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Existence and multiplicity of solutions for anisotropic elliptic
equations with variable exponent
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Abstract. In this article we study the following nonlinear anisotropic elliptic equations

(P )

{
−

∑N
i=1 ∂xiai(x, ∂xiu) + b(x)|u|P

+
+ −2

u = λ(x)f(x, u) + µ(x)g(x, u) in Ω,
u = 0 on ∂Ω.

We set up that the problem (P ) admits at least two weak solutions under suitable conditions.

2010 Mathematics Subject Classification. 35J25, 35J62, 35D30, 46E35, 35J20.

Key words and phrases. Variable exponent Lebesgue space, anisotropic space, Mountain

pass theorem, Ekeland’s variational principle.

1. Introduction

Let Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary. In this paper
we will study the existence and the multiplicity of weak solutions of the anisotropic
problem:

(P )

{
−
∑N
i=1 ∂xiai(x, ∂xiu) + b(x)|u|P

+
+−2u = λ(x)f(x, u) + µ(x)g(x, u) in Ω,

u = 0 on ∂Ω,

where λ 6≡ 0 and µ 6≡ 0, b ∈ L∞(Ω), f, g : Ω × R → R, ai : Ω × R → R are
Carathéodory functions fulfilling some natural hypotheses. The anisotropic differ-

ential operator
∑N
i=1 ∂xiai(x, ∂xiu) is a −→p (.)-Laplace type operator, where −→p (x) =

(p1(x), p2(x), ..., pN (x)) and P+
+ = max

i∈{1,2,...,N}
sup

Ω
pi(x) for i = 1, ..., N , we assume

that pi is a continuous function on Ω. We denote by ai(x, η) the continuous deriva-
tive with respect to η of the mapping Ai : Ω× R→ R , Ai = Ai(x, η). We make the
following assumptions on the mapping Ai:
(A0) Ai(x, 0) = 0 for a.e. x ∈ Ω.
(A1) There exists a positive constant ci such that ai satisfies the growth condition

|ai(x, η)| ≤ ci(1 + |η|pi(x)−1),

for all x ∈ Ω and η ∈ R.
(A2) The inequalities

|η|pi(x) ≤ ai(x, η)η ≤ pi(x)Ai(x, η),
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for all x ∈ Ω and η ∈ R.
(A3) assume that ai is strictly monotone, that is,

(ai(x, η)− ai(x, ξ))(η − ξ) > 0,

for all x ∈ Ω and η, ξ ∈ R, with η 6= ξ.
Examples
1) If we take ai(x, η) = |η|pi(x)−2η for all i ∈ {1, ..., N}, we have Ai(x, η) = 1

pi(x) |η|
pi(x)

for all i ∈ {1, ..., N}. Obviously, (A0) - (A3) are verified, and we obtain the −→p (x) -
Laplace operator

4−→p (x)(u) =

N∑
i=1

∂xi(|∂xiu|pi(x)−2∂xiu).

2) If we take ai(x, η) = (1 + η2)
pi(x)−2

2 η for all i ∈ {1, ..., N}, we have Ai(x, η) =
1

pi(x) [(1 + |η|2)
pi(x)

2 − 1] for all i ∈ {1, ..., N}, then (A0) - (A4) are verified, and we

find the anisotropic variable exponent mean curvature operator

N∑
i=1

∂xi(1 + |∂xiu|2)
pi(x)−2

2 ∂xiu).

And when pi(x) = p(x) for all i = 1, 2, 3..., N, we obtain the pseudo p(.)−Laplace
operator which is the natural generalization of pseudo p− Laplace operator, as p > 1,
moreover it is an isotropic operator. As the p(.)−Laplace operator isn’t homogeneous,
then it has more difficulties than p−Laplace operator. In order to overcome these
difficulties, we link the classical techniques with those came out recently when treating
the problems with variable exponents.

This work is a generalization of the article [1] where the authors considered problem

(S)

{
−
∑N
i=1 ∂xiai(x, ∂xiu) + b(x)|u|P

+
+−2u = f(x, u) in Ω

u = 0 on ∂Ω,

where f(x, u) = λ(|u|q(x)−2u + |u|γ(x)−2u), in which the parameter λ is positive and
q(x), γ(x) are continuous functions on Ω, and they obtained the existence of two
nontrivial weak solutions. Their arguments are based on the mountain pass theorem
and Ekeland’s variational principle [7].

Many other authors studied the same problems in a different cases. For example,

in [14], the authors considered (S), without b(x)|u|P
+
+−2u, where f = λ|u|q(x)−2u,

and proved that problem (S) has a continuous spectrum, however in [13], the authors
demonstrate that when λ depends on the variable x, problem (S) has two nontrivial
weak solutions, using the mountain-pass theorem of Ambrosetti and Rabinowitz [3]
and the Ekeland’s variational principle, but in [4], Boureanu proved that problem (S)
has a sequence of weak solutions by means of the symmetric mountain-pass theorem.

Given Ω ⊂ RN , we set

C+(Ω) = {h ∈ C(Ω)|min
x∈Ω

h(x) > 1}.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).
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Let p ∈ C+(Ω), then Lp(x)(Ω) is called variable exponent Lebesgue space which is
defined as follow

Lp(x)(Ω) = {u : u is a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx <∞},

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1}

is a reflexive and separable Banach space (see [16]).
We say that p is logarithmic Hölder continuous if

|p(x)− p(y)| ≤ − M

log(|x− y|)
∀x, y ∈ Ω such that |x− y| ≤ 1/2. (1)

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ [Lp(x)(Ω)]N}.
For all u ∈ W 1,p(x)(Ω), we have ‖u‖1,p(x) = |u|p(x) + |∇u|p(x). If p satisfies (1), the

space W
1,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W 1,p(x)(Ω) under the norm ‖u‖1,p(x).

For u ∈W 1,p(x)
0 (Ω), we can define an equivalent norm ‖u‖p(x) = |∇u|p(x).

Now, we introduce a natural generalization of the function space W
1,p(x)
0 (Ω), which

will allow us to study the problem (P ), which is called anisotropic variable exponent

Sobolev space W
1,−→p (x)
0 (Ω). If −→p : Ω → RN ; −→p (x) = (p1(x), p2(x), ..., pN (x)), and

for each i ∈ {1, 2, ..., N}, we have pi ∈ C+(Ω), and satisfy (1), the anisotropic variable

exponent Sobolev space W
1,−→p (x)
0 (Ω) is the closure of C∞0 (Ω) under the norm

‖u‖ = ‖u‖−→p (.) =

N∑
i=1

|∂xiu|pi(.),

and it is a reflexive Banach space [8, 14]. Henceforth, we put W
1,−→p (x)
0 (Ω) = X.

In order to study the problem (P ) we have to introduce the vectors
−→
P +,
−→
P − ∈ RN

which are defined in the following way
−→
P + = (p+

1 , p
+
2 , ..., p

+
N ),
−→
P − = (p−1 , p

−
2 , ..., p

−
N ),

and the positive real numbers P+
+ , P

+
− , P

−
− as the following

P+
+ = max{p+

1 , ..., p
+
N}, P

+
− = max{p−1 , ..., p

−
N}, P

−
− = min{p−1 , ..., p

−
N}.

Throughout this paper, we assume that

N∑
i=1

1

p−i
> 1, (2)

Define P ∗−, P−,∞ ∈ R+ by

P ∗− =
N∑N

i=1
1
p−i
− 1

, P−,∞ = max{P+
− , P

∗
−}.

throughout this paper, we have P+
+ < P−,∞ = max{P+

− , P
∗
−} = P ∗−.

We assume that the Caratheodory functions f, g : Ω×R→ R satisfy the conditions:
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(f0) |f(x, t)| ≤ c|t|α(x)−1 a.e. x ∈ Ω and for all t ∈ R, where c > 0 is a constant,
α ∈ C+(Ω) such that α+ = sup

x∈Ω

α(x) < P−− < P+
+ ≤ s(x) < P−,∞, ∀x ∈ Ω and

λ ∈ L
s(x)

s(x)−α(x) (Ω), with s(x) ∈ C+(Ω) and α(x) + 1 ≤ s(x) < P−,∞, ∀x ∈ Ω.
(f1) There exists δ > 0 such that for a.e. x ∈ Ω we have F (x, t) ≥ h0(x)tα0 when

0 < t ≤ δ, 0 < α0 < P−− , h0(x) ≥ 0 ∀x ∈ Ω, 6≡ 0, and h0 ∈ C(Ω,R), with

F (x, t) =
∫ t

0
f(x, s) ds.

(g0) |g(x, t)| < d|t|γ(x)−1, a.e. x ∈ Ω and for all t ∈ R where d > 0 is a constant,

and γ ∈ C+(Ω) satisfying P+
+ < γ− < γ+ < P−,∞, and µ ∈ L

r(x)
r(x)−γ(x) (Ω), with

r(x) ∈ C+(Ω), and γ(x) + 1 ≤ r(x) < P−,∞ ∀x ∈ Ω.
(g1) There exist two constants θ > P+

+ , and M > 0 such that 0 < θG(x, t) ≤ tg(x, t),

a.e. x ∈ Ω, and for all |t| ≥M, with G(x, t) =
∫ t

0
g(x, s) ds.

And assume that
(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.

The main result of this paper is as follows.

Theorem 1.1. Suppose f and g satisfy the hypotheses (f0) − (f1), (g0) − (g1), and
assume (B), (A0) − (A3) and λ(x), µ(x) > 0 a.e. x ∈ Ω. In addition assume that
pi(.) satisfies (1) for each i ∈ {1, ..., N} and −→p (.) satisfies (2). Then there exists
λ∗ > 0 such that for any function λ which satisfy |λ| s(x)

s(x)−α(x)

∈ (0, λ∗), (P ) has two

nontrivial weak solutions.

Remark 1.1. For f(x, u) = |u|α(x)−2u, g(x, u) = |u|γ(x)−2u, λ(x) = µ(x) = µ =
λ ∈ R for all x ∈ Ω, withα(x) < P−− < P+

+ < P−,∞, ∀x ∈ Ω, and P+
+ < γ− < γ+ <

P−,∞, we obtain the result in the article [1].

This article contains two sections. We will begin to present some basic preliminary
results and lemmas. In section 2, we will give the proof of our main results.

2. Preliminaries

We recall some important definitions and properties of the Lebesgue and Sobolev

spaces with variable exponent Lp(x)(Ω) and W
1,p(x)
0 (Ω), where Ω is a bounded domain

in RN .

Proposition 2.1. (see [6, 11, 10])
(1) The space (Lp(x)(Ω), |u|p(x)) is a separable, uniformly convex Banach space and

its dual space is Lq(x)(Ω), where 1
p(x) + 1

q(x) = 1. For any u ∈ Lp(x)(Ω) and

v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

(2) If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω)
and the embedding is continuous.
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Remark. If 1
p(x) + 1

q(x) + 1
r(x) = 1, then for any u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω), w ∈

Lr(x)(Ω), we have∣∣∣∣∫
Ω

uvw dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−
+

1

r−

)
|u|p(x)|v|q(x)|w|r(x) ≤ 3|u|p(x)|v|q(x)|w|r(x). (3)

Lemma 2.2. (see[2]) Let q, s ∈ C+(Ω) with q(x) ≤ s(x) for all x ∈ Ω, and u ∈
Ls(x)(Ω). Then, |u|q(x) ∈ L

s(x)
q(x) (Ω) and∣∣∣|u|q(x)

∣∣∣
s(x)
q(x)

≤ |u|q
+

s(x) + |u|q
−

s(x),

or there exists a number q̃ ∈ [q−, q+] such that∣∣∣|u|q(x)
∣∣∣
s(x)
q(x)

= |u|q̃s(x).

Proposition 2.3. (see[9]) Denote ρp(x)(u) =
∫

Ω
|u(x)|p(x) dx. Then for u ∈ Lp(x)(Ω),

(un) ⊂ Lp(x)(Ω) we have
(1) |u|p(x) < 1(= 1;> 1)⇔ ρp(x)(u) < 1(= 1;> 1),

(2) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x),

(3) |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x),

(4) |u|p(x) → 0(→∞)⇔ ρp(x)(u)→ 0(→∞),
(5) limn→∞ |un − u|p(x) = 0⇔ limn→∞ ρp(x)(un − u) = 0.

We recall now some results which concerning the embedding theorem.

Proposition 2.4. (see[14]) Suppose that Ω ⊂ RN (N > 3) is a bounded domain with
smooth boundary and relation ( 2) is fulfilled.
(1) For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞ ∀x ∈ Ω,

the embedding

W
1,−→p (x)
0 (Ω) ↪→ Lq(x)(Ω)

is continuous and compact.
(2) Assume that P−− > N , then the embedding

W
1,−→p (x)
0 (Ω) ↪→ C(Ω)

is continuous and compact.

Under the conditions (Ai), i = 0, 1, 2, 3. We have the proposition below which is
useful.

Proposition 2.5. (cf.[12, 4]) Let

Ai(u) =

∫
Ω

Ai(x, ∂xiu) dx.

For i ∈ {1, 2, ..., N}, we have:
• Ai is well defined on X,
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• the functional Ai ∈ C1(X,R) and

〈A
′

i(u), ϕ〉 =

∫
Ω

ai(x, ∂xiu)∂xiϕdx,

for all u, ϕ ∈ X.
• Ai is weakly lower semi-continuous.
• Let

A(u) =

∫
Ω

N∑
i=1

Ai(x, ∂xiu) dx,

then A′ is an operator of type (S+) (cf. [4]).

Here we focus on the mountain-pass theorem of Ambrosetti and Rabinowitz and
Ekeland’s variational principle.

Theorem 2.6 (Montain - Pass Theorem). ( see[3]) Let X be a real Banach space and
φ ∈ C1(X,R) a functional satisfies:
(1) φ satisfying the Palais-Smale condition (that is, any sequence ({un})n ⊂ X such

that (φ(un))n is bounded and φ
′
(un)→ 0, admits a convergent subsequence).

(2) There exists r > 0 such that one can find e ∈ X, ‖e‖ ≥ r with

max(φ(0), φ(e)) < inf
‖u‖=r

φ(u) =: β.

Then φ possesses a critical value c ≥ β given by

c := inf
γ∈Γ

sup
t∈[0,1]

φ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) | γ(0) = 0 and γ(1) = e}.

Theorem 2.7 (Ekeland’s variational principle). (see[7]) Let (X, d) be a complete
metric space, and let φ : X → R ∪ +∞ be a lower semicontinuous functional on
X that is bounded below and not identically equal to +∞. Fix ε > 0 and a point
u ∈ Xsuch that

φ(u) ≤ inf
x∈X

φ(x) + ε.

Then, for every λ > 0, there exists a point v ∈ X such that
(1) φ(v) ≤ φ(u),
(2) d(u, v) ≤ λ,
(3) φ(w) > φ(v)− ε

λ
d(v, w), for all w 6= v.

3. Existence of two solutions

We are interested to prove the existence of weak solutions. Let’s prove lemma
which can help us to define the weak solution.

Lemma 3.1. Let B(u) =
∫

Ω
[λ(x)F (x, u) + µ(x)G(x, u)] dx. Suppose that (f0) and

(g0) are satisfied, then we have
(1) B is well defined and B ∈ C1(X,R).

(2) B, B
′

are weakly-strongly continuous.
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Proof. (1) the embeddings X ↪→ Ls(x)(Ω) and X ↪→ Ls(x)(Ω) are compact, then there
exist two constants c1 > 0 and d1 > 0 such that |u|s(x) ≤ c1‖u‖, and |u|r(x) ≤ d1‖u‖.
Using (f0) and (g0), lemma 2.2 and proposition 2.4, we have∫

Ω

|λ(x)F (x, u) + µ(x)G(x, u)| dx ≤
∫

Ω

|λ(x)||F (x, u)| dx+

∫
Ω

|µ(x)||G(x, u)| dx

≤ 2
c

α−
|λ(x)| s(x)

s(x)−α(x)

|uα(x)| s(x)
α(x)

+ 2
d

γ−
|µ(x)| r(x)

r(x)−γ(x)
|uγ(x)| s(x)

γ(x)

≤ 2c1
c

α−
|λ(x)| s(x)

s(x)−α(x)

‖u‖α̃ + 2d1
d

γ−
|µ(x)| r(x)

r(x)−γ(x)
‖u‖γ̃ .

Finally, B is well defined. We still have to show that B ∈ C1(X,R). The Mean-value
theorem gives us

DB(u, ϕ) = lim
t→0

B(u+ tϕ)−B(u)

t

= lim
t→0

∫
Ω

λ(x)F (x, u+ tϕ)− λ(x)F (x, u) + µ(x)G(x, u+ tϕ)− µ(x)G(x, u)

t
dx

= lim
t→0

∫
Ω

[λ(x)f(x, u+ tθϕ) + µ(x)g(x, u+ tθϕ)]ϕ(x) dx,

where 0 ≤ θ ≤ 1. From (f0), (g0), Young’s inequality, and the convexity of the function
h(a) = |a|p with p ≥ 1, for |t| ≤ 1, we have

[λ(x)f(x, u+ tθϕ) + µ(x)g(x, u+ tθϕ)]ϕ(x)

≤ c|λ(x)||u+ tθϕ|α(x)−1|ϕ(x)|+ d|µ(x)||u+ tθϕ|γ(x)−1|ϕ(x)|,

≤ c(s(x)− α(x))

s(x)
|λ(x)|

s(x)
s(x)−α(x) +

c(α(x)− 1)

s(x)
[|u+ tθϕ|α(x)−1]

s(x)
α(x)−1

+ c|ϕ(x)|s(x) +
d(r(x)− γ(x))

r(x)
|µ(x)|

r(x)
r(x)−γ(x)

+
d(γ(x)− 1)

r(x)
[|u+ tθϕ|γ(x)−1]

r(x)
γ(x)−1 + d|ϕ(x)|r(x),

≤ c(s(x)− α(x))

s(x)
|λ(x)|

s(x)
s(x)−α(x) +

c(α(x)− 1)

s(x)
2s(x)−1[|u|s(x) + |ϕ|s(x)]

+ c|ϕ(x)|s(x) +
d(r(x)− γ(x))

r(x)
|µ(x)|

r(x)
r(x)−γ(x)

+
d(γ(x)− 1)

r(x)
2r(x)−1[|u|r(x) + |ϕ|r(x)] + d|ϕ(x)|r(x).

The last right expression is independent on t and it is in L1(Ω), then by the Lebesgue
dominated convergence theorem, we have

DB(u, ϕ) =

∫
Ω

[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx. (4)

So using the fact that Nf : Ls(x)(Ω)→ L
s(x)

α(x)−1 (Ω); u 7→ f(x, u) and Ng : Lr(x)(Ω)→
L

r(x)
γ(x)−1 (Ω); u 7→ g(x, u) are continuous bounded operators. Then, by (f0), (g0), and
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Proposition 2.1, we obtain

DB(u, ϕ) =

∫
Ω

[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx

≤
∫

Ω

c|λ(x)||f(x, u)||ϕ(x)| dx+

∫
Ω

d|µ(x)||g(x, u)||ϕ(x)| dx

≤ 3c|λ| s(x)
s(x)−α(x)

|f(x, u)| s(x)
α(x)−1

|ϕ(x)|s(x)

+ 3d|µ| r(x)
r(x)−γ(x)

|g(x, u)| r(x)
γ(x)−1

|ϕ(x)|r(x).

So DB(u, ϕ), as a function of ϕ, is a continuous linear functional on X, then it is
the Gâteaux differential of B. Let’s prove that it’s continuous, then for u, v, ϕ ∈ X,
from (4), we get

|〈DB(u)−DB(v), ϕ〉| ≤ 3|λ| s(x)
s(x)−α(x)

|f(x, u)− f(x, v)| s(x)
α(x)−1

|ϕ|s(x)

+ 3|µ| r(x)
r(x)−γ(x)

|g(x, u)− g(x, v)| r(x)
γ(x)−1

|ϕ|r(x)

≤ K1|f(x, u)− f(x, v)| s(x)
α(x)−1

‖ϕ‖+K2|g(x, u)− g(x, v)| r(x)
γ(x)−1

‖ϕ‖,

where K1 > 0 and K2 > 0 are constants. Then,

‖DB(u)−DB(v)‖X∗ ≤ K1|f(x, u)− f(x, v)| s(x)
α(x)−1

+K2|g(x, u)− g(x, v)| r(x)
γ(x)−1

.

Thus, DB(u) is continuous, so B is Frèchet differentiable and B ∈ C1(X,R) with

〈B
′
(u), ϕ〉 =

∫
Ω

[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx.

(2) Suppose by contradiction that there exists a sequence (un) ⊂ X such that un ⇀ u
and B(un) 9 B(u), then there exists ε0 and subsequence still denoted (un) such that:

0 < ε0 ≤ |B(un)−B(u)|.
For 0 < θn < 1, and by finite increment theorem we have

0 < ε0 ≤ |〈B
′
(un + θn(un − u)), un − u〉|.

Put wn = un + θn(un− u). As B
′
(u)(w) =

∫
Ω

[λ(x)f(x, u)w+µ(x)g(x, u)w] dx, using
(3), proposition 2.4, (f0) and (g0) we obtain

|〈B
′
(wn), (un − u)〉| =

∫
Ω

|λ(x)f(x,wn)(un − u) + µ(x)g(x,wn)(un − u)| dx

≤
∫

Ω

{|λ(x)||un − u||f(x,wn)|+ |µ(x)||un − u||g(x,wn)|} dx

≤
∫

Ω

c|λ(x)||wn|α(x)−1|un − u| dx+

∫
Ω

d|µ(x)||wn|γ(x)−1|un − u| dx

≤ 3c|λ| s(x)
s(x)−α(x)

||wn|α(x)−1| s(x)
α(x)−1

|un − u|s(x)

+ 3d|µ| r(x)
r(x)−γ(x)

||wn|γ(x)−1| r(x)
γ(x)−1

|un − u|r(x).

Since lim
n→+∞

|wn|s(x) 6= ∞ and lim
n→+∞

|wn|r(x) 6= ∞, then by the proposition 2.3, we

deduce that

lim
n→+∞

||wn|α(x)−1| s(x)
α(x)−1

6=∞ and lim
n→+∞

||wn|γ(x)−1| r(x)
γ(x)−1

6=∞.
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So, as the embeddings X ↪→ Ls(x)(Ω) and X ↪→ Lr(x(Ω) are compact, then the
last expression on the right goes to 0 as n → +∞. Finally, B is weakly-strongly
continuous.

Let’s prove that B
′

is also weakly-strongly continuous. We know that

〈B
′
(u), v〉 =

∫
Ω

λ(x)f(x, u)v dx+

∫
Ω

µ(x)g(x, u)v dx,

where v ∈ X. For un ⇀ u, then (un) is bounded, using relation (3), we have

|〈B
′
(un)−B

′
(u), v〉| ≤

∫
Ω

|λ(x)||(f(x, un)− f(x, u))v| dx

+

∫
Ω

|µ(x)||(g(x, un)− g(x, u))v| dx

≤ 3|λ| s(x)
s(x)−α(x)

|f(x, un)− f(x, u)| s(x)
α(x)−1

|v|s(x)

+ 3|µ| r(x)
r(x)−γ(x)

|g(x, un)− g(x, u)| r(x)
γ(x)−1

|v|r(x).

The compact embedding X ↪→ Ls(x)(Ω) (respectively X ↪→ Lr(x)(Ω)) guarantees the
existence of subsequence (un) which converges to u in Ls(x)(Ω) (respectively Lr(x)(Ω)).

So, using the continuity of Nf and Ng, we deduce easily that B
′

is weakly-strongly
continuous. �

Let us define now the functional φ associated with the problem (P ) : φ : X −→ R

φ(u) =

∫
Ω

[
N∑
i=1

Ai(x, ∂xiu) +
b(x)

P+
+

|u|P
+
+ − λ(x)F (x, u)− µ(x)G(x, u)

]
dx.

Under assumptions (A0), (A1), (f0) and (g0), we have φ is well defined on X and
φ ∈ C1(X,R), so we can define a weak solution as below.

Definition 3.1. A function u is a weak solution of the problem (P ) if and only if∫
Ω

[
N∑
i=1

ai(x, ∂xiu)∂xiϕ+ b(x)|u|P
+
+−2uϕ− λ(x)f(x, u)ϕ− µ(x)g(x, u)ϕ

]
dx = 0,

for all ϕ ∈ X.

Lemma 3.2. (see[5]) Let u ∈ X.
(1) When ‖u‖ < 1, we have

N∑
i=1

∫
Ω

|∂xi(u)|pi(x) dx ≥ ‖u‖
P+

+

NP+
+−1

.

(2) When ‖u‖ > 1, we have

N∑
i=1

∫
Ω

|∂xi(u)|pi(x) dx ≥ ‖u‖
P−−

NP−−−1
−N.

Lemma 3.3. The functional Φ satisfies the Palais-Smale condition.
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Proof. Let {un} be a (PS) sequence, namely, |φ(un)| ≤ R, and φ
′
(un) → 0, then

when ‖un‖ ≥ 1, we have by (f0), (g0) and (g1)

1 +R+ ‖un‖ ≥ φ(un)− 1

θ
〈φ
′
(un), un〉

≥
∫

Ω

{
N∑
i=1

Ai(x, ∂xiun) +
b(x)

P+
+

|un|P
+
+ − λ(x)F (x, un)− µ(x)G(x, un)

}
dx

− 1

θ

∫
Ω

{
N∑
i=1

ai(x, ∂xiun)∂xiun + b(x)|un|P
+
+ − λ(x)f(x, un)un − µ(x)g(x, un)un

}
dx

≥
∫

Ω

{
N∑
i=1

Ai(x, ∂xiun)− 1

θ
ai(x, ∂xiun)∂xiun

}
dx

+

(
1

P+
+

− 1

θ

)∫
Ω

b(x)|un|P
+
+ dx+

∫
[|un|≥M ]

µ(x)

(
1

θ
g(x, un)un −G(x, un)

)
dx

+

∫
[|un|<M ]

µ(x)

(
1

θ
g(x, un)un −G(x, un)

)
dx

+

∫
Ω

λ(x)

(
1

θ
f(x, un)un − F (x, un)

)
dx

≥
∫

Ω

{
N∑
i=1

Ai(x, ∂xiun)− 1

θ
ai(x, ∂xiun)∂xiun

}
dx

− c
(

1

θ
+

1

α−

)∫
Ω

λ(x)|un|α(x) +K,

where K is constant obtained by using (g0) and (g1). From (A2), for all x ∈ Ω and
i ∈ {1, ..., N} we have

−1

θ
ai(x, ∂xiun)∂xiun ≥ −

P+
+

θ
Ai(x, ∂xiun). (5)

On the other hand, we have by the Lemma 2.2 and Proposition 2.1∫
Ω

λ(x)|un|α(x) ≤ 2|λ| s(x)
s(x)−α(x)

∣∣∣|un|α(x)
∣∣∣
s(x)
α(x)

≤ 2|λ| s(x)
s(x)−α(x)

|un|α̃s(x),

where α̃ ∈ [α−, α+].
Since the embedding X ↪→ Ls(x)(Ω) is compact, then there exists a constant c1 > 0
such that

|un|s(x) ≤ c1‖un‖,
Then, ∫

Ω

λ(x)|un|α(x) ≤ C|λ| s(x)
s(x)−α(x)

‖un‖α̃, (6)

where C > 0 is a constant. From (5) and (6), we get

1 +R+ ‖un‖ ≥

(
1−

p+
+

θ

)
N∑
i=1

∫
Ω

Ai(x, ∂xiun) dx− C1|λ| s(x)
s(x)−α(x)

‖un‖α̃ +K,
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where C1 > 0, R > 0 are constants. Again from (A2) we have

Ai(x, ∂xiun) ≥ 1

pi(x)
|∂xiun|pi(x) ≥ 1

P+
+

|∂xiun|pi(x),

for all x ∈ Ω and i ∈ {1, ..., N}, so

1 +R+ ‖un‖ ≥

(
1

P+
+

− 1

θ

)
N∑
i=1

∫
Ω

|∂xiun|pi(x) dx− C1|λ| s(x)
s(x)−α(x)

‖un‖α̃ +K.

Using Lemma 3.2, we get

1 +R+ ‖un‖ ≥

(
1

P+
+

− 1

θ

)(
‖un‖P

−
−

NP−−−1
−N

)
− C1|λ| s(x)

s(x)−α(x)

‖un‖α̃ +K,

and consequently un is bounded because θ > P+
+ and P−− > α̃. As X is reflexive then

there exists a subsequence, still denoted by (un) which converges weakly to u0 in X.

Using the fact that φ
′
(un)→ 0, we can deduce that

lim
n→∞

〈φ
′
(un), un − u0〉 = 0,

more precisely,

lim
n→∞

∫
Ω

[

N∑
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0) + b(x)|un|P
+
+−2un(un − u0)

− λ(x)f(x, un)(un − u0)− µ(x)g(x, un)(un − u0)] dx = 0.

Using Hölder inequality we have∫
Ω

λ(x)f(x, un)(un − u0) ≤ 3c|λ| s(x)
s(x)−α(x)

∣∣∣|u|α(x)−1
∣∣∣

s(x)
α(x)−1

|un − u0|s(x).∫
Ω

µ(x)g(x, un)(un − u0) ≤ 3d|µ| r(x)
r(x)−γ(x)

∣∣∣|u|γ(x)−1
∣∣∣
r(x)

γ(x)−1

|un − u0|r(x).∫
Ω

b(x)|un|P
+
+−2un(un − u0) ≤ 2|b|∞

∣∣∣|un|P+
+−1

∣∣∣ P
+
+

P
+
+
−1

|un − u0|P+
+
.

As s(x), r(x) and P+
+ fulfill Proposition 2.4, thus (un) converges strongly to u0 in

Ls(x)(Ω) , Lr(x)(Ω) and LP
+
+ (Ω). By these facts the relation above reduces to

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0) dx = 0.

Using Proposition 2.5, we deduce that (un) converges strongly to (u0) in X, that is
to say that φ satisfies Palais-Smale condition. �

Now we demonstrate the following geometric conditions of Theorem 2.1.

Lemma 3.4. (1) There exists λ∗ > 0 and δ, r > 0 such that for any |λ| s(x)
s(x)−α(x)

∈
(0, λ∗), we have φ(u) ≥ δ for all u ∈ X with ‖u‖ = r.

(2) There exists v ∈ X \ {0} such that lim
t→+∞

φ(tv) = −∞.
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Proof. 1) We will show that φ(u) ≥ δ for ‖u‖ = r. For ‖u‖ < 1, using Hölder
inequality and Lemmas 2.2 and 3.2, we have

φ(u) =

∫
Ω

{
N∑
i=1

Ai(x, ∂xi(u)) +
b(x)

P+
+

|u|P
+
+ − λ(x)F (x, u)− µ(x)G(x, u)

}
dx

≥ 1

P+
+

N∑
i=1

∫
Ω

|∂xi(u)|pi(x) dx+
b0

P+
+

∫
Ω

|u|P
+
+ dx− c

∫
Ω

λ(x)

α(x)
|u|α(x) dx

− d

∫
Ω

µ(x)

γ(x)
|u|γ(x) dx,

≥ 1

P+
+

(
‖u‖P

+
+

NP+
+−1

)
− C

′

1|λ| s(x)
s(x)−α(x)

‖u‖α̃ − C
′

2|µ| r(x)
r(x)−γ(x)

‖u‖γ̃ ,

where C
′

1 > 0, C
′

2 > 0 are constants. The assumption (B) gives us

1

P+
+

∫
Ω

b(x)|u|P
+
+ dx ≥ b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

≥ 0.

This implies that

φ(u) ≥ ‖u‖P
+
+

2P+
+N

P+
+−1

− C
′

1|λ| s(x)
s(x)−α(x)

‖u‖α̃ +
‖u‖P

+
+

2P+
+N

P+
+−1

− C
′

2|µ| r(x)
r(x)−γ(x)

‖u‖γ̃ ,

so it follows that,

φ(u) ≥ ‖u‖P
+
+

(
1

2P+
+N

P+
+−1

− C
′

1|λ| s(x)
s(x)−α(x)

‖u‖α̃−P
+
+

)

+ ‖u‖P
+
+

(
1

2P+
+N

P+
+−1

− C
′

2|µ| r(x)
r(x)−γ(x)

‖u‖γ̃−P
+
+

)
. (7)

Since the function h : [0, 1]→ R defined by

h(t) =
1

2P+
+N

P+
+−1

− C
′

2|µ| r(x)
r(x)−γ(x)

tγ̃−P
+
+ .

is positive in neighborhood of the origin because γ̃ > P+
+ , it follows that there exists

r ∈ (0, 1) such that h(r) > 0. On the other hand, for ‖u‖ = r let us define

λ∗ = min{1, 1

4C
′
1P

+
+N

P+
+−1

rP
+
+−α̃},

then for any |λ| s(x)
s(x)−α(x)

< λ∗, there exists δ = r
P

+
+

4P+
+N

P
+
+
−1

such that for any u ∈ X

with ‖u‖ = r we have φ(u) ≥ δ > 0.
2) By the condition (g1), there exists M1, M2 > 0 such that

G(x, t) ≥M1|t|θ −M2 , ∀t ∈ R, a.e. x ∈ Ω
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Let v ∈ C∞0 (Ω) and t > 1. Using (A0), (A1), and (f0), (g0) and (g1), then

φ(tv) =

∫
Ω

{
N∑
i=1

Ai(x, ∂xi(tv)) +
b(x)

P+
+

|tv|P
+
+ − λ(x)F (x, tv)− µ(x)G(x, tv)

}
dx

≤ C

N∑
i=1

∫
Ω

(
|∂xi(tv)|+ |∂xi(tv)|pi(x)

pi(x)

)
dx+

tP
+
+

P+
+

∫
Ω

b(x)|v|P
+
+ dx

+

∫
Ω

λ(x)|F (x, tv)| dx−
∫

Ω

µ(x)G(x, tv) dx,

≤ CtP
+
+

N∑
i=1

∫
Ω

(
|∂xiv|+

|∂xiv|pi(x)

P−−

)
dx+

tP
+
+

P+
+

∫
Ω

b(x)|v|P
+
+ dx

+
c

α−
tα

+

∫
Ω

λ(x)|v|α(x) dx−M1t
θ

∫
Ω

µ(x)|v|θ dx−M2

∫
Ω

µ(x) dx.

As b(x)|v|P
+
+ and µ(x)|v|θ are positive, and θ > P+

+ > α+, then lim
t→+∞

φ(tv) = −∞.
�

Then, for a such λ∗ we can say that φ satisfies the conditions of Theorem 2.1
(mountain pass theorem), finally φ has a nontrivial critical point u0 with φ(u0) = c2
and thus a nontrivial weak solution of problem (P ).

In order to prove that there exists a second weak solution, we need the following
lemma.

Lemma 3.5. There exists ψ ∈ X, ψ ≥ 0, ψ 6≡ 0 such that φ(tψ) < 0 for all t > 0
small enough.

Proof. Let ψ ∈ C∞0 (Ω), ψ ≥ 0, ψ 6≡ 0, and without loss of generality, we may assume
that sup

x∈Ω
|ψ(x)| = 1, and t ∈ (0, δ). Using (A0), (A1), and (f1) we obtain

φ(tψ) =

∫
Ω

{
N∑
i=1

Ai(x, ∂xi(tψ)) +
b(x)

P+
+

|tψ|P
+
+ − λ(x)F (x, tψ)− µ(x)G(x, tψ)

}
dx

≤ C

N∑
i=1

∫
Ω

(
|∂xi(tψ)|+ |∂xi(tψ)|pi(x)

pi(x)

)
dx+

tP
+
+

P+
+

∫
Ω

b(x)|ψ|P
+
+ dx

−
∫

Ω

λ(x)F (x, tψ) dx−
∫

Ω

µ(x)G(x, tψ) dx,

≤ CtP
−
−

N∑
i=1

∫
Ω

(
|∂xiψ|+

|∂xiψ|pi(x)

P−−

)
dx+

tP
+
+

P+
+

∫
Ω

b(x)|ψ|P
+
+ dx

− tα0

∫
Ω

λ(x)h0(x)|ψ|α0 dx < 0,
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for all t < ρ
1

P
+
+
−α0 , with

0 < ρ < min

1,

∫
Ω
λ(x)h0(x)|ψ|α0 dx

C
∑N
i=1

∫
Ω

(
|∂xiψ|+

|∂xiψ|
pi(x)

P−−

)
dx+ 1

P+
+

∫
Ω
b(x)|ψ|P

+
+ dx

 .

�

Let λ∗ be as in Lemma 3.4 and assume that |λ| s(x)
s(x)−α(x)

< λ∗, giving a ball Br(0) =

{ϕ ∈ X; ‖ϕ‖ < r}, it follows that

inf
∂Br(0)

φ(u) > 0.

On the other hand, from Lemma 3.5 there exists ψ ∈ X such that

φ(tψ) < 0 for t > 0 small enough.

Using the inequality (7), we can see easily that φ is bounded below on Br(0), then
for u ∈ Br(0) we have

−∞ < c3 = inf
Br(0)

φ(u) < 0.

Let now 0 < ε < inf
∂Br(0)

φ(u)− inf
Br(0)

φ(u). Applying Theorem 2.2 (Ekeland variational

principle [7]) to the functional φ : Br(0)→ R, we find uε ∈ Br(0) such that

φ(uε) < inf
Br(0)

φ+ ε,

< φ(u) + ε‖u− uε‖, u 6= uε.

As
φ(uε) ≤ inf

Br(0)
φ+ ε ≤ inf

Br(0)
φ+ ε < inf

∂Br(0)
φ.

Consequently uε ∈ Br(0). Let’s define H : Br(0) → R by H(u) = φ(u) + ε‖u − uε‖.
It’s easy to see that uε is a minimum point of H and thus

H(uε + tv)−H(uε)

t
≥ 0,

for a small t > 0 and v ∈ Br(0). The above relation yields

φ(uε + tv)− φ(uε)

t
+ ε‖v‖ ≥ 0,

letting t goes to 0, it follows that 〈φ′(uε), v〉+ε‖v‖ > 0 , we deduce that ‖φ′(uε)‖ ≤ ε.
We infer that there exists a sequence (vn) ⊂ Br(0) such that

φ(vn)→ c3 and φ
′
(vn)→ 0. (8)

It’s clear that (vn) is bounded in X. Thus, there exists u1 ∈ X such that, up to
a subsequence, (vn) converges weakly to u1 in X. From Propositions 2.1, 2.4 , 2.5,
and Lemma 2.2 we deduce that vn → u1. Therefore, by relation (8)

φ(vn) = c3 and φ
′
(vn) = 0, (9)

thereby u1 is a nontrivial weak solution for (P ). Finally, as

φ(u0) = c2 > 0 > c3 = φ(u1),
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then, u0 6= u1. Thus, (P ) has two nontrivial solutions.
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