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Continuous spectrum for a degenerate eigenvalue problem
with (p2, p2)-growth

Iulia Dorotheea St̂ırcu

Abstract. In this paper we consider an eigenvalue problem driven by two non-homogeneous
differential operators with variable (p2, p2)-growth. We establish that for λ1 > 0, any λ ∈
[λ1,∞) is an eigenvalue; moreover, for a positive constant λ0 ≤ λ1, we find the nonexistence

of eigenvalues in (0, λ0). The proof is based on variational arguments and a Caffarelli–Kohn–
Nirenberg-type inequality with variable exponent.
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1. Introduction

In this paper our attention is focused on a new class of differential operators recently
introduced by Kim and Kim in [7] and extended in [2] by the nonlinear eigenvalue
problem

−div(φ(x, |∇u|)∇u)− div(ψ(x, |∇u|)∇u) = λf(x, u) in Ω, (1)

involving non-homogeneous operators of the type (φ(x, |∇u|)∇u). In the case φ(x, t) =
tp(x)−2 we obtain the p(x)-Laplace operator. Problems involving the p(x)-Laplacian
have been extensively studied in the last decades (see [1, 4, 5, 6, 8, 14, 17, 18]).

Our interest is related to the study of a class of non-autonomous stationary prob-
lems, that means problems in which, according to the point, the associated energy
density changes its ellipticity and growth properties. The contribution of Kim and
Kim serves us to understand problems with possible lack of uniform convexity.

The main purpose of this paper is to study problem (1) in a particular case of
f(x, u) under the presence of a nonnegative measurable weighted function in the
divergence operator. Degenerate differential operators involving a nonnegative weight
who can have zeros at some points or even to be unbounded serve the study of
many physical phenomena associated to equilibrium of anisotropic continuous media.
By means of variational arguments and a Caffarelli–Kohn–Nirenberg inequality with
variable exponent we establish the existence of a continuous spectrum consisting in
an unbounded interval and the lack of existence of eigenvalues in a neighbourhood of
the origin.

In the next section we make a brief introduction of the variable exponent Sobolev
spaces, in order to choose the corresponding space to our problem. In section 3 we
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introduce a set of basic hypotheses and we state the main theorem. The proof of this
result is developed in the last section of this paper.

2. Preliminaries

We state in this section some definitions and properties of the variable exponent
Lebesgue-Sobolev spaces.

We consider Ω be a bounded domain in RN and we define

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
and for any (Lebesgue) continuous function p : Ω→ (1,∞), denote

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

For all p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : Ω→ R a measurable function :

∫
Ω

|u|p(x)dx <∞
}
.

Equipped with the Luxemburg norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣ dx ≤ 1

}
,

Lp(x)(Ω) is a Banach space.
If p(x) = p ≡ constant for any x ∈ Ω, then the Lp(x)(Ω) space is reduced to the

classic Lebesgue space Lp(Ω) and the Luxemburg norm becomes the standard norm

in Lp(Ω), ‖u‖Lp =
(∫

Ω
|u(x)|pdx

)1/p
.

For 1 < p− ≤ p+ <∞, Lp(x)(Ω) is a reflexive uniformly convex Banach space, and
for any measurable bounded exponent p, the Lp(x)(Ω) space is separable.

If p1 and p2 are two variable exponents such that p1(x) ≤ p2(x) almost everywhere
in Ω, with |Ω| <∞, then there exists a continuous embedding

Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

whose norm does not exceed |Ω|+ 1.

We define the conjugate variable exponent p′ : Ω → (1,∞), satisfying
1

p(x)
+

1

p′(x)
= 1, for every x ∈ Ω.

We denote by Lp
′(x)(Ω) the conjugate space of the Lp(x)(Ω).

If u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) then the Hölder type inequality holds:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p+
+

1

p−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2)

The modular of the Lp(x)(Ω) space, defined by the mapping ρp(x) : Lp(x)(Ω)→ R,

ρp(x) =

∫
Ω

|u(x)|p(x)dx,

has an important role in manipulating the generalized Lebesgue spaces.
If p(x) = p ≡ constant for every x ∈ Ω, then the modular ρp(x)(u) becomes ‖u‖pLp .



CONTINUOUS SPECTRUM FOR A DEGENERATE EIGENVALUE PROBLEM 331

If p(x) 6≡ constant in Ω and u, un ∈ Lp(x)(Ω) then the following relations hold true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (3)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (4)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (5)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (6)

See [9] for more properties of these variable exponent Lebesgue spaces.
Now, we define the variable exponent Sobolev space as

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
equipped with the norm

‖u‖p(·) = |u|p(·) + |∇u|p(·)
which is equivalent with the norm

‖u‖ = inf

{
µ > 0;

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
,

where |∇u|p(·) is the Luxemburg norm of |∇u|.
We define W

1,p(·)
0 (Ω) = C∞0 (Ω)

‖·‖p(·) and we remark that W
1,p(·)
0 (Ω) is a separable

and reflexive Banach space.

For the density of C∞0 (Ω) in W
1,p(·)
0 (Ω) we consider p ∈ C+(Ω) to be logarithmic

Hölder continuous, that means, there exists M > 0 such that

|p(x)− p(y)| ≤ −M
log(|x− y|)

, ∀x, y ∈ Ω,

with |x− y| ≤ 1
2 .

Also, we remark that if s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω, then W
1,p(·)
0 (Ω)

is compactly embedded in Ls(·)(Ω), where p∗(x) = Np(x)
N−p(x) and p(x) < N .

Finally, we define the modular of the W
1,p(·)
0 (Ω) space by the mapping

%p(·) : W
1,p(·)
0 (Ω)→ R,

%p(·)(u) =

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx.

If (un), u ∈W 1,p(·)
0 (Ω), then we have the following relations:

‖u‖ > 1⇒ ‖u‖p
−
≤ %p(·)(u) ≤ ‖u‖p

+

, (7)

‖u‖ < 1⇒ ‖u‖p
+

≤ %p(·)(u) ≤ ‖u‖p
−
, (8)

‖un − u‖ → 0⇔ %p(·)(un − u)→ 0. (9)

For more details about these spaces we refer [3, 9, 12, 15, 13, 16].
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3. Continuous spectrum for differential operators with variable (p1, p2)-
growth

We consider the following eigenvalue problem{
−div [a(x)(φ(x, |∇u|)∇u+ ψ(x, |∇u|)∇u)] = λ|u|q(x)−2u, x ∈ Ω
u = 0, x ∈ ∂Ω,

(10)

where Ω ∈ RN (N ≥ 3) is a bounded domain with smooth boundary, λ is a positive
real number and a : Ω → [0,∞) a weighted function which has the property that
a ∈ L1

loc(Ω).
Problem (10) is based on non-homogeneous operators of the type (φ(x, |∇u|)∇u).

When φ(x, µ) = µp(x)−2, the operator implicated in (10) is the p(x)-Laplacian, that
is,

∆p(x)u = div(|∇u|p(x)−2∇u).

Throughout this paper we assume that p1, p2, q ∈ C+(Ω̄) and

1 < p1(x) < q− ≤ q+ < p2(x) < p∗1(x), (11)

where p∗1(x) :=
Np1(x)

N − p1(x)
if p1(x) < N and p∗1(x) := +∞ if p1(x) > N .

We remark that if p1(x) < p2(x), for any x ∈ Ω̄, then W
1,p2(x)
0 (Ω) is continuously

embedded in W
1,p1(x)
0 (Ω).

Let consider the functions φ, ψ : Ω × [0,∞) → [0,∞) which fulfill the following
assumptions:
(h1) φ(·, µ) and ψ(·, µ) are two measurable mappings on Ω for any µ ≥ 0; further,

φ(x, ·) and ψ(x, ·) are locally absolutely continuous on [0,∞) for almost x ∈ Ω;

(h2) there exist α1 ∈ Lp
′
1(Ω), α2 ∈ Lp

′
2(Ω) functions and β > 0 such that

|φ(x, |v|)v| ≤ α1(x) + β|v|p1(x)−1, |ψ(x, |v|)v| ≤ α2(x) + β|v|p2(x)−1

for almost all x ∈ Ω and for any v ∈ RN .
(h3) there exists a positive constant c > 0 such that

φ(x, µ) ≥ cµp1(x)−2, φ(x, µ) + µ
∂φ

∂µ
(x, µ) ≥ cµp1(x)−2

and

ψ(x, µ) ≥ cµp2(x)−2, ψ(x, µ) + µ
∂ψ

∂µ
(x, µ) ≥ cµp2(x)−2,

for almost all x ∈ Ω and for all positive µ.

Definition 3.1. A weak solution for problem (10) is a function u ∈ D1,p2(x)
0 (Ω) \ {0}

such that∫
Ω

a(x) [φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇vdx− λ
∫

Ω

|u|q(x)−2uvdx = 0,

for all v ∈ D1,p2(x)
0 (Ω) \ {0}.

Therefore, λ ∈ R is an eigenvalue for problem (10), with the corresponding eigen-
function u.
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The function space for problem (10) is D
1,p2(x)
0 (Ω), this choice being motivated by

hypothesis (11) and the presence of a weight function a : Ω → [0,∞) which satisfies
a ∈ L1

loc(Ω).

For any λ > 0 we define Fλ : D
1,p2(x)
0 (Ω)→ R by

Fλ(u) =

∫
Ω

a(x)

p1(x)
|∇u|p1(x)dx+

∫
Ω

a(x)

p2(x)
|∇u|p2(x)dx− λ

∫
Ω

1

q(x)
|u|q(x)dx.

Then, Fλ ∈ C1(D
1,p2(x)
0 (Ω),R) and〈

F
′

λ(u), v
〉

=

∫
Ω

a(x) [φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇vdx− λ
∫

Ω

|u|q(x)−2uvdx,

for all u, v ∈ D1,p2(x)
0 (Ω).

We define the first Rayleigh quotient by

λ1 := inf
u∈D1,p2(x)

0 (Ω)\{0}

∫
Ω

a(x)

p1(x)
|∇u|p1(x)dx+

∫
Ω

a(x)

p2(x)
|∇u|p2(x)dx∫

Ω

1

q(x)
|u|q(x)dx

.

The main result of this paper is given by the following theorem.

Theorem 3.2. Suppose that hypothesis (11) is satisfied. Then λ1 > 0. Furthermore,
any λ ∈ [λ1,∞) is an eigenvalue of problem (10). Moreover, there exists a positive
constant λ0 such that λ0 ≤ λ1 and no λ ∈ (0, λ0) is an eigenvalue of problem (10).

Since problem (10) is driven by two operators who are not uniformly elliptic, we
use the following results in order to proof Theorem 3.2.

In [11] it is defined ~a : Ω→ RN by

~a(x) = (a1(x1), . . . , aN (xN ))

with the assumption that there exists a positive constant a0 such that

div~a(x) ≥ a0 > 0, for all x ∈ Ω̄ (12)

and p : Ω̄→ (1, N) a function of class C1 which satisfies

~a(x) · ∇p(x) = 0, for all x ∈ Ω. (13)

Theorem 3.3. Suppose that ~a(x) and p(x) satisfie hypotheses (12) and (13). Then
there exists a positive constant C such that∫

Ω

|u(x)|p(x)dx ≤ C
∫

Ω

|~a(x)|p(x)|∇u|p(x)dx,

∀u ∈ C1
c (Ω̄).

This result is named the Caffarelli–Kohn–Nirenberg inequality with variable expo-
nent. Throughout this paper we consider a(x) = |x|p1(x), respectively a(x) = |x|p2(x).
Under these conditions we use a particular form of the Caffarelli–Kohn–Nirenberg
inequality stated in [11]: with N, p and a defined as above, there exists a positive
constant C such that ∫

Ω

|u(x)|p(x)dx ≤ C
∫

Ω

|x|p(x)|∇u|p(x)dx, (14)

∀u ∈ C1
c (Ω̄).
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For simplicity, we note with ‖·‖1, respectively ‖·‖2 the norm of W
1,p1(x)
0 (Ω), re-

spectively W
1,p2(x)
0 (Ω) and ‖·‖ the norm of D

1,p2(x)
0 (Ω) := X.

4. Proof of Theorem 3.2

We define the energy functionals I1, J1, I2, J2 : X → R by

I1(u) =

∫
Ω

|x|p1(x)

p1(x)
|∇u|p1(x)dx+

∫
Ω

|x|p2(x)

p2(x)
|∇u|p2(x)dx,

J1(u) =

∫
Ω

1

q(x)
|u|q(x)dx,

I2(u) =

∫
Ω

|x|p1(x)|∇u|p1(x)dx+

∫
Ω

|x|p2(x)|∇u|p2(x)dx,

J2(u) =

∫
Ω

|u|q(x)dx.

Proposition 4.1. The functionals I1 and J1 are well-defined on X and I1, J1 ∈
C1(X,R), with the Gâteaux derivative given by〈

I
′

1(u), v
〉

=

∫
Ω

|x|p1(x)|∇u|p1(x)−2∇u∇vdx+

∫
Ω

|x|p2(x)|∇u|p2(x)−2∇u∇vdx

and 〈
J
′

1(u), v
〉

=

∫
Ω

|u|q(x)−2uvdx,

for all u, v ∈ X.

The proof of Proposition 4.1 is based on standard arguments (see, e.g. [10]).
In this context, we proof the following assertions:

(a) λ1 > 0;
(b) λ1 is an eigenvalue of problem (10);
(c) any λ ∈ (λ1,∞) is an eigenvalue of problem (10);
(d) no λ ∈ (0, λ0) is an eigenvalue of problem (10).

(a): For any x ∈ Ω, taking into account hypothesis (11), we obtain that for any
u ∈ X,

2(|u(x)|p1(x) + |u(x)|p2(x)) ≥ |u(x)|q
+

+ |u(x)|q
−

(15)

and

|u(x)|q
+

+ |u(x)|q
−
≥ |u(x)|q(x). (16)

Now, integrating the above inequalities we obtain

2

∫
Ω

(|u(x)|p1(x) + |u(x)|p2(x))dx ≥
∫

Ω

(|u(x)|q
+

+ |u(x)|q
−

)dx ≥
∫

Ω

|u(x)|q(x)dx.

(17)
By (14) and (17) we finally obtain that there exists a positive constant c̃ such that∫

Ω

|x|p1(x)|∇u|p1(x)dx+

∫
Ω

|x|p2(x)|∇u|p1(x)dx ≥ c̃
∫

Ω

(|u(x)|p1(x) + |u(x)|p2(x))dx

≥ c̃

2

∫
Ω

|u(x)|q(x)dx, (18)
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for every u ∈ X.
Relation (18) leads us to the second Rayleigh quotient

λ0 := inf
v∈X{0}

I2(v)

J2(v)
> 0. (19)

Hence,

I2(u) ≥ λ0J2(u), for every u ∈ X. (20)

From the above inequality follows that

p+
1 I1(u) ≥ I2(u) ≥ λ0J2(u) ≥ λ0J1(u), ∀u ∈ X (21)

and therefore we obtain that λ1 > 0.
(b): In order to prove our result, we use the following two lemmas.

Lemma 4.2. The following equalities are satisfied:

lim
‖u‖→∞

I1(u)

J1(u)
=∞ (22)

and

lim
‖u‖→0

I1(u)

J1(u)
=∞. (23)

Proof. By the continuous embedding of X in Lq
±

(Ω) (see [15]), we deduce that there
exists µ1 and µ2 two positive constants such that

‖u‖ ≥ µ1|u|q+ , for any u ∈ X (24)

and

‖u‖ ≥ µ2|u|q− , for any u ∈ X. (25)

Relations (4), (14), (17), (24) and (25) lead to the fact that, for any u ∈ X with
‖u‖ > 1, it holds

I1(u)

J1(u)
≥

1

p+
1

∫
Ω

|x|p1(x)|∇u|p1(x)dx+
1

p+
2

∫
Ω

|x|p2(x)|∇u|p2(x)dx

1

q−

∫
Ω

|u|q(x)dx

≥

1

p+
1

∫
Ω

|u|p1(x)dx+
1

p+
2

∫
Ω

|u|p2(x)dx

1

q−

∫
Ω

|u|q(x)dx

≥

1

p+
1

|u|p
−
1

p1(x) +
1

p+
2

|u|p
−
2

p2(x)

|u|q
+

q+ + |u|q
−

q−

q−

.

Since X is continuously embedded in W 1,p2(x)(Ω) we obtain that

I1(u)

J1(u)
≥

1

p+
2

‖u‖p
+
2

c̃1 ‖u‖q
+

+ c̃2 ‖u‖q
−

q−

. (26)

Passing to the limit as ‖u‖ → ∞ in inequality (26) and considering that p−2 > q+ ≥ q−
it follows that relation (22) holds.
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From (11) we have that p2(x) > p1(x), for any x ∈ Ω̄, hence W
1,p2(x)
0 (Ω) is continu-

ously embedded in W
1,p1(x)
0 (Ω). Therefore, if ‖u‖ converges to 0 then ‖u‖1 converges

to 0.
We conclude from the above remarks that for any u ∈ X with ‖u‖ < 1 small

enough, we have ‖u‖2 < 1.

Again from (11) we deduce that W
1,p1(x)
0 (Ω) is continuously embedded in Lq

±
(Ω).

Then there exist c1, c2 > 0 constants such that

‖u‖2 ≥ c1|u|q+ , ∀u ∈W
1,p1(x)
0 (Ω) (27)

and

‖u‖2 ≥ c2|u|q− , ∀u ∈W
1,p1(x)
0 (Ω). (28)

Hence, for every u ∈ X with ‖u‖ < 1 small enough, relations (3), (17), (27) and (28)
involve

I1(u)

J1(u)
≥

1

p+
1

∫
Ω

|∇u|p1(x)dx

|u|q
+

q+ + |u|q
−

q−

q−

≥

‖u‖p
+
1

2

p+
1

c1 ‖u‖q
+

2 + c2 ‖u‖q
−

2

q−

.

Because p+
1 < q− ≤ q+, passing to the limit as ‖u‖ → 0 (so ‖u‖1 → 0) in the above

inequality we obtain that relation (23) is fulfill and then, this complete the proof of
Lemma 4.2. 2

Lemma 4.3. There exists u ∈ X \ {0} such that
I1(u)

J1(u)
= λ1.

Proof. We consider (un) ∈ X \ {0} a minimizing sequence for λ1, this means that

lim
n→∞

I1(un)

J1(un)
= λ1 > 0. (29)

Relation (22) ensures us that (un) is a bounded sequence in X. Because X is
reflexive (see [15]) then there exists u ∈ X such that, up to a subsequence, (un) is
weakly convergent to u in X.

Let u ∈ X, by (4) and (14) we have that from any ‖u‖ > 1,

I1(u) ≥ 1

p+
2

‖u‖p
−
2 .

From (11), the above inequality leads to

lim
‖u‖→∞

I1(u) =∞,

so, I1 is coercive.
On the other hand, for any u ∈ X we have

I1(u) ≥ 1

p+
2

min
{
‖u‖p

−
2 , ‖u‖p

−
1

}
,

hence, we deduce that I1 is bounded from below. Therefore, it follows that I1 is
weakly lower semi-continuous. Now, we can conclude that

lim inf
n→∞

I1(un) ≥ I1(u). (30)
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From (11) we know that 1 ≤ q+ < p2(x), for all x ∈ Ω̄. Taking into account this
hypothesis, the compact embedding theorem for spaces with variable exponent and
[15, Remark 2] we obtain that X is compact embedded in Lq(x)(Ω). It follows that
(un) strongly converges in Lq(x)(Ω). Then, by relation (6) we obtain

lim
n→∞

J1(un) = J1(u). (31)

By (30) and (31) we deduce that if u 6≡ 0 then

I1(u)

J1(u)
= λ1.

The last step in proving Lemma 4.3 is to show that u is nontrivial. Suppose that u
is trivial. Thus, (un) weakly converges to 0 in X and strongly in Lq(x), which means
that

lim
n→∞

J1(un) = 0. (32)

With ε ∈ (0, λ1) a fixed point, by relation (29) it follows that for n large enough
we have

|I1(un)− λ1J1(un)| < εJ1(un)

and

(λ1 − ε)J1(un) < I1(un) < (λ1 + ε)J1(un).

Passing to the limit in the previous inequalities and considering relation (32) ful-
filled we deduce that

lim
n→∞

I1(un) = 0. (33)

Taking into account (6), relation (33) implies that (un) strongly converges to 0 in
X, that means, limn→∞ ‖un‖ = 0. This result and relation (23) yield to

lim
n→∞

I1(un)

J1(un)
=∞,

which means a contradiction. Hence, u 6≡ 0 and this completes the proof of Lemma
4.3.

2

By Lemma 4.3 we infer that there exists u ∈ X \ {0} such that

I1(u)

J1(u)
= λ1 = inf

w∈X\{0}

I1(w)

J1(w)
. (34)

However, for any v ∈ X we have

d

dε

I1(u+ εv)

J1(u+ εv)
|ε=0 = 0.

We can easly obtain that∫
Ω

(
|x|p1(x)φ(x, |∇u|) + |x|p2(x)ψ(x, |∇u|)

)
∇u∇vdx·J1(u)−I1(u)

∫
Ω

|u|q(x)−2uvdx = 0,

(35)
for any v ∈ X.

From relation (35) and taking into account the fact that I1(u) = λ1J1(u) and
J1(u) 6= 0 we deduce that λ1 is an eigenvalue of problem (10). Therefore, hypothesis
(b) is verified.
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(c): We consider λ ∈ (λ1,∞) arbitrary but fixed and define Fλ : X → R by

Fλ(u) = I1(u)− λJ1(u).

Standard arguments show that Fλ ∈ C1(X,R) with the Gâteaux derivative〈
F
′

λ(u), v
〉

=
〈
I
′

1(u), v
〉
− λ

〈
J
′

1(u), v
〉
, ∀u ∈ X.

Then, λ is an eigenvalue of problem (10) if and only if there exists a critical point
uλ ∈ X \ {0} of Fλ.

Similarly with the proof of relation (22) we obtain that the functional Fλ is coercive,
so

lim
‖u‖→∞

Fλ(u) =∞.

The fact that the functional Fλ is weakly lower semi-continuous is obtained by
similar arguments as in the proof of [15, Lemma 3]. Then, there exists a global
minimum point uλ ∈ X of Fλ which is a critical point of Fλ.

Finally, it remains to prove that uλ is not trivial. Certainly, whereas λ1 =

infu∈X\{0}
I1(u)

J1(u)
and λ > λ1 we deduce that there exists vλ ∈ X such that

I1(vλ) < λJ1(vλ)

and

Fλ(vλ) < 0.

Then,

inf
X
Fλ < 0

and hence, the hypothesis that uλ is a nontrivial critical point of Fλ is verified. This
concludes (c).

(d): Finally, we prove that no λ ∈ (0, λ0) with λ defined by (19) is an eigenvalue
of problem (10).

Suppose that there exists an eigenvalue λ ∈ (0, λ0) of problem (10). Then, there
exists uλ ∈ X \ {0} such that〈

I
′

1(uλ), uλ

〉
= λ

〈
J
′

1(uλ), uλ

〉
,

that is

I2(uλ) = λJ2(uλ).

Since uλ ∈ X \{0} it follows that J2(uλ) > 0. The fact that λ < λ0 combined with
the previous informations yields to

I2(uλ) ≥ λ0J2(uλ) > λJ2(uλ) = I2(uλ).

By the above inequalities we obtain a contradiction. Hence, there is no eigenvalue
λ ∈ (0, λ0) of problem (10).

From (b), (c) and (d) we conclude that λ0 ≤ λ1 and this completes the proof of
Theorem 3.2.
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[17] I. St̂ırcu, V. Uţă, Characterization of solutions to equations involving the p(x)-Laplace operator,
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 273, pp. 1–16.
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