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Abstract. In this article, we study the existence of periodic solutions for a class of second-

order impulsive Hamiltonian systems. Some new existence theorems are obtained by the least
action principle.
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1. Introduction

Consider the following second-order impulsive Hamiltonian systems −ü(t) +A(t)u(t) = ∇F (x, u(t)) +∇H(u(t)), a.e. t ∈ [0, T ],
∆(u̇i(tj)) = Iij(ui(tj)), i = 1, 2, ..., N, j = 1, 2, ..., p,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(1.1)

where N ≥ 1, p ≥ 2, u = (u1, ..., uN ), T > 0, A : [0, T ]→ RN×N is a continuous map
from the interval [0, T ] to the set of N ×N symmetric matrices, tj , j = 1, 2, ..., p, are
the instants at which the impulses occur, 0 = t0 < t1 < ... < tp < tp+1 = T, and

∆(u̇i(tj)) = u̇i(t
+
j )− u̇i(t+j ) = lim

t→t+j
u̇i(t)− lim

t→t−j
u̇i(t).

The following conditions are assumed to hold throughout the remainder of this article.
The functions Iij : R → R are Lipschitz continuous with the Lipschitz constants
Lij > 0, i.e.,

|Iij(s1)− Iij(s2)| ≤ Lij |s1 − s2| (1.2)

for every s1, s2 ∈ R, and Iij(0) = 0 for i = 1, 2, ..., N, j = 1, 2, ..., p. In addition,
F : [0, T ]× RN → R satisfies the following assumption:

(A0) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable in x
for a.e. t ∈ [0, T ] and there exist a ∈ C(R+,R+), b ∈ L1([0, T ];R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T ].
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The function H : RN → R is continuously differentiable, ∇H is Lipschitz continuous
with the Lipschitz constant L > 0, i.e.,

|∇H(ξ1)−∇H(ξ2)| ≤ L|ξ1 − ξ2| (1.3)

for every ξ1, ξ2 ∈ RN ,

H(0, ..., 0) = 0, and ∇H(0, ..., 0) = 0. (1.4)

Assuming that ∇F : [0, T ]×RN → R is continuous, it implies that the condition (A0)
is satisfied.

The corresponding functions I on H1
T given by

I(u) = Φ(u)+Ψ(u) =
1

2
‖u‖2+

p∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(s) ds−
∫ T

0

H(u(t)) dt+

∫ T

0

F (t, u(t)) dt

is continuously differentiable and weakly lower semicontinuous on H1
T (see [11, The-

orem 3.1]), where

H1
T :=

{
u : [0, T ]→ RN | u is absolutely continuous, u(0) = u(T ) and u̇ ∈ L2([0, T ])

}
is a Hilbert space with the inner product defined by

< u, v >0=

∫ T

0

[(u̇(t), v̇(t)) + (u(t), v(t))] dt.

The corresponding norm is defined by

‖u‖0 =

(∫ T

0

(
|u̇(t)|2 + |u(t)|2

)
dt

) 1
2

for all u ∈ H1
T .

Moreover, one has

I ′(u)(v) = Φ′(u)(v) + Ψ′(u)(v) =

∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))− (∇H(u(t)), v(t))] dt

+

p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj) +

∫ T

0

(∇F (t, u(t)), v(t)) dt

for every u, v ∈ H1
T . It is well known that the solutions of the problem (1.1) correspond

to the critical points of the functional I = Φ + Ψ (see [11, Definition 2.4]).
We assume throughout that the matrix A satisfies the following conditions:

(M1) A(t) = (akl(t)), k = 1, ..., N, l = 1, ..., N, is a symmetric matrix with akl ∈
L∞[0, T ] for any t ∈ [0, T ];

(M2) There exists δ > 0 such that (A(t)ξ, ξ) ≥ δ|ξ|2 for any ξ ∈ RN and a.e. t ∈ [0, T ],
where (., .) denotes the inner product in RN .

For every u, v ∈ H1
T , we define

< u, v >=

∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))] dt,

and we observe that conditions (M1) and (M2) ensure that this defines an inner
product in H1

T . Then H1
T is a separable and reflexive Banach space with the norm

‖u‖ =< u, u >
1
2 for all u ∈ H1

T .

Clearly, H1
T is an uniformly convex Banach space.
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A simple computation shows that

(A(t)ξ, ξ) =

N∑
k,l=1

akl(t)ξkξl ≤
N∑

k,l=1

‖akl‖L∞ |ξ|2

for every t ∈ [0, T ] and ξ ∈ RN . Along with condition (M2), this implies
√
m‖u‖0 ≤ ‖u‖ ≤

√
M‖u‖0, (1.5)

where m = min{1, δ} and M = max{1,
∑N
k,l ‖akl‖∞}, which means the norm ‖ · ‖ is

equivalent to the norm ‖·‖0. Since (H1
T , ‖·‖) is compactly embedded in C([0, T ],RN )

(see [18]), there exists a positive constant c such that

‖u‖∞ ≤ c‖u‖,

where ‖u‖∞ = maxt∈[0,T ] |u(t)| and c =
√

2
m max{ 1√

T
,
√
T} (see [4]).

For u ∈ H1
T , let ū = 1

T

∫ T
0

u(t) dt and ũ(t) = u(t)− ū. Then one has

‖ũ‖2∞ ≤
T

12

∫ T

0

|u̇(t)|2 dt (Sobolev’s inequality),

‖ũ‖2L2 ≤
T 2

4π2

∫ T

0

|u̇(t)|2 dt (Wirtinger’s inequality)

(see [18, Proposition 1.3]).
When Iij = A = H ≡ 0, the problem (1.1) reduces to the second order Hamiltonian

system, it has been proved that the problem (1.1) has at least one solution by the
least action principle and the minimax methods (see [27, 33, 34]). Many solvability
conditions are given, such as the coercive condition (see [2]), the periodicity condition
(see [26]); the convexity condition (see [17]); the subadditive condition (see [23]); the
bounded condition (see [18]).

When the nonlinearity ∇F (t, x) is bounded sub-linearly, that is, there exist f, g ∈
L1([0, T ],R+) and α ∈ [0, 1) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ], Tang [24] also proved the existence of solutions for
the problem (1.1) when Iij = A = H ≡ 0 under the condition

lim
|x|→+∞

|x|−2α
∫ T

0

F (t, x) dt→ +∞, (1.6)

or

lim
|x|→+∞

|x|−2α
∫ T

0

F (t, x) dt→ −∞, (1.7)

which generalizes Mawhin-Willem’s results under bounded condition (see [18]). Wu
and Tang [27, 28] also proved the existence of solutions for the problem (1.1) with
cited conditions under a convenient condition and (1.6) or (1.7) with α = 1.

For Iij 6≡ 0, i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., p}, the problem (1.1) is an impulsive
differential problem. Impulsive differential equations arising from the real world de-
scribe the dynamics of processes in which sudden, discontinuous jumps occur. For
the background, theory and applications of impulsive differential equations, we refer
the readers to the monographs and some recent contributions as [1, 6, 14, 19, 26].



306 F. VAHEDI, GHASEM A. AFROUZI, AND M. ALIMOHAMMADY

Some classical tools such as fixed point theorems in cones [1, 15, 25], the method of
lower and upper solutions [6, 30] have been widely used to study impulsive differential
equations.

For notations and definitions, and for a thorough account on the subject and related
problems concerning the variational analysis of solutions of some classes of boundary
value problems we refer the reader to [4, 5, 9, 10, 11, 12, 20, 32], and reference therein.

It has been shown by the least action principle that the problem (1.1) has at least
one solution which minimizes the functional I on H1

T in many papers. When F (t, ·)
is convex for a.e. t ∈ [0, T ], Mawhin and Willem [18] have studied the existence of
solution which minimizes I on H1

T for the problem (1.1), by choosing A = H ≡ 0 and
without impulsive condition. For non-convex potential cases, using the least action
principle, the existence of solution which minimizes I on H1

T has been researched by
many people; for example, see [16, 21, 22, 23, 28, 29, 34] and their references.

Inspired and motivated by the results in [9, 16, 21, 28, 29, 32, 34], we obtain some
new results for the problem (1.1) by using the least action principle.

2. Main results

In this section, we establish the main abstract results of this paper. Before in-
troducing our results and without further mention, we first will assume throughout
that

K := c2

2LT +

p∑
j=1

N∑
i=1

Lij

 < 1,

and recall a definition due to Wu and Tang [28]:
A function G : RN → R is called (λ, µ)-subconvex if

G(λ(x+ y)) ≤ µ(G(x) +G(y))

for some λ, µ > 0 and all x, y ∈ RN . A function is called γ-subadditive if it is (1, γ)-
subconvex. A function is called subadditive if it is 1-subadditive. The convex and
subadditive functions are special cases of subconvex functions.

Now, we present our first main result as follows:

Theorem 2.1. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumption (A0) and the following conditions:
(i) F1(t, x) is (λ, µ)-subconvex for a.e. respect to t ∈ [0, T ], where λ > 1

2 and

µ < 2λ2;

(ii) there exist constants 0 ≤ r1 < 4π2m(1−K)
T 2 , r2 ∈ [0,+∞) such that

|∇F2(x)−∇F2(y)| ≤ r1|x− y|+ r2

for all x, y ∈ RN ;
(iii) (

1

µ

∫ T

0

F1(t, λx) dt+ T F2(x)

)
→ +∞ as |x| → +∞.

Then the problem (1.1) has at least one solution which minimizes the functional I on
H1
T .
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Proof. Let β = log2µ
2λ, then since 2λ > 1, one has 2µ < 4λ2 and log2µ

2λ < 2, so β < 2. In
a similar way to Wu and Tang [28], by the (λ, µ)-subconvexity of G(·) and assumption
(A0), one can prove that

F1(t, x) ≤
(
2µ|x|β + 1

)
a0 b(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , where β < 2, a0 = max0≤s≤1 a(s). Thus it follows
from (i) and Sobolev’s inequality that∫ T

0

F1(t, u(t)) dt ≥ 1

µ

∫ T

0

F1(t, λū) dt−
∫ T

0

F1(t,−ũ(t)) dt

≥ 1

µ

∫ T

0

F1(t, λū) dt−
(
2µ‖ũ‖β∞ + 1

)
a0

∫ T

0

b(t) dt

≥ 1

µ

∫ T

0

F1(t, λū) dt− C1‖u̇‖β2 − C2 (2.8)

for some constants C1 and C2. It follows from assumption (ii), Wirtinger’s inequality
and Sobolev’s inequality that∣∣∣∣∣

∫ T

0

[F2(u(t))− F2(ū)] dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F2(ū+ sũ(t)), ũ(t)) ds dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F2(ū+ sũ(t))−∇F2(ū), ũ(t)) ds dt

∣∣∣∣∣
≤
∫ T

0

∫ 1

0

r1s|ũ(t)|2 ds dt+ r2

∫ T

0

|ũ(t)| dt

≤ r1
2

∫ T

0

|ũ(t)|2 dt+ r2T‖ũ(t)‖∞

≤ r1T
2

8π2
‖u̇‖22 + C3‖u̇‖2 (2.9)

for all u ∈ H1
T and some positive constant C3. It follows from (1.2), (1.5), (2.8), (2.9)

and the fact that Iij(0) = 0,

I(u) = Φ(u) + Ψ(u) =
1

2
‖u‖2 +

p∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(s) ds

−
∫ T

0

H(u(t)) dt+

∫ T

0

F (t, u(t)) dt

≥ 1

2
(1−K)‖u‖2 +

∫ T

0

F(t, u(t)) dt

+

∫ T

0

[F2(u(t))− F2(ū)] dt+

∫ T

0

F2(ū) dt

≥ 1

2
(1−K)m‖u‖20 +

[
1

µ

∫ T

0

F1(t, λū) dt+

∫ T

0

F2(ū) dt

]
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− C1‖u̇‖β2 − C2 −
r1T

2

8π2
‖u̇‖22 − C3‖u̇‖L2

≥
[

1

2
(1−K)m− r1T

2

8π2

]
‖u̇‖22 +

[
1

µ

∫ T

0

F1(t, λū) dt+ T F2(ū)

]
− C1‖u̇‖β2 − C2 − C3‖u̇‖L2

for all u ∈ H1
T , which implies that

I(u)→ +∞

as ‖u‖ → ∞ by (iii) because r1 <
4π2m(1−K)

T 2 , β < 2 and

‖u‖ → ∞ ⇔
(
|ū|2 + ‖u̇‖22

) 1
2 →∞.

By Theorem 1.1 and Theorem 1.4 in Mawhin and Willem [18], and the fact that the
functional I is weakly lower semi continuous, the proof is completed. �

Theorem 2.2. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumption (A0) and the following conditions:
(i) there exist k0,m0 ∈ L1([0, T ];R+) and a positive constant γ with γ < 1 such

that |∇F1(t, x)| ≤ k0(t)|x|γ +m0(t) for all x ∈ RN and a.e. t ∈ [0, T ];

(ii) there exist constants 0 ≤ r1 < 2π2[2m(1−K)−1]
T 2 , r2 ∈ [0,+∞) such that

|∇F2(x)−∇F2(y)| ≤ r1|x− y|+ r2

for all x, y ∈ RN ;
(iii)

1

|x|2γ

∫ T

0

F (t, x) dt→ +∞ as |x| → +∞.

Then the problem (1.1) has at least one solution which minimizes the functional I on
H1
T .

Proof. By condition (i), Sobolev’s inequality and γ < 1, one has∣∣∣∣∣
∫ T

0

[F1(t, u(t))− F1(t, ū)] dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F1(t, ū+ sũ(t)), ũ(t)) ds dt

∣∣∣∣∣
≤
∫ T

0

∫ 1

0

k0(t)|ū+ sũ(t)|γ |ũ(t)| ds dt+

∫ T

0

m0(t)|ũ(t)| dt

≤ 2 (|ū|γ + ‖ũ‖γ∞) ‖ũ‖∞
∫ T

0

k0(t) dt+ ‖ũ‖∞
∫ T

0

m0(t) dt

≤ 3

T
‖ũ‖2∞ +

T

3
|ū|2γ

(∫ T

0

k0(t) dt

)2

+ 2‖ũ‖γ+1
∞

∫ T

0

k0(t) dt+ ‖ũ‖∞
∫ T

0

m0(t) dt

≤ 1

4
‖u̇‖22 + C4|ū|2γ + C5‖u̇‖γ+1

2 + C6‖u̇‖2 (2.10)



PERIODIC SOLUTIONS FOR SOME IMPULSIVE HAMILTONIAN SYSTEMS 309

for all u ∈ H1
T and some positive constants C4, C5 and C6. It follows from (2.9) and

(2.10) that

I(u) = Φ(u) + Ψ(u) ≥ 1

2
(1−K)‖u‖2 +

∫ T

0

F (t, u(t)) dt

≥ m

2
(1−K)‖u̇‖22 +

∫ T

0

[F1(t, u(t))− F1(t, ū)] dt+

∫ T

0

[F2(u(t))− F2(ū)] dt

+

∫ T

0

F (t, ū) dt ≥ m

2
(1−K)‖u̇‖22 −

r1T
2

8π2
‖u̇‖22 − C3‖u̇‖2

− 1

4
‖u̇‖22 − C4|ū|2γ − C5‖u̇‖γ+1

2 − C6‖u̇‖2 +

∫ T

0

F (t, ū) dt

=
1

2

[
m(1−K)− r1T

2

4π2
− 1

2

]
‖u̇‖22 − (C3 + C6)‖u̇‖2

− C5‖u̇‖γ+1
2 + |ū|2γ

[
1

|ū|2γ

∫ T

0

F (t, ū) dt− C4

]

for all u ∈ H1
T , which implies that I(u)→ +∞ as ‖u‖ → +∞ by (iii) because γ < 1,

r1 <
2π2[2m(1−K)−1]

T 2 and

‖u‖ → +∞ ⇔
(
|ū|2 + ‖u̇‖22

) 1
2 → +∞.

By Theorem 1.1 and Theorem 1.4 in Mawhin and Willem [18], the proof is completed.
�

Remark 2.1. (see [32, Remark 2.1]) By choosing A = H ≡ 0 and Iij ≡ 0, u̇i(tj) =
ui(tj) = 0, for every i = 1, 2, ..., N , j = 1, 2, ..., p, Theorem 1 in [29] is the direct
corollary of our Theorem 2.1, where the condition (ii) of Theorem 1 in [29] implies
the one of our Theorem 2.1. In the same reason, with choosing suitable ε > 0,
in condition (ii) of Theorem 2, it follows that Theorem 2 in [29] is also the direct
corollary of our Theorem 2.2.

Theorem 2.3. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumption (A0) and the following conditions:
(i) there exist some g ∈ L1([0, T ];R) and some h ∈ L1([0, T ];RN ) such that

F1(t, x) ≥ (h(t), x) + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];

(ii) there exist constants 0 ≤ r1 < 4mπ2(1−K)
T 2 , r2 ∈ [0,+∞) such that

|∇F2(x)−∇F2(y)| ≤ r1|x− y|+ r2

for all x, y ∈ RN ;

(iii) F2(x)
|x| → +∞ as |x| → +∞.

Then the problem (1.1) has at least one solution which minimizes the functional I on
H1
T .
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Proof. By condition (i) and Sobolev’s inequality, one has∫ T

0

F1(t, u(t)) dt ≥
∫ T

0

[(h(t), ū+ ũ(t)) + g(t)] dt

≥ −|ū|
∫ T

0

|h(t)| dt− ‖ũ‖∞
∫ T

0

|h(t)| dt+

∫ T

0

g(t) dt

≥ −D1|ū| −D2‖u̇‖2 +D3, (2.11)

for some constants D1, D2 and D3. By (2.9) and (2.11), one has

I(u) = Φ(u) + Ψ(u) ≥ 1

2
(1−K)‖u‖2 +

∫ T

0

F (t, u(t)) dt

≥ m

2
(1−K)‖u̇‖22 +

∫ T

0

F1(t, u(t)) dt+

∫ T

0

[F2(u(t))− F2(ū)] dt+

∫ T

0

F2(ū) dt

≥ m

2
(1−K)‖u̇‖22 −D2‖u̇‖2 +D3 −

r1T
2

8π2
‖u̇‖22 − C3‖u̇‖2 + |ū|

(∫ T
0

F2(ū) dt

|ū|
−D1

)
for all u ∈ H1

T , which implies that I(u) → +∞ as ‖u‖ → +∞ by (iii) because

0 ≤ r1 < 4mπ2(1−K)
T 2 and

‖u‖ → +∞ ⇔
(
|ū|2 + ‖u̇‖22

) 1
2 → +∞.

By Theorem 1.1 and Theorem 1.4 in Mawhin and Willem [18], the proof is completed.
�
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