model by

νselect = Ψ(β)νsm
t .

Thus, the effect of multiplying the eddy viscosity of the Smagorinsky model with
this filter function is the following: if this angle is between a certain value β0 and
π−β0, the eddy-viscosity is turned on (this correspond to the case of “non-alignment
of the vorticity field direction”). Otherwise, only the molecular dissipation is active.

3. Numerical Results

This section is concerned with some results of our numerical simulations of the
LES equations using the selective version of the Smagorinsky model. For both cases
treated here we used a 3D spectral code in a periodic box. As it is customary the
spatial derivatives are computed in the Fourier space and the nonlinear terms in the
physical space.A third order Runge-Kutta method is used as time- advancing scheme
for the nonlinear and SGS terms. To eliminate the aliasing errors the two-third rule
is used (see [3] for more details on the spectral methods). We compare the selective
Smagorinsky model with the classical Smagorinsky model and reference DNS results.

3.1. The 3D vortex tubes reconnection problem. We first show the good be-
havior of the selective version of the Smagorinsky model in a “non turbulent flow”
simulation: the 3D vortex tubes reconnection case. For a detailed presentation and
a complete physical analysis of this phenomena we refer to [19]. For this flow, direct
numerical simulations using 240 and 120 discretization grid points in each direction of
the 3D space give similar results. We denote them by DNS1 and DNS2 respectively,

2i.e., which verifies the Constantin and Fefferman hypothesis
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and we use them as reference for the results of LES computations. The Reynolds
number for this flow is Re= 3500.
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Figure 1. Energy decay (left) and enstrophy decay (right) for DNS1
(solid line), DNS2 (long dashed), and LES with classical Smagorinsky
model (dot-dashed line) and its selective variante (dashed line)

In figure 1 and 2 it clearly appears from the energy, enstrophy curves and energy
spectra that the selective Smagorinsky model is less dissipative than the Smagorinsky
model. It is interesting to remark the shrinking of the eddy viscosity for the selective
Smagorinsky model: figure 3 reflects well that the selective model adds dissipation
only in the reconnection ring, which corresponds to a “turbulent area” for this kind
of flow.
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Figure 2. From left to right: decay of directional spectra (in x, y
and z directions; the same legend as in Figure 1 is used)

Figure 4 shows the level curves of the vorticity field at nondimensionalized time
t = 1.5 obtained with DNS1, classical and selective Smagorinsky models. These plots
indicate that the results with the selective model are very closed to reference results,
while considering the classical Smagorinsky model too many ”details” of the flow are
lost.

3.2. The 3D isotropic turbulence case. A second case chosen as validation test
for the selective Smagorinsky model is the three dimensional decaying isotropic turbu-
lence. The reference simulation for our comparison tests is the 5123 DNS performed
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Figure 3. Isosurfaces of the eddy viscosity νt given by the classical
Smagorinsky model (left) and its selective version (right)

Figure 4. From left to right : isovalues of the vorticity field in the
reconnection plane at time t= 1.5, given by DNS1, LES with classical
Smagorinsky and selective Smagorinsky models

by A. Wray and reported in [10]. For the LES runs we used as initial condition a 323

data obtained by a sharptruncation in the Fourier space of the 5123 DNS. All com-
putations were performed with a Taylor-Reynolds number Reλ = 104.5. We mention
that this is a sever case for the LES validations.

Figure 6 illustrate the evolution of filtered kinetic energy and the energy spectra
of the reference data in contrast with LES simulations using the Smagorinsky model,
the classical and the selective variant models, for a 323 resolution.
The two models are considered with the same constant, chosen such that it yields an
energy decay which matches the reference DNS result (fig. 5). The difficulty of this
test is in fact to accurately recover the decay of the energy spectra. We notice that
both models satisfactorily predict this decay rate even if, after t = 2.45 both of them
are too dissipative. For further numerical results and comments on this test problem
we refer to [6]. From this test it is clear that the selective model works efficiently for
turbulent flows too, the excessive dissipation of Smagorinsky model beeing cured in
the selective variant.

4. Concluding remarks

We analysed a selective procedure for the classical Smagorinsky model through nu-
merical simulations of the three dimensional vortex tubes reconnection problem and
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Figure 5. Left: the filtered kinetic energy; Right: the spectrum of
energy at different times: 1.28, 2.45 and 5.46; DNS512 (-), DNSfilt32
(-.-), Smagorinsky32 (- -) and selective Smagorinsky32 (..)

the isotropic decaying turbulence. Numerical tests with the selective model confirm
that this model “dissipates” only in flow regions where vorticity direction undergoes
rapid variations, avoiding an excessive dissipation. These results show a clear im-
provement over those obtained with the original Smagorinsky model.
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