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Antiplane contact problems for viscoelastic materials

Andaluzia Matei

Abstract. We survey our recent results in the study of two antiplane problems modelling

contact between a viscoelastic body and a rigid foundation. The first problem involves fric-

tionless adhesive contact while the second one is frictional. For each problem we present the

mathematical model, its variational formulation, and state an existence and uniqueness result.
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1. Introduction

In this paper we make a survey on our recent results obtained in the study of
two antiplane contact problems. We consider quasistatic processes for homogeneous
isotropic viscoelastic materials. The first problem involves frictionless adhesive con-
tact and, following [1], the adhesion process is modeled by a surface internal variable,
the bonding field; the tangential shear due to the bounding field is included in the
model. For the second problem, where the contact is frictional, the friction is modeled
with a slip dependent version of Tresca’s law. Our aim is to present results concerning
the well posedness of these problems.

The paper is structured as follows. In Section 2 we present the physical setting and
we state the corresponding mathematical models. In Section 3 we list the assumptions
on the data, derive the variational formulations of the mechanical problems, and state
existence and uniqueness results of the weak solution for the models. The proofs of our
results can be found in [2, 4]. For the adhesive problem studied in [4] we use a version
of the Cauchy-Lipschitz theorem and for the frictional problem studied in [2] we use
the Banach’s fixed point theorem and results for elliptic variational inequalities.

2. Mathematical modelling

We consider a body B identified with a region in IR3 it occupies in a fixed and
undistorted reference configuration. We assume that B is a cylinder with generators
parallel to the x3-axes with a cross-section which is a regular region Ω in the x1,
x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder is assumed
to be sufficiently long so that end effects in the axial direction are negligible. Thus,
B = Ω × (−∞,+∞). Let ∂Ω = Γ. We assume that Γ is divided into three disjoint
measurable parts Γ1, Γ2 and Γ3 such that the one-dimensional measure of Γ1, denoted
measΓ1, is strictly positive. Let T > 0 and let [0, T ] denote the time interval of
interest. The cylinder is clamped on Γ1 × (−∞,+∞) and is in contact with a rigid
foundation on Γ3×(−∞,+∞). Moreover, the cylinder is subjected to time dependent
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volume forces of density f0 on B and to time dependent surface tractions of density
f2 on Γ2 × (−∞,+∞). We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω × [0, T ] → IR, (1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → IR. (2)

The body forces (1) and the surface tractions (2) would be expected to give rise to a
deformation of the cylinder whose displacement denoted by u is of the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω × [0, T ] → IR. (3)

Such kind of deformation is called an antiplane shear. From (3) it follows that, in the
case of the antiplane problem, the infinitesimal strain tensor becomes

ε(u) =
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, (4)

where the index that follows a comma indicates a partial derivative with respect to
the corresponding component of the spatial variable.

Let σ = (σij) denote the stress field. We consider the linear constitutive law for a
viscoelastic material

σ = 2θε(u̇) + λ(tr ε(u))I + 2µε(u), (5)

where λ > 0 and µ > 0 are the Lamé coefficients, θ > 0 is the coefficient of viscosity,
tr ε(u) = εii(u) and I is the unit tensor in IR3. Here and below the dot above repre-
sents the derivative with respect to the time variable and the convention summation
upon repeated index is used.

We neglect the inertial term in the equation of motion and obtain the quasistatic
approximation for the process. Thus, keeping in mind (1), (3) and (5) we deduce that
the equation of equilibrium reduces to the following scalar equation

θ∆u̇ + µ∆u + f0 = 0 on Ω × (0, T ).

Recall that, since the cylinder is clamped on Γ1×(−∞,+∞)×(0, T ), the displacement
field vanishes there. Thus, (3) implies that

u = 0 on Γ1 × (0, T ).

Let ν denote the unit normal on Γ × (−∞,+∞). We have ν = (ν1, ν2, 0) where
νi = νi(x1, x2) : Γ → IR, i = 1, 2. From (5) we deduce that the Cauchy stress vector
is given by

σν = (0, 0, θ ∂ν u̇ + µ∂νu). (6)

Here and below we use the notation ∂νu = u,1ν1+u,2ν2. Keeping in mind the traction
boundary condition σν = f2 on Γ2 × (0, T ), it follows from (2) and (6) that

θ ∂ν u̇ + µ∂νu = f2 on Γ2 × (0, T ).

For the displacement field vector u we denote by uν and uτ its normal and tangential

components on the boundary given by uν = v · ν, uτ = u − uνν, and for the stress
field σ we denote by σν and στ the normal and the tangential components on the
boundary, that is σν = (σν) · ν, στ = σν − σνν. Using again (3) we find

uν = 0, uτ = (0, 0, u) (7)

and, similarly, from (5) and we obtain

σν = 0, στ = (0, 0, στ ), where στ = θ ∂ν u̇ + µ∂νu. (8)
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We now describe the frictionless adhesive contact condition on Γ3 × (−∞,+∞). Fol-
lowing [1], we introduce the surface state variable β, the bonding field, which is a
measure of the fractional intensity of adhesion between the surface and the founda-
tion. This variable is restricted to values 0 ≤ β ≤ 1; when β = 0 all the bonds are
severed and there are no active bonds; when β = 1 all the bonds are active. When
0 < β < 1 it measures the fraction of active bonds and partial adhesion takes place.

We assume that the resistance to tangential motion is generated by the glue, in
comparison to which the frictional traction can be neglected. Thus, the tangential
traction depends only on the intensity of adhesion and the tangential displacement.

−στ = p(β, u).

Using now (8), it is straightforward to see that

θ ∂ν u̇ + µ∂νu = p(β, u) on Γ3 × (0, T ).

In particular, we may consider the case

p(β, r) =











−q(β)L if r < −L

q(β) r if |r| ≤ L

q(β)L if r > L,

(9)

where L > 0 is the limit bound constant and q is a nonnegative tangential stiffness
function, see [3].

The evolution of the bonding field is assumed to depend generally on β and uτ .
Keeping in mind (7), we can describe it by the equation

β̇ = Had(β,R(|u|)) on Γ3 × (0, T ),

where Had is a general function discussed below. The function R : IR → IR is a
truncation and is defined as

R(s) =







L if s ≥ L

s if |s| ≤ L

−L if s ≤ −L,

(10)

where L > 0 is a characteristic length of the bonds. We use it as an argument in
Had since usually, when the glue is streched beyond the limit L it does not contribute
more to the bond strenght. An example of such a function Had is given by

Had(β, r) = −γν

β+

1 + β+

r2 (11)

where γν is the bonding energy constant and β+ = max{0, β}.
Let u0 = (0, 0, u0) be the initial displacement and β0 the initial bonding field.

The mechanical model of the antiplane frictionless contact problem with adhesion is
complete and can be stated as follows.
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Problem P1. Find an displacement field u : Ω × [0, T ] → IR and an adhesion field

β : Γ3 × [0, T ] → [0, 1] such that

θ∆u̇ + µ∆u + f0 = 0 in Ω × (0, T ), (12)

u = 0 on Γ1 × (0, T ), (13)

θ ∂ν u̇ + µ∂νu = f2 on Γ2 × (0, T ), (14)

−θ ∂ν u̇ − µ∂νu = p(β, u) on Γ3 × (0, T ), (15)

β̇ = Had(β,R(|u|)) on Γ3 × (0, T ), (16)

u(0) = u0 in Ω, (17)

β(0) = β0 on Γ3. (18)

Note that when the displacement field u which solves Problem P1 is known, then
the stress tensor can be calculated using the formula (5).

We now describe the frictional contact condition on Γ3 × (−∞,+∞). We assume
that the friction is invariant with respect with the x3 axis and is modelled with the
following conditions on Γ3, for all t ∈ [0, T ]:















|στ (t)| ≤ g(
∫ t

0
|u̇τ (s)|ds),

|στ (t)| < g(
∫ t

0
|u̇τ (s)|ds) ⇒ u̇τ (t) = 0,

|στ (t)| = g(
∫ t

0
|u̇τ (s)|ds) ⇒ ∃ γ ≥ 0 such that στ = −γu̇τ .

(19)

Here g : Γ3 × IR → IR+ is a given function, u̇τ denotes the tangential velocity on

the contact boundary and | · | denotes the Euclidian norm on IRd (d = 1 or 3).
This is Tresca’s friction law where the friction bound g is assumed to depend on the
accumulated slip of the surface. From a mechanical point of view this accumulated
slip represents the changes in the contact surface structure that resulted from sliding.
In the previous formula, when the friction bound g is a given function such that
g : Γ3 → IR+ , we obtained the simple Tresca’s friction law. The strict inequality
holds in the stick zone and the equality in the slip zone.

Using now (7) and (8), it is straightforward to see that on Γ3, for all t ∈ [0, T ] the
conditions (19) imply



































|θ ∂ν u̇(t) + µ∂νu(t)| ≤ g(
∫ t

0
|u̇(s)|ds),

|θ ∂ν u̇(t) + µ∂νu(t)| < g(
∫ t

0
|u̇(s)|ds) ⇒ u̇(t) = 0,

|θ ∂ν u̇(t) + µ∂νu(t)| = g(
∫ t

0
|u̇(s)|ds)

⇒ ∃ γ ≥ 0 such that θ ∂ν u̇(t) + µ∂νu(t) = −γu̇(t).

Finally, we prescribe the initial displacement, u(0) = u0 in Ω.

Now, the mechanical model of the antiplane frictional contact problem is complete
and it can be stated as follows.

Problem P2. Find the displacement field u : Ω × [0, T ] → IR such that:

θ∆u̇ + µ∆u + f0 = 0 in Ω × (0, T ), (20)

u = 0 on Γ1 × (0, T ), (21)

θ ∂ν u̇ + µ∂νu = f2 on Γ2 × (0, T ), (22)
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|θ ∂ν u̇(t) + µ∂νu(t)| ≤ g(
∫ t

0
|u̇(s)|ds),

|θ ∂ν u̇(t) + µ∂νu(t)| < g(
∫ t

0
|u̇(s)|ds) ⇒ u̇(t) = 0,

|θ ∂ν u̇(t) + µ∂νu(t)| = g(
∫ t

0
|u̇(s)|ds)

⇒ ∃ γ ≥ 0 such that θ ∂ν u̇(t) + µ∂νu(t) = −γu̇(t)

on Γ3 × (0, T ), (23)

u(0) = u0 in Ω. (24)

Note again that when the displacement field u which solves Problem P2 is known,
then the stress tensor can be calculated using the formula (5).

3. Variational formulations and main results

In this section we derive the variational formulations of the problems P1, P2 and
state two existence and uniqueness results, Theorem 3.1 and Theorem 3.2. To this
end we introduce the closed subspace of H1(Ω) defined by

V = {v ∈ H1(Ω) | v = 0 on Γ1}.

Since measΓ1 > 0, it follows that V is a real Hilbert space endowed with the inner
product

(u, v)V =

∫

Ω

∇u · ∇v dx ∀u, v ∈ V,

and the associated norm ‖ · ‖V .

The adhesive problem. In the study of the mechanical Problem P1, we assume
that the tangential contact function p : Γ3 × IR × IR → IR satisfies















































(a) There exists Lp > 0 such that

|p(x, β1, r1) − p(x, β2, r2)| ≤ Lp (|β1 − β2| + |r1 − r2|)
∀β1, β2 ∈ IR, r1, r2 ∈ IR, a.e. x ∈ Γ3;

(b) The map x 7→ p(x, β, r) is Lebesgue measurable
on Γ3, ∀β ∈ IR, r ∈ IR;

(c) The map x 7→ p(x, 0, 0) ∈ L∞(Γ3).

(25)

Clearly, if q : IR → IR is a bounded Lipschitz continuous function, then the tangen-
tial contact function (9) satisfies condition (25). We conclude that our results below
are valid for the corresponding contact problems.
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Next, the adhesion rate function Had : Γ3 × IR × [−L,L] → IR satisfies


































































































(a) There exists LHad
> 0 such that

|Had(x, b1, r1) − Had(x, b2, r2)|
≤ LHad

(|b1 − b2| + |r1 − r2|)
∀ b1, b2 ∈ IR, r1, r2 ∈ [−L,L], a.e. x ∈ Γ3;

(b) The map x 7→ Had(x, b, r) is Lebesgue measurable
on Γ3, ∀ b ∈ IR, r ∈ [−L,L];

(c) The map (b, r) 7→ Had(x, b, r) is continuous on
IR × [−L,L], a.e. x ∈ Γ3;

(d) Had(x, 0, r) = 0 ∀ r ∈ [−L,L], a.e. x ∈ Γ3;

(e) Had(x, b, r) ≥ 0 ∀ b ≤ 0, r ∈ [−L,L], a.e. x ∈ Γ3 and
Had(x, b, r) ≤ 0 ∀ b ≥ 1, r ∈ [−L,L], a.e. x ∈ Γ3.

(26)

It is straightforward to see that if the adhesion coefficient γν ∈ L∞(Γ3) satisfies γν ≥ 0
a.e. on Γ3 then the function Had in example (11) satisfies (26). We conclude that all
the results below are valid for this choice of Had.

We assume that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)), f2 ∈ W 1,∞(0, T ;L2(Γ2)). (27)

Finally, the initial data satisfy

u0 ∈ V, β0 ∈ L∞(Γ3) and 0 ≤ β0 ≤ 1 a.e. x ∈ Γ3. (28)

We note that conditions (28) and (26) ensure that the adhesion field is restricted to
values between 0 and 1. Indeed, if {u, β} are regular functions which satisfy (16),
(18), using the arguments in [3] and conditions (28), (26), it can be shown that
0 ≤ β(x, t) ≤ 1 for all x ∈ Γ3, t ∈ [0, T ].

Next, we define the function f : [0, T ] → V and the functional j : L∞(Γ3) × V ×
V → IR by equalities

(f(t), v)V =

∫

Ω

f0(t)v dx +

∫

Γ2

f2(t)v da ∀v ∈ V, t ∈ [0, T ],

j(β, u, v) =

∫

Γ3

p(β, u)v da ∀β ∈ L∞(Γ3), ∀u, v ∈ V.

Performing integrates by part we obtain the following variational formulation of the
Problem P1.

Problem P 1
V . Find a displacement field u : [0, T ] → V and an adhesion field β :

[0, T ] → L∞(Γ3) such that u(0) = u0, β(0) = β0 and

θ(u̇(t), v)V + µ(u(t), v)V + j(β(t), u(t), v) = (f(t), v)V

∀ v ∈ V, ∀ t ∈ [0, T ],
(29)

β̇(t) = Had(β(t), R(|u(t)|)), ∀t ∈ [0, T ]. (30)

We have the following existence and uniqueness result.

Theorem 3.1. Assume that (25)–(28) hold. Then, for each θ > 0 there exists a

unique solution {u, β} of Problem P 1
V . Moreover, the solution satisfies

u ∈ W 2,∞(0, T ;V ), β ∈ W 2,∞(0, T ;L∞(Γ3)). (31)
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The proof of Theorem 3.1 was obtained in [4] and it is based on a version of Cauchy-
Lipschitz theorem. We conclude by this theorem that the mechanical Problem P1 has
a unique weak solution with regularity (31).

The frictional problem. In the study of the mechanical Problem P2, we assume
that the friction bound function g, defined on Γ3 × IR with values in IR+, satisfy the
following properties:



























(a) ∃ Lg > 0 such that |g(x, r1) − g(x, r2)| ≤ Lg|r1 − r2|
∀ r1, r2 ∈ IR, a.e. x ∈ Γ3;

(b) ∀ r ∈ IR, g(·, r) is Lebesgue measurable on Γ3;

(c) g(·, 0) ∈ L2(Γ3).

(32)

The forces and tractions are assumed to have the regularity

f0 ∈ L∞(0, T ;L2(Ω)), f2 ∈ L∞(0, T ;L2(Γ2)) (33)

and the initial data is chosen such that

u0 ∈ V. (34)

For almost any t ∈ (0, T ) we define the operator

St : V → L2(Γ), St(v) =

∫ t

0

|v(s)| ds,

and we introduce the function f : [0, T ] → V and the functional j : L2(Γ)× V → IR+

using the equalities

(f(t), v)V =

∫

Ω

f0(t)v dx +

∫

Γ2

f2(t)v da ∀v ∈ V a.e. t ∈ (0, T ), (35)

j(u, v) =

∫

Γ3

g(u) |v|da ∀u ∈ L2(Γ), ∀v ∈ V. (36)

In [2] the following variational formulation of Problem P2 has been derived.

Problem P 2
V . Find a displacement field u : [0, T ] → V such that u(0) = u0 and

θ (u̇(t), v − u̇(t))V + µ (u(t), v − u̇(t))V + j(St(u̇), v) − j(St(u̇), u̇(t)) (37)

≥ (f(t), v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ).

The well-posedness of problem P 2
V is given by the following result.

Theorem 3.2. Assume that (32), (33) and (34) hold. Then the variational Problem

P 2
V has a unique solution u ∈ W 1,∞(0, T ;V ).

The proof of Theorem 3.2 was be carried out in several steps and it is based on
fixed point arguments. Details can be found in [2]. We conclude by this theorem that
the mechanical Problem P2 has a unique weak solution with regularity W 1,∞(0, T ;V ).
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