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A fixed point theorem of Sehgal-Guseman in bv(s)-metric
spaces
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Abstract. In this paper, we establish a proof for Sehgal-Guseman type fixed point theorem

in bv(s)-metric spaces. Some suitable examples are presented to substantiate our main result.
We deduce several analogous results in usual metric spaces, rectangular b-metric spaces and

b-metric spaces as corollaries of our finding.
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1. Introduction and preliminaries

Fixed point theorem due to Banach in metric spaces is regarded as one of the most
important applicable results in nonlinear analysis, which has been extended by a great
number of authors over the last several decades. One such extension is the following
result due to Bryant [3].

Theorem 1.1. [3] If T is a self-mapping on a complete metric space and if, for some
positive integer k, T k is a contraction, then T has a unique fixed point.

In the above result, the mapping T satisfies the following contraction condition

d(T kx, T ky) ≤ αd(x, y), where 0 < α < 1. (1.1)

In this direction, it is an interesting fact to observe that the positive integer k depends
only on T and works for all x, y ∈ X. So it is a very natural question to ask whether
it is possible to find some contraction condition on T in which the positive integer
k depends on the points x, y ∈ X, i.e., for different x, y ∈ X, there exist different
positive integers k satisfying the contraction condition (1.1) and T possesses fixed
point. The following example justifies the necessity of investigating of this problem.

Example 1.1. Let X = {lnn : n ≥ 2} with the usual metric and let T : X → X be
defined by T (lnn) = ln (n+ 1) . Then

T 2 (lnn) = T (ln (n+ 1)) = ln (n+ 2) , ..., T k (lnn) = ln (n+ k) .

For fixed x = lnn and y = lnm, we have

d
(
T kx, T ky

)
=

∣∣∣∣ln n+ k

m+ k

∣∣∣∣→ 0 as k →∞.

Hence, for any fixed α < 1 and every x, y ∈ X, there exists k (x, y) such that (1.1)
holds. But, Tx 6= x for each x ∈ X.
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The above example shows that in the contraction condition (1.1), if the positive
integer k varies with x and y, then T may be fixed point free. However, in 1969,
Sehgal [14] proved the following interesting partial solution of the above mentioned
question.

Theorem 1.2. Let (X, d) be a complete metric space, q ∈ [0, 1) and T : X → X be a
continuous mapping. If for each x ∈ X there exists a positive integer k = k(x) such
that

d(T k(x)x, T k(x)y) ≤ qd(x, y) (1.2)

for all y ∈ X, then T has a unique fixed point u ∈ X. Moreover, for any x ∈ X,
u = lim

n→∞
Tnx.

In 1970, Guseman [8] extended the result of Sehgal to mappings which are both
necessarily continuous and which have a contractive iterate at each point in a (possibly
proper) subset of the space.

In the literature, there are a lot of generalizations of metric spaces concerning the
study of existence and uniqueness of various types of non-linear contraction maps.
Some of these results appear to be simple reformulations of the known results from
the framework of metric spaces, with just slightly modified proofs, or even their direct
consequences. However, the work in some of the generalized spaces is practically
harder and can not be simply reduced to the metric case. This is a major challenge
to prove some classical results in a generalized setting, which may be applicable in
many other abstract spaces including metric spaces. We mention here two of such
types of spaces.

Bakhtin [1] and Czerwik [4] introduced b-metric spaces, modifying the triangle
inequality to the following form

d(x, z) ≤ s[d(x, y) + d(y, z)], (1.3)

where s ≥ 1 is a fixed real number. On the other hand, Branciari [2] substituted the
triangle inequality by a polygonal inequality of the form

d(x, z) ≤ d(x, y1) + d(y1, y2) + · · ·+ d(yv, z), (1.4)

for arbitrary x, z and for all distinct points y1, y2, . . . , yv, each of them different from
x and z (in particular, for v = 2, the inequality (1.4) is called rectangular). Further, a
lot of fixed point results for single and multi-valued mappings were obtained in both
kind of spaces by various authors , see [5, 6].

George et al. [7], as well as Roshan et al. [13], independently introduced b-rectangular
metric spaces, by combining inequalities (1.3) and (1.4) (in the case v = 2). Finally,
Mitrović and Radenović defined in [9] the concept of bv(s)-metric space for arbitrary
positive integer v (see the definition in the next section), thus generalizing all the men-
tioned types of spaces. They obtained some fixed point results in this new framework.
It should be noted that these spaces might not be Hausdorff, that a bv(s)-metric need
not be continuous and that a convergent sequence might not be a Cauchy one.

Definition 1.1. [9] Let X be a non-empty set, s ≥ 1 be a real number, v ∈ N and
let d be a function from X ×X into [0,∞). Then (X, d) is said to be a bv(s)-metric
space if for all x, y, z ∈ X and for all distinct points y1, y2, . . . , yv ∈ X, each of them
different from x and z the following hold:

(B1) d(x, y) = 0 if and only if x = y;



246 Z. D. MITROVIĆ, L. K. DEY, AND S. RADENOVIĆ

(B2) d(x, y) = d(y, x);
(B3) d(x, z) ≤ s[d(x, y1) + d(y1, y2) + · · ·+ d(yv, z)].

Example 1.2. Consider the set X = { 1
n : n ∈ N, n ≥ 2}. Define d : X×X → [0,∞)

by

d

(
1

k
,

1

m

)
=

{
|k −m|, if |k −m| 6= 1,
1
2 , if |k −m| = 1.

It is an easy task to verify that (X, d) is a b3(3)-metric space.

The notions of convergent sequence, Cauchy sequence, and completeness of a bv(s)-
metric space are introduced in the same way as in standard metric spaces.

This paper is a continuation of the recent works see [10] and [11]. The aim of
this paper is to obtain a version of Sehgal-Guseman type theorem in bv(s)-metric
spaces. As applications of our obtained results, we deduce the analogous versions of
Sehgal-Guseman theorem in the framework of usual metric space, b-metric space and
rectangular metric space.

2. Main result

Before coming to the main result we first give the following lemma.

Lemma 2.1. Let (X, d) be a complete bv(s)-metric space and T : X → X a mapping
satisfying the condition: for each x ∈ X there exists k (x) ∈ N such that

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) , (2.1)

for all y ∈ X, where λ ∈ (0, 1) . Then for each x ∈ X, r(x) = sup{d(Tn(x), x) : n ∈ N}
is finite or T has a unique fixed point.

Proof. We will consider that v > 1. If v = 1, we refer to see the paper [10]. Let x ∈ X
and further assume

l(x) = sup{d(T k(x), x) : k ∈ {1, . . . , k1 + k2 + · · ·+ kn0+v−1}},

where n0 ∈ N such that λn0 < 1
2s(v−1) and

k1 = k(x), k2 = k(T k1x), k3 = k(T k2+k1x), . . . , kn0+v = k(T kn0+v−1+...+k1x).

Let S1 = k1 + k2 + · · ·+ kn0 and Si+1 = Si + kn0+i, i ∈ {1, 2, . . . , v − 1}. We have,

d(TSix, TSi+1x) = d(T k1+k2+...+kn0+i−1x, T k1+k2+...+kn0+ix)

≤ λd(T k1+k2+...+kn0+i−2x, T k1+k2+...+kn0+i−2(T kn0+i)x)

...

≤ λn0+i−1d(x, T kn0+ix),

for all i ∈ {1, 2, . . . , v − 1}. Now since

d(x, T kn0+ix) ≤ l(x) for all i ∈ {1, 2, . . . , v − 1},

we obtain

d(TSix, TSi+1x) ≤ λn0+i−1l(x), for all i ∈ {1, 2, . . . , v − 1}. (2.2)
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We have the following
d(x, TS1x) ≤ l(x) (2.3)

and for n > Sv,

d(TSvx, Tnx) = d(TSvx, TSv (Tn−Svx)) (2.4)

≤ λn+v−1d(x, Tn−Svx). (2.5)

Let n ∈ N. We give the proof in the following three cases:
1. If Tnx = TSix for any i ∈ {1, 2, . . . , v} then d(x, Tnx) ≤ l(x) and proof holds.
2. If TSix = TSjx for any i < j then TSix = TSi+1x and TSix is a fixed point of T
and proof is done. Namely, if TSix 6= TSi+1x, we obtain

d(TSix, TSi+1x) = d(TSjx, TSj+1x)

≤ λj−id(TSix, TSi+1x)

< d(TSix, TSi+1x).

It is a contradiction.
3. If TSix = x for any i ∈ {1, 2, . . . , v} then Tx = x and proof is done. Namely, if
Tx 6= x then we have

d(x, Tx) = d(TSix, TSi+1x)

≤ λn0+id(x, Tx)

< d(x, Tx).

It is a contradiction.
So, TSix, i ∈ {1, 2, . . . , v} are different point and TSix ∈ X\{Tnx, x}, i ∈ {1, 2, . . . , v}.

If n > Sv then there exists an integer t ≥ 0 such that tSv < n ≤ (t + 1)Sv. From
(B3), (2.2), (2.3) and (2.5), we obtain

d(Tnx, x) ≤ s[d(TSv+(n−Sv)x, TSvx) + d(TSvx, TSv−1x) + · · ·
+ d(TS2x, T

S1
x) + d(TS1x, x)]

≤ s
[
λn0+v−1d(Tn−Svx, x) + λn0+v−2l(x) + · · ·+ λn0 l(x) + l(x)

]
≤ s

[
λn0d(Tn−Svx, x) + (v − 1)λn0 l(x) + l(x)

]
≤ 1

2
d(Tn−Svx, x) +

(
1

2
+ s

)
l(x).

Similarly, we obtain

d(Tn−Svx, x) ≤ 1

2
d(Tn−2Svx, x) +

(
1

2
+ s

)
l(x).

So,

d(Tnx, x) ≤ 1

22
d(Tn−2Svx, Tx) +

(
1 +

1

2

)(
1

2
+ s

)
l(x). (2.6)

Continuing in this process we obtain

d(Tnx, x) ≤ 1

2t
d(Tn−tSvx, Tx) +

(
1 +

1

2
+ · · ·+ 1

2t−1

)(
1

2
+ s

)
l(x)

≤ 1

2t
l(x) + 2

(
1

2
+ s

)
l(x)

≤ 2(1 + s)l(x)
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and r(x) is finite. �

Theorem 2.2. Let (X, d) be a complete bv(s)-metric space and T : X → X a mapping
satisfying the condition: for each x ∈ X there exists k (x) ∈ N such that

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) , (2.7)

for all y ∈ X, where λ ∈ (0, 1) . Then T has a unique fixed point, say u ∈ X, and
Tnx→ u for each x ∈ X.

Proof. Let x0 ∈ X be arbitrary. Let k1 = k(x0), x1 = T k1x0 and inductively ki+1 =
k(xi), xi+1 = T ki+1xi, i ∈ N. Let n, p ∈ N. We have

d(xn+p, xn) = d(T kn+pxn+p−1, T
knxn−1)

= d(T kn+p+kn+p−1xn+p−2, T
kn+kn−1xn−2)

...

= d(T kn+p+kn+p−1+···+kp+1xp, T
kn+kn−1+···+k1x0)

= d(T kn+p+kn+p−1+···+kp+1+kpxp−1, T
kn+kn−1+···+k1x0)

...

= d(T kn+p+kn+p−1+···+kn+···+k1x0, T
kn+kn−1+···+k1x0)

= d(T kn+kn−1+···+k1(T kn+1+···+kn+px0), T kn+kn−1+···+k1x0)

≤ λnd(T kn+1+···+kn+px0, x0).

Therefore,

d(xn+p, xn) ≤ λnr(x0). (2.8)

If r(x0) is not finite, from Lemma 2.1, we conclude that T has a fixed point and the
proof is done. On the other hand, if r(x0) is finite, we infer that (xn) is Cauchy.
From the completeness of (X, d) we have xn → u, for some u ∈ X. Now, we show
that Tu = u. For this u, there is k(u) ∈ N such that

d(T k(u)u, T k(u)xn) ≤ λd(xn, u). (2.9)

Hence,

lim
n→∞

d(T k(u)xn, T
k(u)u) = 0. (2.10)

Now, from (2.7) we have

d(T k(u)xn, xn) = d(T k(u)+kn−1xn−1, T
kn−1xn−1) ≤ λd(T k(u)xn−1, xn−1) (2.11)

it follows that

d(T k(u)xn, xn) ≤ λnd(T k(u)x0, x0) ≤ λnr(x0). (2.12)

From Lemma 2.1, we obtain

lim
n→∞

d(T k(u)xn, xn) = 0. (2.13)

From inequality (B3) we obtain

d(T k(u)u, u) ≤ s[d(T k(u)u, T k(u)xn) + d(T k(u)xn, xn)

+ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+v−2, u)]
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and together with (2.10) and (2.13) we obtain d(T k(u)u, u) = 0. By (2.7), u is the
unique fixed point for T k(u). Then Tu = T (T k(u))u = T k(u)(Tu). This shows that
Tu is also a fixed point of T k(u) and hence we have Tu = u. But then u is the unique
fixed point of T . �

Example 2.1. Let X = [0,∞) and define a function d : X ×X → R by

d(x, y) =


0, if x = y;

1 + 2x+ 2y, if x, y > 0;

x+ y, if one of x, y is 0.

Then, it is easy to verify that (X, d) is a complete b2(2)-metric space. Next, we define
a function T : X → X by

Tx =


0, if x ∈ [0, 1

16 ];

2x, if x ∈ ( 1
16 , 1];

5x+ 1, if x ∈ (1, 3]
1
16 , if x > 3.

Therefore, for any x ∈ X, if we choose k(x) = 8, then it easy to check that

d(T k(x)x, T k(x)y) ≤ 1

2
d(x, y)

for all y ∈ X. Hence, all conditions of Theorem 2.2 are satisfied. So by that theorem
T has a unique fixed point. Indeed, 0 is the only fixed point of T .

Example 2.2. Let X =
{

1
2 ,

1
3 ,

1
4 , . . .

}
and define d : X ×X → [0,+∞) as follows

d

(
1

m
,

1

n

)
=

{
|m− n|, if |m− n| 6= 1,

1
2 , if |m− n| = 1.

Then (X, d) is a b3(3)-metric space. Let T : X → X be defined by

Tx =


1
6 , x = 1

2 ,
1
2 , x = 1

3 ,
1
4 , x ∈ { 1

4 ,
1
5 , . . .}.

Let k(x) = 3 for all x ∈ X. The mapping T is not a contraction because d(T 1
2 , T

1
4 ) =

d( 1
2 ,

1
4 ) = 2, but satisfies the hypothesis of Theorem 2.2 and hence T has a fixed point

u = 1
4 .

Remark 2.1. Theorem 2.2 generalizes Banach contraction principle in bv(s)-metric
spaces obtained in the paper [9, Theorem 2.1 ].

Taking v = 1, s = 1 in Theorem 2.2, we have the following corollary.

Corollary 2.3. Let S : X → X be a mapping on a complete metric space (X, d). If
for each u ∈ X there exists a natural number k = k(u) such that

d(Sk(u)u, Sk(u)t) ≤ qd(u, t)

for all t ∈ X, then S has a unique fixed point u0 ∈ X. Moreover, for any u ∈ X,
u0 = lim

n→∞
Snu.

If we take v = 1 in Theorem 2.2, we have the following corollary.
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Corollary 2.4. Let S : X → X be a mapping on a complete b-metric space (X, d).
If for each u ∈ X there exists a natural number k = k(u) such that

d(Sk(u)u, Sk(u)t) ≤ qd(u, t)

for all t ∈ X, then S has a unique fixed point u0 ∈ X. Moreover, for any u ∈ X,
u0 = lim

n→∞
Snu.

Again taking v = 2, s = 1 in Theorem 2.2, we have the following corollary.

Corollary 2.5. Let S : X → X be a mapping on a complete rectangular metric space
(X, d). If for each u ∈ X, there exists a natural number k = k(u) such that

d(Sk(u)u, Sk(u)t) ≤ qd(u, t)

for all t ∈ X, then S has a unique fixed point u0 ∈ X. Moreover, for any u ∈ X,
u0 = lim

n→∞
Snu.
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