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Integrability conditions for a cubic differential system with
two invariant straight lines and one invariant cubic
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Abstract. We find conditions for a singular point O(0, 0) of a center or a focus type to be a
center, in a cubic differential system with two invariant straight lines and one invariant cubic.

The presence of a center at O(0, 0) is proved by constructing Darboux first integrals.
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1. Introduction

We consider the cubic differential system

ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(1)

where P (x, y) and Q(x, y) are real and coprime polynomials in the variables x and y.
The origin O(0, 0) is a singular point of a center or a focus type for (1). It arises the
problem of distinguishing between a center and a focus, i.e. of finding the coefficient
conditions under which O(0, 0) is a center.

The problem of the center was solved for quadratic differential systems and for
cubic symmetric differential systems. If the cubic system (1) contains both quadratic
and cubic nonlinearities, then the problem of finding a finite number of necessary and
sufficient conditions for the center is still open. It was possible to find a finite number
of conditions for the center only in some particular cases (see, for example, [9]–[15]).

The problem of the center was solved for cubic differential systems (1) with at least
three invariant straight lines ([3], [4], [16]) and for cubic differential systems (1) with
two invariant straight lines and one invariant conic ([5], [6], [8]). It was proved that
every center in the cubic differential system (1) with two invariant straight lines and
one invariant conic comes from a Darboux integrability.

It is known [1] that a singular point O(0, 0) is a center for system (1) if and
only if the system has a holomorphic first integral of the form F (x, y) = C in some
neighborhood of O(0, 0).

The integrability conditions for some families of cubic differential systems having
invariant algebraic curves were found in [2], [7], [8], [11], [12], [17].

The goal of this paper is to obtain the center conditions for a cubic differential
system (1) with two invariant straight lines and one irreducible invariant cubic by
using the method of Darboux integrability. Our main result is the following one.
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Theorem 1.1. The origin is a center for cubic differential system (1), with two
invariant straight lines and one irreducible invariant cubic, if one of the conditions
(i)–(xiv) hold.

The paper is organized as follows. In Section 2 we present the known results
concerning relation between invariant algebraic curves and Darboux integrability. In
Sections 3, 4 and 5 we determine the integrability conditions for cubic differential
system (1) with two invariant straight lines and one invariant cubic by constructing
Darboux first integrals. Finally in Section 6 we prove the Theorem 1.1.

2. Algebraic solutions and Darboux first integrals

One of the most important problem for differential system (1) is whether the tra-
jectories to (1) can be described by an algebraic formula, for example, Φ(x, y) = 0,
where Φ is a polynomial.

Definition 2.1. An algebraic invariant curve of (1) is the solution set in C2 of an
equation Φ(x, y) = 0, where Φ is a polynomial in x, y with complex coefficients such
that

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = K(x, y)Φ(x, y)

for some polynomial in x, y, K = K(x, y) with complex coefficients, called the cofactor
of the invariant algebraic curve Φ = 0.

We say that the invariant algebraic curve Φ(x, y) = 0 is an algebraic solution of (1)
if and only if Φ(x, y) is an irreducible polynomial in C[x, y].

We shall study the problem of the center for cubic differential system (1) assuming
that (1) has algebraic solutions: two invariant straight lines and one invariant cubic.

By Definition 2.1 a straight line

1 +Ax+By = 0, A,B ∈ C (2)

is said to be invariant for (1), if there exists a polynomial with complex coefficients
K(x, y) such that the following identity holds

AP (x, y) +BQ(x, y) ≡ (1 +Ax+By)K(x, y).

If the cubic system (1) has complex invariant straight lines then obviously they occur
in complex conjugated pairs 1 +Ax+By = 0 and 1 +Ax+By = 0.

Let the cubic system (1) have two distinct invariant straight lines l1 = 0 and l2 = 0
real or complex (l2 = l1) of the form (2). Assume that the invariant straight lines
l1 = 0, l2 = 0 intersect at a real singular point (x0, y0). By rotating the system of
coordinates (x → x cosϕ − y sinϕ, y → x sinϕ + y cosϕ) and rescaling the axes of
coordinates (x → αx, y → αy), we obtain l1 ∩ l2 = (0, 1). In this case the invariant
straight lines can be written as

l1 ≡ 1 + a1x− y = 0, l2 ≡ 1 + a2x− y = 0, a1, a2 ∈ C, a1 − a2 6= 0. (3)

Assume now that the invariant straight lines (2) are parallel, then by a rotation of
axes we can make them parallel to the axis of ordinates (Oy)

l1,2 ≡ 1 +
c±
√
c2 − 4m

2
x = 0. (4)
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In [7] there were proved the following assertions

Lemma 2.1. The cubic differential system (1) has two distinct invariant straight
lines of the form (3) if and only if the following coefficient conditions are satisfied

k = (a− 1)(a1 + a2) + g, l = −b, r = −f − 1, s = (1− a)a1a2,
m = (a1 + a2)(c− a1 − a2) + a1a2 − a+ d+ 2, q = (a1 + a2 − c)a1a2 − g,
p = (f + 2)(a1 + a2) + b− c, n = −(f + 2)a1a2 − (d+ 1).

(5)

Lemma 2.2. The cubic differential system (1) has two parallel invariant straight
lines of the form (4) if and only if the following conditions hold

a = f = k = p = r = 0, m(c2 − 4m) 6= 0. (6)

Let us consider the cubic curve

Φ(x, y) ≡ x2 + y2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 = 0 (7)

with (a30, a21, a12, a03) 6= 0 and a30, a21, a12, a03 ∈ R.

By Definition 2.1, the cubic curve (7) is said to be an invariant cubic for (1), if there
exists a polynomial with real coefficients K(x, y) = c10x+c01y+c20x

2 +c11xy+c02y
2

such that the following identity holds

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) ≡ Φ(x, y)K(x, y).

Definition 2.2. System (1) is integrable on an open set D of R2 if there exists a
nonconstant analytic function F : D → R which is constant on all solution curves
(x(t), y(t)) in D, i.e. F (x(t), y(t))=constant for all values of t where the solution is
defined. Such an F is called a first integral of the system on D.

When F exists in D, all the solutions of the differential system in D are known
since every solution is given by F (x, y) = C, for some C ∈ R. Clearly F is a first
integral of (1) on D if and only if

P
∂F

∂x
+Q

∂F

∂y
≡ 0. (8)

A first integral constructed from invariant algebraic curves fj(x, y) = 0, j = 1, q

F (x, y) ≡ fα1
1 fα2

2 · · · fαq
q = C (9)

with αj ∈ C not all zero is called a Darboux first integral.
In this paper we find the conditions under which the cubic differential system (1)

has Darboux first integrals of the form

F (x, y) ≡ lα1
1 lα2

2 Φα3 = C (10)

composed of two invariant straight lines l1 = 0, l2 = 0 and one irreducible invariant
cubic Φ = 0 of the form (7), where αj ∈ C.

3. Two parallel invariant straight lines and one invariant cubic

In this section we find the center conditions for cubic differential system (1) having
two parallel invariant straight lines and one invariant cubic.
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Lemma 3.1. The cubic differential system (1) with two parallel invariant straight
lines (4) and one invariant cubic (7) has a Darboux first integral of the form (10) if
and only if one of the sets of conditions (i)–(iv) is satisfied:

(i) a = d = f = k = l = p = q = r = 0, n = (−3m)/2, s = (4bg− 4b2− 10bc− 6c2 +
6cg − 3m)/6;

(ii) a = d = f = k = l = p = q = r = 0, c = 2b, m = n, n = [8u(3bv − 2gu)(g −
3b)]/[9(2u− v)2], s = (nv)/u;

(iii) a = d = f = k = l = p = q = r = 0, m = [((u− 2v)c+ 2bu)(c− 2b)u]/[4(u− v)2],
n = [((u − 2v)c + 2bu)(c − 2b)v]/[4(u − v)2], s = [((2b + 4g − c)u + (4b − 2c −
4g)v)(u+ v)(c− 2b)]/[12(u− v)2];

(iv) a = f = k = l = p = r = 0, c = −3b, g = [b(b2 − d2)]/(2d2), m = 3(b2 + d2),
n = −2(b2 + d2), q = [b(b2 + d2)]/(2d), s = [−b2(b2 + d2)]/(2d2).

Proof. Let the cubic system (1) have two invariant straight lines l1 = 0, l2 = 0 of the
form (4) and an invariant cubic Φ = 0 of the form (7). In this case the system (1)
will have a Darboux first integral of the form (10) if and only if the identity (8) holds.
Identifying the coefficients of the monomials xiyj in (8), we obtain a system of fifteen
equations

{Uij = 0, i+ j = 3, 4, 5} (11)

for the unknowns a30, a21, a12, a03, α1, α2, α3 and the coefficients of system (1).
When i + j = 3, we express a21, a03, α1, a30 from the equations of (11). Next

express α2 from U13 = 0, q from U22 = 0, l from U04 = 0 and reduce the equations of
(11) by s from U31 = 0. Then U50 = 0 and U05 ≡ (a12 + b)d2 = 0.

I. Let d = 0, then U05 = U14 = U32 = 0 and U23 = a12(a212 − ca12 +m) = 0.

We assume that g 6= b+ c, otherwise the cubic curve (7) is reducible.
Suppose that a12 = 0. Then n = (−3m)/2 and we obtain the set of conditions

(i) for the existence of a first integral (10) with α1 = 3
√
c2 − 4m − 4b − 3c, α2 =

3
√
c2 − 4m+ 4b+ 3c, α3 = −2

√
c2 − 4m and

l1,2 ≡ 2 + (c±
√
c2 − 4m )x = 0, Φ ≡ 3(x2 + y2) + 2(g − c− b)x3 = 0.

Suppose that a12 6= 0 and reduce the equation U41 = 0 by a212 from U23 = 0, then
U41 ≡ (2b− c)a12 + 2(m− n) = 0.

If c = 2b, then m = n, a12 = (24b2 − 8bg − 6n + 3s)/[4(3b − g)] and U23 = 0
admits the following parametrization n = [8u(3bv − 2gu)(g − 3b)]/[9(2u − v)2], s =
[8v(3bv−2gu)(g−3b)]/[9(2u−v)2]. We get the set of conditions (ii) for the existence
of a first integral (10) with α1 = 0, α2 = α3 = 1 and

l1 ≡ 6u− 3v + (12bu− 4gu)x = 0, l2 ≡ 6u− 3v − (6bv − 4gu)x = 0,
Φ ≡ 2(3b− g)(vx2 + 2uy2)x+ 3(2u− v)(x2 + y2) = 0.

If c 6= 2b, then U41 = 0 yields a12 = 2(m − n)/(c − 2b). The equation U23 = 0
admits the following parametrization m = [((u − 2v)c + 2bu)(c − 2b)u]/[4(u − v)2],
n = [((u− 2v)c+ 2bu)(c− 2b)v]/[4(u− v)2]. We obtain the set of conditions (iii) for
the existence of a first integral (10) with α1 = 0, α2 = u− 2v, α3 = −u and

l1 ≡ 2u− 2v + (2bu+ cu− 2cv)x = 0, l2 ≡ 2u− 2v + (cu− 2bu)x = 0,
Φ ≡ x[((2b− c+ 4g)u+ (4b− 2c− 4g)v)x2 + 3(2bu+ cu− 2cv)y2]+

+6(u− v)(x2 + y2) = 0.
II. Let d 6= 0, then U05 = 0 yields a12 = −b. We express s, n,m from the equations

U32 = 0, U14 = 0, U31 = 0, respectively. Then we calculate the resultant of the
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polynomials U23 and U41 with respect to g and obtain that (11) is compatible if and
only if c = −3b and g = b(b2 − d2)/(2d2). In this case we get the conditions (iv) for
the existence of a first integral (10) with α1 = α2 = 1, α3 = −1 and

l1,2 ≡ 2− (3b± i
√

3b2 + 12d2)x = 0, Φ ≡ 3d2(x2 + y2) + (bx+ dy)2(bx− 2dy) = 0.
In each of the cases (i)–(iv), the system (1) has a Darboux first integral of the form

(10) and therefore the origin is a center for (1). �

4. A bundle of two invariant straight lines and one invariant cubic

In this section we find the center conditions for cubic differential system (1) having
a bundle of two invariant straight lines and one invariant cubic.

Lemma 4.1. The cubic differential system (1) with a bundle of two invariant straight
lines (3) and one invariant cubic (7) has a Darboux first integral of the form (10) if
and only if one of the sets of conditions (v)–(xi) is satisfied:
(v) a = 1, d = −2, f = −1, k = g, l = −b, p = b, q = −g, r = s = 0, m =

(3c2 − 4b2 − 4bc− 16)/16, n = −m;

(vi) d = 2a − 3, f = −3/2, g = 2(1 − a)(b + c), k = (1 − a)(2b + c), l = −b, m =
(9a−4b2−2bc+2c2−9)/9, n = (18−18a+2b2 + bc− c2)/9, p = (2b− c)/2, q =
2(a− 1)(b+ c), r = 1/2, s = q(2b− c)/9;

(vii) d = 2(a−1), f = −2, l = −b, k = (2g−2c+4b+3ac−6ab)/6, m = (c2−4b2)/4,
n = 1− 2a, q = (ac− 2ab− 2g)/2, p = b− c, r = 1, s = (4bc+ 4cg− 8bg− 4b2−
c2)/12, (c− 2b− 4g)2 − 3(2b+ c)(a− 1)(c− 2b− 4g)− 36a(a− 1)2 = 0;

(viii) a = (1 − v2)/2, c = (3v2 − 2bv − 1)/v, d = −1 − v2, f = −2, l = −b,
g = (3v4 + 6v2 − 4bv − 1)/(4v), k = v(1 + 2bv − v2)/2, r = 1, m = (9v4 −
12bv3 − 6v2 + 4bv + 1)/(4v2), p = b − c, n = v2 = a22, q = v(2bv − 1 − 3v2)/2,
s = (3v4 − 4bv3 + 2v2 − 4bv − 1)/4;

(ix) a = 1, b = l = s = 0, d = f − 1, k = g, q = −2g, n = 2r, r = −f − 1,
c = g + 4a2, m = 4ga2 + f + 1, p = 4(f + 1)a2 − g, a22 = 1/3;

(x) a = 3(1 − a21)/2, b = l = 0, c = 4a1 + a2, d = 2a − 5, g = (3a31 − a1 + 2a2)/2,
k = aa2, n = 4 − 2a, f = −2, r = 1, m = (3a21 + 8a1a2 − 3)/2, p = −c,
q = (a1 − 3a31 − 6a2

1
a2 − 2a2)/2, s = a1a2(3a21 − 1)/2;

(xi) a = (3 − 2a1a2 − a21)/2, b = l = 0, c = 3a1 + 2a2, d = 2a − 5, f = −2,
g = a2(3a21 +1)/2, k = (a1 +2a2−a31−2a1a

2
2)/2, m = (3a21 +6a1a2 +2a22−3)/2,

p = −c, n = −d−1, r = 1, q = −a2(7a21+2a1a2+1)/2, s = a1a2(a21+2a1a2−1)/2.

Proof. Let the cubic system (1) have two invariant straight lines l1 = 0, l2 = 0 of the
form (3) and one invariant cubic Φ = 0 of the form (7) passing through a singular point
(0, 1), i.e. a03 = −1. In this case the system (1) will have a Darboux first integral of
the form (10) if and only if the identity (8) holds. Identifying the coefficients of the
monomials xiyj in (8), we obtain a system of fifteen equations

{Uij = 0, i+ j = 3, 4, 5} (12)

for the unknowns a30, a21, a12, a1, a2, α1, α2, α3 and the coefficients of system (1).
When i+ j = 3, the equations of (12) yield

a21 = (2a+ 2d− 2f − 3)/3, a30 = (3a12 − 2b− 2c+ 2g)/3,
α1 = α3((4a− 2d+ 2f + 3)a2 + 3(2b− a12))/(3a1 − 3a2),
α2 = α3((−4a+ 2d− 2f − 3)a1 + 3(a12 − 2b))/(3a1 − 3a2).

(13)



INTEGRABILITY CONDITIONS FOR A CUBIC DIFFERENTIAL SYSTEM 317

Substituting (13) in U04 = 0, we get U04 ≡ b(d − 2a + 2f + 6) = 0. We have to
consider two possibilities: {d = 2a− 2f − 6}, {d 6= 2a− 2f − 6, b = 0}.

I. Let d = 2a− 2f − 6, then U04 ≡ 0 and
e1 = U13 + U14 ≡ (a12 − a1)(a12 − a2)(f + 2) = 0.

1. Assume that a12 = a1. Then U13 ≡ (a1 + a2 − c)b = 0.
1.1. If c = a1 +a2, then U22 ≡ (a−f −2)(a1−2a2−2b) = 0. In case f = a−2 and

a2 = g − b − a1, the cubic curve (7) is reducible. In case f = a − 2, a2 6= g − b − a1
and a = 1, a1 = 3a2 + 2b, we get the set of conditions (v) for the existence of a first
integral (10), with α1 = 0, α2 = −3, α3 = 1 and

l1 ≡ (2b+ 3c)x− 4y + 4 = 0, l2 ≡ (c− 2b)x− 4y + 4 = 0,
Φ ≡ (c− 2b+ 8g)x3 + (6b+ 9c)xy2 + 12(1− y)(x2 + y2) = 0.

Suppose that f 6= a − 2, then U22 = 0 yields a1 = 2(a2 + b). In this case U23 ≡
(2f +3)b = 0. If f = −3/2, then g = 6(1−a)(a2 + b). We obtain the set of conditions
(vi) for the existence of a first integral (10) with α1 = 0, α2 = −2, α3 = 1 and

l1 ≡ 2(b+ c)x− 3y + 3 = 0, l2 ≡ (c− 2b)x− 3y + 3 = 0,
Φ ≡ 4(b+ c)(1− a)x3 + 6(a− 1)x2y + 2(b+ c)xy2 − 3y3 + 3(x2 + y2) = 0.

If f 6= −3/2 and b = 0, then a = 1, f = a22−1 and the system (12) is not consistent.

1.2. Suppose that c 6= a1 + a2, then U13 = 0 yields b = 0. In this case
e2 = U23 + U22 ≡ (a− f − 2)(a1 − 2a2)(f + 2) = 0.

1.2.1. If f = a − 2, then the equation U23 = 0 implies a = a1a2 and U40 = 0
becomes U40 ≡ (a1a2 − 1)(c+ 2g − 3a1 − 3a2) = 0. When a1a2 = 1, we get the set of
conditions (ix) with f = −1. When a1a2 6= 1 and a1 = (c+ 2g − 3a2)/3, then c = 4g,
a2 = 0. We get the conditions (vii) with a = b = 0, c = 4g.

1.2.2. If f 6= a − 2 and f = −2, then e2 ≡ 0. We express g from U40 = 0 and a
from U31 = 0. When a1 = c/2, we obtain the set of conditions (vii) with b = 0. When
a1 6= c/2, we express c from U50 = 0 and a from U22 = 0, then U31 6= 0.

1.2.3. If f 6= a− 2, f 6= −2 and a1 = 2a2, then e2 ≡ 0. We express a from U22 = 0
and g from U40 = 0. In this case the system of equations (12) has no solutions.

2. Assume that a12 6= a1 and a12 = a2. This case is symmetric to the case 1
(a12 = a1), replacing a2 by a1. We get the sets of conditions (v) and (vi).

3. Assume that a12 6= a1, a12 6= a2 and let f = −2, then e1 ≡ 0. In this case the
equations U40 = 0 and U13 = 0 yield g = [3(a1 + a2)(1− a) + 3a(c− a12) + 2b− c]/2,
c = [(a1 + a2)(2b− a12) + a1a2 + a212]/(2b) and U50 ≡ g1g2g3 = 0, where

g1 = a12 − a2 − 2b, g2 = a12 − a1 − 2b
g3 = ((3a1 + 3a2 + 2b)a12 − 3a12 − 3a1a2)a+ (a12 − a1)(a12 − a2).

3.1. Suppose that g1 = 0, then a12 = a2 + 2b. In this case a21− a1a2− 2ba1− a = 0
and we have the set of conditions (vii) for the existence of a first integral (10) with
α1 = 0, α2 = −1, α3 = 1 and

l1 ≡ (c− 2b− 4g)x+ 6(a− 1)(1− y) = 0, l2 ≡ (c− 2b)x− 2y + 2 = 0,
Φ ≡ (2b− c+ 4g)x3 + 6(2a− 1)x2y + 3(2b+ c)xy2 − 6y3 + 6(x2 + y2) = 0.

3.2. Suppose that g1 6= 0 and g2 = 0. Then a12 = a1 + 2b and a = a2(a2−a1−2b).
This case is symmetric to the case 3.1, if we replace a2 by a1. We obtain the set of
conditions (vii).

3.3. Suppose that g1 6= 0, g2 6= 0 and g3 = 0. Then we express a from g3 = 0.
The system of equations {U31 = 0, U22 = 0} has real solutions if and only if a12 =
(3a22 − 1)/(2a2) and a1 = (3a22 − 4ba2 − 1)/(2a2). We get the set of conditions (viii)
for the existence of a first integral (10) with a2 = v, α1 = −1, α2 = 0, α3 = 1, and
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l1 ≡ (3v2 − 4bv − 1)x+ 2v(1− y) = 0, l2 ≡ vx− y + 1 = 0,
Φ ≡ v2(v2 + 1)x3 + 2v(1− v2y)x2 + (3v2 − 1)xy2 + 2vy2(1− y) = 0.

II. Let d 6= 2a− 2f − 6 and b = 0. Then U04 ≡ 0 and
e3 = U13 + U14 ≡ (a12 − a1)(a12 − a2)(f + 2) = 0.

1. Assume a12 = a1, then U13 = 0 implies d = f−a1a2. We express c from U22 = 0.
In this case U23 ≡ (a− a1a2)(a1 − 2a2)(f + 2) = 0.

1.1. When a = a1a2, we have U40 ≡ (a1a2 − 1)(2a1 + 2a2 − 3g) = 0. If a1 = 1/a2,
then we obtain the set of conditions (ix) for the existence of a first integral (10) with
α1 = 0, α2 = −3, α3 = 1 and l1 ≡ x− a2y + a2 = 0, l2 ≡ a2x− y + 1 = 0,

Φ ≡ 9a2(1− y)(x2 + y2) + x(x2 + 9y2) = 0.
If a1a2 − 1 6= 0 and g = 2(a1 + a2)/3, then the cubic curve is reducible.
1.2. When a 6= a1a2 and f = −2, we express g from U40 = 0. In this case we have

e4 = U32 + U31 ≡ (2a+ a1a2 − 3)(a1 − 2a2)2a1a2 = 0.
If a1 = 2a2, then a = 2a22 + 3/2 and U31 6= 0. If a1 = 0, then a = 3/2 and this case

is contained in (x) (a1 = 0, a2 = c). If a2 = 0, then a = 3/2. This case is contained
in (xi), if we replace a1 by a2 and then put a2 = 0, a1 = c/2.

If a = (3− a1a2)/2 and a1 = −a2, then this case is contained in (x) (a2 = −c). If
a = (3− a1a2)/2 and a1 = 3a2, then this case is contained in (x), if we replace a1 by
a2 and then put a2 = c/7.

1.3. When a 6= a1a2, f 6= −2 and a1 = 2a2, then U40 ≡ 0 if a = 1 or a2 = g/2. In
both cases the system (12) has no solutions.

2. Assume that a12 6= a1 and let a12 = a2. This case is symmetric to the case 1
(a12 = a1), if we replace a2 by a1. We get the set of conditions (ix).

3. Assume that a12 6= a1, a12 6= a2 and let f = −2. Then e3 ≡ 0. In this case we
express g, c and a from the equations U22 = 0, U23 = 0 and U13 = 0, respectively.
Then U40 ≡ h1h2 = 0, where
h1 = a12(a1 + a2 − a12)− 3a1a2 − 2d− 4, h2 = (d+ 2)(2a1 + 2a2 − a12) + 2a1a2a12.

3.1. Let h1 = 0, then U31 ≡ (3a1−a12)(3a2−a12)(2a1+a2−a12)(a1+2a2−a12) = 0.
If a12 = 3a1, then we determine the set of conditions (x) for the existence of a first
integral (10) with α1 = −3, α2 = 0, α3 = 1 and

l1 ≡ a1x− y + 1 = 0, l2 ≡ a2x− y + 1 = 0, Φ ≡ (a1x− y)3 + (x2 + y2) = 0.
If a12 = 2a1+a2, then we obtain the conditions (xi) for the existence of a first integral
(10), with α1 = −2, α2 = −1, α3 = 1 and

l1 ≡ a1x− y + 1 = 0, l2 ≡ a2x− y + 1 = 0,
Φ ≡ a21a2x3 − (a21 + 2a1a2)x2y + (2a1 + a2)xy2 − y3 + x2 + y2 = 0.

If a12 = 3a2 or a12 = a1 + 2a2, then we get the symmetric conditions to (x) and (xi).
3.2. Let h1 6= 0 and h2 = 0. In this case the system (12) has no real solutions.
In each of the cases (v)–(xi), the system (1) has a Darboux first integral of the

form (10) and therefore the origin is a center for (1). �

5. Two invariant straight lines and one invariant cubic in generic position

In this section we find the center conditions for cubic differential system (1) having
two invariant straight lines and one invariant cubic in generic position.

Lemma 5.1. The cubic system (1) with two invariant straight lines (3) and one
invariant cubic (7) in generic position has a Darboux first integral of the form (10) if
and only if one of the sets of conditions (xii)–(xiv) holds:
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(xii) a = [3h2 + u(3 − 2h)(u + 2b)]/(2h2), g = [(3b + 2u)(2hu2 − 3u2 − h2)]/(2h3),
d = 2a − 5, m = (28b2h2 − 8b2h3 − 54b2 + 8bch3 − 12bch2 − 18bch − 2c2h3 −
c2h2 − 3h2)/(2h2), p = 4b− 2bh+ ch− c, n = [(4h− 3)u2 + bu(7h− 6) + h2]/h2,
q = [(3b + 2u)((2h − 3)(2b − u)u + h2)]/(2h3), l = −b, s = [u(3b + 2u)((2b +
u)(3− 2h)u+ h2)]/(2h4), k = [(6b2 + 8bu+ 3u2)(2h− 3)u− 3h2(2b+ u)]/(2h3),
r = 1− h, h = f + 2, u = 2bh− ch− 6b;

(xiii) a = [(3f+5)2(f+2)+b2(3f+4)2]/[(3f+5)2(f+2)], c = [b(6f2+11f+2)]/[(3f+
5)(f+2)], d = [2b2(3f+4)3−(f+2)(5f+7)(3f+5)2]/[(f+2)(3f+4)(3f+5)2],
g = b[3b2(3f+4)2−(2f+3)(3f+5)2]/[(f+2)(3f+5)3], k = −b[b2(3f+4)3+(f+
2)(2f + 3)(3f + 5)2]/[(f + 2)2(3f + 5)3], l = −b, m = −[b2(3f + 4)2(9f2 + 22f +
12)+3(f +1)(f +2)2(2f +3)(3f +5)]/[(f +2)2(3f +4)2(3f +5)], n = −[b2(3f +
4)2(27f2+80f+60)−2(f+1)(f+2)(2f+3)(3f+5)2]/[(f+2)(3f+4)2(3f+5)2],
p = −[b(9f2 + 22f + 12)]/[(3f + 5)(f + 2)], q = −b[b2(3f + 4)2(27f2 + 85f +
66)− (f + 1)(f + 2)(2f + 3)(3f + 5)2]/[(3f + 5)3(3f + 4)(f + 2)2], r = −f − 1,
s = −b2[b2(3f + 4)2(9f + 14) + (f + 2)(2f + 3)(3f + 5)2]/[(f + 2)2(3f + 5)4];

(xiv) a = 3c2 + 1, b = l = 0, d = 2(9c2 − 2)/3, f = (−5)/3, g = c(9c2 + 1), k = g,
m = (−2)/3, n = (4− 45c2)/9, p = −c, q = 2c(−9c2 − 1)/3, r = 2/3, s = cg.

Proof. Let the cubic system (1) have two invariant straight lines l1 = 0, l2 = 0 of the
form (3) and one invariant cubic Φ = 0 of the form (7) in generic position (a03 6= −1).
In this case the system (1) will have a Darboux first integral of the form (10) if and
only if the identity (8) holds. Identifying the coefficients of the monomials xiyj in
(8), we obtain a system of fifteen equations

{Uij = 0, i+ j = 3, 4, 5} (14)

for the unknowns a30, a21, a12, a03, a1, a2, α1, α2, α3 and the coefficients of system (1).
When i+j = 3, the equations of (14) yield d = (3a21−3a03−2a+2f)/2, g = (3a30−

3a12 + 2b+ 2c)/2, α1 = α3(a21− 2a)−α2, α2 = α3(a12− 2b+a1(a21− 2a))/(a1−a2).
Substituting this in U04 = 0, we get U04 ≡ b(a21−a03−2a+2f+4)−a12(a03+1) = 0.

We consider two cases: {b 6= 0} and {b = 0}.
I. Let b 6= 0. In this case we express f from U04 = 0 and c from U13 = 0.
1. Assume that a12 = 0, then U14 ≡ a21(a21 − 2a + 2) = 0. When a21 = 0, the

system (14) is not consistent. If a21 6= 0 and a21 = 2(a − 1), then the equations
of (14) imply a = (b2 + 4)/4, a30 = b3/4, a1 = (4 − 3b2 − 4ba2)/(4a2 + 4b) and
4a22 + 8ba2 + 5b2 + 4 = 0. This subcase is contained in conditions (xiii) (f = −1).

2. If a12 6= 0, then express a from U05 = 0. We calculate the resultant of the poly-
nomials U14 and U40 with respect to a1 and obtain Res(U14, U40, a1) = 8b4α2

3g1g2g3,
where
g1 = (a12−2b)a03 +a12, g2 = (a12 + b)a03a2 +(a2 + b)a12, g3 = a312(a03a30 + ba03 +

a30 + b) + ba212(a03a30 − ba03 − ba21 + a30) + 2b2a12a03(a30 − b) + 2b3a03a30.
Assume that g1 = 0. Then a03 = a12/(2b−a12). We express a21 from U14 = U40 =

0, a30 from U22 = 0 and obtain that U31 ≡ f1f2f3f4 = 0, where
f1 = a12−3a1−2b, f2 = a12−3a2−2b, f3 = a12−a2−2a1−2b, f4 = a12−a1−2a2−2b.
If f1 = 0 or f2 = 0, then the right-hand sides of (1) have a common factor.
If f3 = 0 or f4 = 0, then we get the set of conditions (xii) for the existence of a

first integral (10) with α1 = 2, α2 = 1, α3 = −1 and
l1 ≡ ux+ h(1− y) = 0, l2 ≡ (3b+ 2u)x+ h(y − 1) = 0,

Φ ≡ (2h− 3)(hy − ux)2(3bx+ 2ux+ hy) + 3h3(x2 + y2) = 0.
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Assume that g1 6= 0 and let g2 = 0. Then a03 = [−a12(a2 + b)]/(a2(a12 + b)].
We express a21 from U14 = 0 and a30 from U40 = 0. In this case we have U50 ≡
e1e2e3 = 0, where e1 = (ba12 − a1a2)(a12 − 2b) + a1(a212 + 2b2) − 3ba2a12, e2 =
(3a212−7a12a2−4ba12−4ba2−4b2)(a212−a12a2+2ba2+2b2)−2(a12−a2)(a12+b)2a12a

2
2,

e3 = (a212 − a12a2 + 2ba2 + 2b2)(a12 − 3a2 − 5b)− 2(a12 − a2 − b)(a12 + b)2a22.
If e1 = 0, then a1 = [ba12(3a2 + 2b − a12)]/[(a12 − a2)a12 + 2b(a2 + b)] and the

equation U31 = 0 admits the following parametrization a12 = wu, a2 = wv, b = wz,
w2 = (u2 − uv + 2vz + 2z2)2/[2(2z2 + 2vz + uv − u2)(u+ z)2v2].
In this case the system of equations (14) is not consistent.

If e1 6= 0 and e2 = 0, then the equation e2 = 0 admits the following parametriza-
tion a12 = wu, a2 = wv, b = wz, w2 = [(3u2 − 7uv − 4uz − 4vz − 4z2)(u2 − uv +
2vz + 2z2)]/[2(u − v)(u + z)2uv2]. In this case we express a1 from U41 = 0 and cal-
culate the resultant of the polynomials U31 and U22 with respect to z. We find that
Res(U31, U22, z) 6= 0 and the system of equations (14) is not consistent.

If e1e2 6= 0 and e3 = 0, then the equation e3 = 0 admits the following parametriza-
tion a12 = wu, a2 = wv, b = wz, w2 = [(u2 − uv + 2vz + 2z2)(u − 3v − 5z)]/[2(u −
v − z)(u+ z)2v2]. The system of equations (14) is not consistent.

Assume that g1g2 6= 0 and let g3 = 0. Then express a21 from g3 = 0 and a1 from
U14 = 0. If a12 = −b or a12 = 2b or a30 = 0, the system of equations (14) is not
consistent.

Suppose that (a12 + b)(a12 − 2b)a30 6= 0. We reduce the equations of (14) by a22
from U31 = 0 and express a30 from U50 = 0. Then the equation U22 = 0 yields
a03 = a212/[(2b− a12)(b+ a12)]. In this case we obtain the set of conditions (xiii) for
the existence of a first integral of the form (10) with α1 = α2 = 1, α3 = −1 and

l1,2 ≡ (9bf2 + 27bf + 20b±
√

∆)x+ (3f + 5)(3f + 4)(f + 2)(y − 1) = 0,
Φ ≡ 2(3bfx+ 4bx+ 3f2y + 11fy + 10y)(3bfx+ 4bx+ 3f2y + 8fy + 5y)2+

+(3f + 5)3(3f + 4)(f + 2)(x2 + y2) = 0,
where ∆ = (−2f − 3)(b2(3f + 4)2 + (f + 2)2(3f + 5)2).

II. Let b = 0, then a12 = 0, a30 = 2(g − c)/3, a21 = (3a03 + 2d− 2f + 2a)/3 and

U13 ≡ 3a203 + 3a1a2a03 + (4f − 4a− 4d+ 3)a03 + 2(d− 2a+ 2f + 6)a1a2+
+ 4a(f − d− 1) + 2(d− f)(d+ 2f + 4) = 0,

U14 ≡ 3a203(a1a2 + d+ 1) + a1a2a03(7f − 4a+ 2d+ 18)+
+ a03(2d2 − 2df + 11d− 8f − 4ad− 4a+ 3)− 4(a+ d− f)(f + 1) = 0.

1. Assume that a03 = 0, then U14 ≡ (a+ d− f)(f + 1) = 0. If f = a+ d, the cubic
(7) is reducible. If a+ d− f 6= 0 and f = −1, then the system (14) is not consistent.

2. Assume that a03 6= 0 and let f = −1. In this case U14 ≡ i1i2 = 0, where
i1 = 4a− 2d− 3a03 − 11, i2 = a1a2 + d+ 1.

If i1 = 0 and c = a1 + a2, then we get the set of conditions (xii) (b = 0, f = −1).
If i1 = 0 and c 6= a1 + a2, then a = 1 and the system (14) is not consistent.
Suppose that i1 6= 0 and let i2 = 0, then d = −a1a2−1. We express a from U13 = 0

and c from U23 = 0. If a2 = −a1 and a03 = (a21 − 3)/3, then the right-hand sides of
(1) have o common factor. If a2 = −a1 and 3a203 − 7a03a

2
1 − 4a21 − a03 − 4 = 0, then

the cubic (7) is reducible. When a2 6= −a1, the system (14) is not consistent.

3. Suppose that (f + 1)a03 6= 0. If d = −2 or a2 = 0, then the cubic system (1)
has no an irreducible invariant cubic.
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4. Suppose that (f + 1)(d + 2)a2a03 6= 0. We calculate the resultant of the
polynomials U14 and U13 with respect to a1 and obtain that Res(U14, U13, a1) =
α2
3a2r1r2, where

r1 = 3a203 + a03(7f − 4a− 7d+ 3) + 4(f − a− d),
r2 = 3a203 + a03(4f − 4a+ 2d+ 15) + 2(2af + 2a− df − d− 2f2 − 8f − 6).

Let r1 = 0 and express a from r1 = 0. Then U13 = 0, U14 = 0 imply a1 = (f−d)/a2.
Reducing the equations of (14) by a22 from U22 = 0 we find that U23 ≡ h1h2h3 = 0,
where h1 = c− g, h2 = 3a203 + a03(f − d+ 5) + 2,

h3 = 3(d+ 2)a203 + a03(f2 − 3df − d− 2f + 2)− 2(df + d+ 2f + 2).
If h1 = 0, then the right-hand sides of (1) have a common factor. If h1 6= 0 and

h2 = 0, then d = (3a203+(f+5)a03+2)/a03 and U40 ≡ (3a03+4)(3a03+1)(2c−5g) = 0.
When a03 = −4/3 or a03 = −1/3, the right-hand sides of (1) have a common

factor. When g = (2c)/5, the system (14) is not consistent.
Assume that h1h2 6= 0 and let h3 = 0. Then express d, g from the equations h3 = 0,

U40 = 0 and reduce the equations of (14) by c2 from U50 = 0. If a03 = (2f + 1)/3,
then we obtain the set of conditions (xii) (b = 0, f = (−3c2 − 2)/(2c2 + 1)).

Let a03 6= (2f + 1)/3 and denote j1 = 9a03 + 8, j2 = a03 + 2, j3 = 3a03 − 4,
j4 = 3a03 + 4, j5 = 3a03 + 1, j6 = 675a303 + 1530a203 + 1116a03 + 256.

If j1j2 · · · j6 = 0, then the system (14) is not consistent. Assume that j1j2 · · · j6 6= 0
and calculate the resultant of the polynomials U41 and U31 with respect to a1. We
find that Res(U41, U31, a1) 6= 0 and the system (14) is not consistent.

Assume that r1 6= 0 and let r2 = 0. We express a from r2 = 0, a1 from U13 = 0
and g from U22 = 0. Then U23 ≡ s1s2=0, where

s1 = 3(d+ 2)a203 − ((f + 2)(a2 − c)a2 + (d+ 2)(2f − 1))a03 − 2(f + 1)(d+ 2),
s2 = 3a203 − (4f + 3)a03 + 2(f + 1)2.

Suppose that s1 = 0 and express d from s1 = 0. In this case U40 ≡ c(3a03−2f−1) =
0. If a03 = (2f+1)/3, then we get the set of conditions (xii) (b = 0). If a03 6= (2f+1)/3
and c = 0, then we obtain the conditions (xiii) (b = 0).

Suppose that s1 6= 0 and let s2 = 0. Then the equation s2 = 0 admits the
parametrization a03 = (−2)/(u2 + 2), f = (−u2 − u− 4)/(u2 + 2).

We reduce the equations of (14) by a22 from U40 = 0. If d = u(5−2u)/(u2+2), then
U50 = 0 and the system (14) is not consistent. If d 6= u(5− 2u)/(u2 + 2), then reduce
the equations of (14) by c2 from U50 = 0. In this case we get the set of conditions
(xiv) for the existence of a first integral (10) with α1 = α2 = 1, α3 = −1 and

l1 ≡ 1− a2x− y = 0, l2 ≡ 1 + a2x− y = 0,
Φ ≡ 2(3cx− y)(3cx+ 2y)2 + 9(x2 + y2) = 0,

where 3a22 = 9c2 + 1.
In each of the cases (xii)–(xiv), the system (1) has a Darboux first integral of the

form (10) and therefore the origin is a center for (1). �

6. Proof of the Main Theorem

The proof of the main result, Theorem 1.1, follows directly from Lemmas 3.1, 4.1
and 5.1. The existence of a center for system (1), in Cases (i) – (xiv), is equivalent to
the existence of the Darboux first integrals of the form (10) defined in a neighborhood
of the origin [17].
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[2] J. Chavarriga, J. Giné, Integrability of cubic systems with degenerate infinity, Differential Equa-

tions Dynam. Systems 6 (1998), 425-438.
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