
Annals of University of Craiova, Math. Comp. Sci. Ser.

Volume 30, 2003, Pages 162–168

ISSN: 1223-6934

The packing knapsack problem, and the k-optimal tree in a
weighted digraph

Dumitru Lozovanu

Abstract. We consider the packing knapsack problem, which generalizes the classical knap-

sack problem. A dynamic programming algorithm for solving this problem and its application

to find the k-optimal tree in a weighted directed graph are discussed.

2000 Mathematics Subject Classification. 90B10, 90C35, 90C37.

Key words and phrases. packing knapsack problem, k-optimal tree, dynamic programming

method.

1. Introduction and problem formulation

We study the packing knapsack problem which arises when finding the k-optimal
tree in a weighted graph [1 − 4]. This problem generalizes the well known classical
knapsack problem. Its formulation is as follows.

Let a knapsack of size D and a set of items I = {1, 2, . . . , n} be given. For each
item j ∈ I, the size dj and the cost cj are known. Moreover, the set I is divided into
p non-empty disjoint subsets I1, I2, . . . , Ip,

I = I1 ∪ I2 ∪ · · · ∪ Ip; Ii ∩ Ij 6= 0, i 6= j,

and, according to this partition, from each of the subsets Il, l = 1, p, we include in
the knapsack at most one item.

A sequence of items i1, i2, . . . , iq (q < p) from I is called a packing in the knapsack
if the sum of item sizes of the sequence does not exceed D and each of the subsets
Il, l = 1, p, contains at most one item of the sequence.

We consider the problem of finding the packing in the knapsack with maximal sum
of items costs.

This problem can be viewed as a Boolean linear programming model, which in the
case p = n becomes the classical knapsack problem. Therefore it is NP -complete.
We propose a dynamic programming algorithm for solving our problem, which has a
pseudo-polynomial estimation. We show that the proposed algorithm can be used for
finding the k-optimal tree in a weighted directed graph.

A more general model of the packing knapsack problem is obtained if we consider
that from each of the subsets Il, l = 1, p, we include in the knapsack at most kl items.
The algorithm can be extended for the packing knapsack problem in this general form.
Using the general model of the problem we can solve the k-optimal problem when
any node of the k-optimal tree contains at most kj leaving arcs.

Received : 11 December 2002.

162

GENERALIZATION OF THE KNAPSACK PROBLEM 163

2. The dynamic programming method and the algorithm for solving the

problem

The general scheme of dynamic programming method for the packing knapsack
problem is based on the following Boolean programming model: maximize the object
function

µI(x) =
∑

j∈I

cjxj

subject to


























∑

j∈I

djxj ≤ D;

∑

j∈Il

xj ≤ 1, l = 1, p;

xj ∈ {0, 1}, j ∈ I,

where x = (x1, x2, . . . , xm). Here xj = 1 if the item j is included in the knapsack;
otherwise xj = 0. As we have noted, in the case p = n the problem becomes the
classical knapsack problem, therefore it is NP -complete.

We consider the class of problems

fI(z) = max
x∈Xz

µI(x), z ∈ [0,D],

where Xz is the set of vectors x = (x1, x2, . . . , xn) which satisfy the conditions:



























∑

j∈I

djxj ≤ z;

∑

j∈Il

xj ≤ 1, l = 1, p;

xj ∈ {0, 1}, j ∈ I.

Let z0 = min di. Then for z ∈ [0, z0) the set Xz contains only one element x =
(0, 0, . . . , 0) and fI(z) = 0. Moreover, if z ∈ [0, z0), then fI′(z) = 0 for any I ′ ⊆ I. If
z ∈ [z0,D), then for an arbitrary I ′ ⊆ I the recurrence formula

fI′(z) = max
j∈I′

z

[ci + fI′\{j}(z − dj)] (1)

holds, where I ′z is a set of items j ∈ I for which dj ≤ z.
We propose an algorithm for solving the packing knapsack problem which can be

argued by using formula (1).
For a more detailed argumentation of the algorithm we shall use the results from

[5] for the classical knapsack problem.

Algorithm 1.

1. Set M0 = {(∅, 0)}.
2. For j = 1, 2, . . . , n do steps a), b) and c):

a) Set Mj = ∅;
b) Add each element (S, c) ∈ Mj−1 to Mj . Then for each (S, c) ∈ Mj−1 consider

the element (S ∪ {j}, c + cj) if
∑

i∈S

di + dj ≤ D, |Il ∩ S| ≤ 1, l = 1, 2, . . . , p, and add

(S ∪ {j}, c + cj) to Mj ;

164 D. LOZOVANU

c) Find in Mj elements (S, c) and (S′, c′) with the same second components.
For each pair (S, c) and (S′, c) with the same second component, delete (S′, c) from
Mj if

∑

i∈S′

di ≥
∑

i∈S

di; otherwise delete (S, c).

3. Find in Mn the element (S, c) with maximal second component.
Then (S, c) is a solution of the packing knapsack problem.
Algorithm 1 is an extension of the algorithm for solving classical knapsack problem

from [5]. Therefore the correctness and the computational complexity of the algorithm
can be argued in an analogous way.

Theorem 2.1. Algorithm 1 finds the optimal solution of the packing knapsack problem
in time O(n2c), where c =

∑

j∈I

cj.

To prove this theorem we need the following result.

Lemma 2.1. Let be (S, c) ∈ Mj after running the algorithm. Then
a) S ⊆ {1, 2, . . . , j};
b)

∑

i∈S

ci = c;

c)
∑

i∈S

di ≤ D;

d) |Il ∩ S| ≤ 1, l = 1, 2, . . . , p;
e) if (S′, c) ∈ Mj then S′ = S;
g) if S′ ⊆ {1, 2, . . . , j} and

∑

i∈S′

ci = c, |Il ∩ S′| ≤ 1, l = 1, 2, . . . , p, then
∑

i∈S

di ≤
∑

i∈S′

di;

f) moreover, if S ⊆ {1, 2, . . . , j} and
∑

i∈S′

di ≤ D,
∑

i∈S

ci = c, |Il ∩ S′| ≤ 1,

l = 1, 2, . . . , p, then there exists (S′, c) ∈ Mj.

Proof. We use induction on the iteration number j. The statement for j = 0 is
evident. Now we consider that j > 0 and (s, c) ∈ Mj . There may be two cases:

Case 1. j /∈ S. Then the element (S, c) has been transferred from Mj−1 in Mj

at step 2(b). Therefore properties a), b), c), d) and e) follow from the induction
principle.

Case 2. j ∈ S. Then (S\{j}, c − cj) ∈ Mj−1 and properties a), b), c), d) and e)
hold too.

Now let us prove f). Suppose that S 6= S′ and analyze the following three cases:
Case 1. j /∈ S, S′. Then (S, c) and (S′, c) ∈ Mj−1. So, according to the induction

principle, S = S′.
Case 2. j ∈ S, S′. Then (S\{j}, c − cj), (S′\{j}, c − cj) ∈ Mj−1. Therefore

S = S′.
Case 3. j ∈ S, j /∈ S′ or j /∈ S, j ∈ S′. Then (S′, c) was eliminated at the step

2(c). Therefore f) holds.
Now let us prove property g). We shall use induction on the number k = max S.

This property holds for S = �. Let us consider
k = max S > 0. Then according to the induction principle in Mk−1 there exists
an element (S\{k}, c− ck) = (S′, c− ck). Therefore the element (S′∪{k}, c) has been
added to Mk at step 2(b). Then either (S′ ∪ {k}, c) ∈ Mj . So, property f) holds. �

Proof of Theorem 2.1(sketch). The correctness of Algorithm 1 follows from
Lemma 2.1. The algorithm has the same computational complexity as algorithm
DP.III from [5]. Therefore the algorithm finds the optimal solution in time
O(N2c). �

GENERALIZATION OF THE KNAPSACK PROBLEM 165

3. The algorithm for solving the packing knapsack problem in the general

case

Algorithm 1 can be extended to solve the packing knapsack problem in general
form if we use the Boolean programming model: maximize the object function

µ(x) =
∑

j∈I

cjxj

subject to


























∑

j∈I

djxj ≤ D;

∑

j∈Il

xj ≤ kl, l = 1, p;

xj ∈ {0, 1}, j ∈ I.

Algorithm 2.

1. Set M0 = {(∅, 0)}.
2. For j = 1, 2, . . . , n do steps a), b) and c):

a) Set Mj = ∅;
b) Add each element (S, c) ∈ Mj−1 to Mj . Then for each (S, c) ∈ Mj−1 consider

the element (S ∪ {j}, c + cj) if
∑

i∈S

di + dj ≤ D, |Il ∩ S| ≤ Kl, l = 1, 2, . . . , p, and add

(S ∪ {j}, c + cj) to Mj ;
c) Find in Mj elements (S, c) and (S′, c′) with the same second components.

For each pair (S, c) and (S′, c) with the same second component delete (S′, c) from
Mj if

∑

i∈S′

di ≥
∑

i∈S

di; otherwise delete (S, c).

3. Find in Mn the element (S, c) with maximal second component.
Then (S, c) is a solution of the packing knapsack problem.
Algorithm 2 is an extension of the algorithm for splving the classical knapsack

problem from [5]. Therefore the correctness and the computational complexity of the
algorithm can be argued in an analogous way.

4. The k-optimal tree problem in a weighted digraph and its main prop-

erties

In [2–4] the following problem was formulated and studied.
Let G = (V,E) be a directed graph with root vertex v0 ∈ V . To each arc e ∈ E a

positive real number c(e) is assigned, which we call the cost of e. We should find in
G a directed tree T ∗ = (VT∗ , ET∗) with root vertex v0 which contains at most k arcs
and has maximal sum of arcs costs, i.e.

∑

e∈ET∗

c(e) = max
T⊂G,|ET |≤k

∑

e∈ET

c(e).

This problem is NP -complete [2, 3]. Some approximation algorithms and some
exact polynomial-time algorithms for a special class of k-optimal tree problems can
be found in [1–4]. We study this problem in the case when G has the structure of a
directed tree.

First we show that the considered problem is closely connected with the classical
knapsack problem.

166 D. LOZOVANU

Let us consider the classical knapsack problem with a given knapsack’s size D and
a given set of items I = {1, 2, . . . , n}, where for each item i from I the size di and
the cost ci are known. We can formulate this problem as a D-optimal tree problem
for the weighted directed tree G = (V,E) with |V | =

∑

i∈I

di vertices, as follows. The

tree G = (V,E) is the union of n directed paths P1, P2, . . . , Pn which have only one
common root vertex v0 and each path Pi contains di vertices. So,

G = P1 ∪ P2 ∪ · · · ∪ Pm,

where
P1 = [v0, e

1

1, v
1

1 , e1

2, v
1

2 , . . . , e1

d1
, v1

d1
];

P2 = [v0, e
2

1, v
2

1 , e2

2, v
2

2 , . . . , e2

d2
, v2

d2
];

. .

Pn = [v0, e
n
1 , vn

1 , en
2 , vn

2 , . . . , en
dn

, vn
dn

].

We define the cost of the arcs ei
j ∈ Ei in G as

c(ej
dj

) = cj , j = 1, n; c(ej
i) = 0, i = 1, dj − 1, j = 1, n.

Further, the directed tree G = (V,E) obtained this way will be called the directed
tree of the knapsack problem.

Theorem 4.1. Let T ∗ = (VT∗ , ET∗) be the D-optimal tree for the directed tree G =
(V,E) of the knapsack problem. In addition, let E0

T∗ represent the set of pendant arcs

of T ∗ and E0 represent the set of pendant arcs of G. Then the set S = {j ∈ I | ej
dj

∈

E0
T∗ ∩ E0} is an optimal solution of the knapsack problem.

Proof. Let T ∗ = (VT∗ , ET∗) be the D-optimal tree for the directed tree
G = (V,E). Then

∑

i∈S

di ≤ D, i.e. S is an admissible solution for the knapsack

problem.
Let us show that S is the optimal solution of the problem. Indeed, if it is not, then

there exists a set S′, such that
∑

i∈S′

di ≤ D;
∑

i∈S′

ci >
∑

i∈S

ci.

This means that for the tree GS =
⋃

i∈S

Pi in G the following conditions hold:

1) GS′ contains no more than D arcs;
2)

∑

e∈EG
S′

c(e) >
∑

e∈ET∗

c(e).

This contradicts the D-optimality of the tree T ∗. So, S is the optimal solution of
the knapsack problem. �

5. Using the packing knapsack problem to find the k-optimal tree in a

weighed digraph

In this section we show that the packing knapsack problem can be used to solve
the k-optimal tree problem.

So, let us consider that G has the structure of a directed tree with root vertex v0.
Denote by v1, v2, . . . , vp the vertices of G which represent the extremities of the arcs
e1 = (v0, v1), e2 = (v0, v2), . . . , ep = (v0, vp) originating in v0. Let G1 = (V 1, E1),
G2 = (V 2, E2), . . . , Gp = (V p, Ep) denote the components of the subgraph G′ ∈ G,
obtained after deleting the edges e1, e2, . . . , ep where

GENERALIZATION OF THE KNAPSACK PROBLEM 167

vi ∈ V i,i = 1, p. It is easy to see that each component Gi, i = 1, p, is a directed

tree with root vertex vi and G
i
= (V i ∪ {v0}, Ei ∪ {ei}) is a subtree of G with root

vertex v0. We call G
i
, i = 1, p, the branches of the tree G.

Let us consider that for each branch G
i
, i = 1, p, all t-optimal trees,

t = 1, 2, . . . , ri, are known, where ri = max(|V i ∪ {v0}|, k). Then for each sub-
tree Gi, i = 1, p, all (t − 1)-optimal trees, t = 1, 2, . . . , ri, are known because Gi is

obtained from G
i

by deleting the arc ei. Denote by cti = ct(G
i
) the cost of the

t-optimal tree for a branch Gi, i = 1, p, t = 1, ri.

Now, let us show that if for each branch G
i
, i = 1, p, all t-optimal trees

t = 1, 2, . . . , ri are known, then we can find the k-optimal tree in G using Algorithm
1.

We consider the packing knapsack problem with the set of items I = {11, 21, . . .
. . . , r1, 12, 22, . . . , r2, . . . , 1p, 2p, . . . , rp} and partition I = I1 ∪ I2 ∪ . . .
· · · ∪ Ip, where Ii = {1i, 2i, . . . , ri}, i = 1, p. We define the size and the cost of the

item ji ∈ Ii as dji
= j and cji

= cj(G
i
) for every i = 1, p. The Boolean programming

model for this packing knapsack problem can be written as follows: maximize

µ(x) =

p
∑

i=1

ri
∑

j=1

cjixji (2)

subject to


































p
∑

i=1

ri
∑

j=1

jxji ≤ k;

ri
∑

j=1

xji ≤ 1, i = 1, p;

xj ∈ {0, 1}, j = 1, ri, i = 1, p.

(3)

Note that for solving the k-optimal tree problem on a directed tree G we should
find all possible t-optimal trees (t < k) with respect to each directed subtree Gi arising
from the vertices vi ∈ V . Therefore, starting from the vertices vi with the highest
level in G we should solve at least n · k problems of type (2), (3).

In the general case when G has the structure of an arbitrary directed graph we can
solve the problem in two steps. First, we find the optimal spanning directed tree with
root vertex vi and then we solve the k-optimal tree problem on the optimal spanning
tree by using the proposed algorithm. Note that for finding the optimal spanning tree
with root vertex in a weighted directed graph, the algorithms from [6, 7] can be used.

References

[1] D. Hochbaum (editor), Approximation algorithms for NP -hard problems, PWS Publishing Com-
pany, 1997.

[2] D. Lozovanu, A. Zelikovsky, Minimal and bounded tree problems, Rezumatele lucrărilor prezen-

tate la Congresul XVIII al Academiei Româno-Americane, Chişinău, 25-26 (1993).

[3] R. Ravi, R. Sundaram, M. Marathe, D. Rozenkrantz, S.S. Ravi, Spanning tree short or small,

The 5 th Ann. ACM-SIAM Symp. on Discrete Algorithms, 546-555 (1994).
[4] A. Blum, P. Chalasani, A. Vempalo, A constant-factor approximation for the k-MST problem in

the plane, Proceedings of the 27 th Ann. ASM Symp. on Theory of Computing, 294-302 (1995).

[5] Ch.H. Papadimitriu, K. Steiglitz, Combinatorial optimization: Algorithm and complexity, New
Jersey, 1982.

168 D. LOZOVANU

[6] D. Fulkerson, Packing rooted directed cuts in a weighted directed graph, Math. Programming,
6, 1-13 (1974).

[7] D. Lozovanu, Optimal subgraphs in a weighted digraph, Cybernetics, 2, 16-19 (1981).

(Dumitru Lozovanu) Institute of Mathematics and Computer Science

Academy of Sciences

Academy str., 5, Kishinev, MD–2028, Moldova

E-mail address: lozovanu@math.md

