Superposition operators on some new type of order modular spaces

E. HERAWATI AND M. MURSALEEN

ABSTRACT. In this paper, we introduce *E*-valued sequence spaces, namely $X(E, \rho_f)$, where *E* is a Riesz space, ρ_f an order modular and *f* is an order φ -function. Further, we characterize the classes $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ by superposition for $X \in \{c_0, \ell_1\}$.

2010 Mathematics Subject Classification. 46E40, 46B42. Key words and phrases. Order modular, order φ -function, σ -order converges, superposition.

1. Introduction and preliminaries

Let E be a Riesz space with a cone E^+ . In this work, we introduce and study E-valued sequence spaces defined by an order modular ρ_f , where f is an order φ -function.

For any *E*-sequence space X(E) and a real number $\alpha > 0$ we define the set

$$X(E,\rho_f)) = \left\{ x = (x_k) \in \Omega(E) : \left(\rho_f\left(\frac{x_k}{\alpha}\right)\right) \in X(E) \right\},\$$

where $\rho_f\left(\frac{x_k}{\alpha}\right) = f\left(\frac{x_k}{\alpha}\right)$ for every k.

We show that $X(\tilde{E}, \rho_f)$ is an ideal Riesz space under coordinate wise ordering. We obtain the sufficient condition for the superposition operator acting from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$; and the necessary condition of the superposition operator acting from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$; and the necessary condition of the superposition operator acting from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ where f and h are order φ -function. Finally, we obtain the sufficient and necessary condition of the superposition operator P_g from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ where $X \in \{c_0, \ell_1\}$.

An even function $f: E \to E^+$ is called order φ -function if f is vanishing at zero, non-decreasing in E^+ and if $x_k \xrightarrow{o} t$ in E implies $f(x_k) \xrightarrow{o} f(t)$. Furthermore, a function $\rho: E \to E^+$ is called an order modular if

(i)
$$\rho(t) = \theta$$
 if and only if $t = \theta$

(ii)
$$\rho(t) = \rho(|t|)$$

(iii)
$$\rho(t_1 \lor t_2) \le \rho(t_1) + \rho(t_2).$$

Let \mathbb{N} be the set of all natural numbers and let $g: \mathbb{N} \times E \to E$ be such that g(k, 0) = 0for every $k \in \mathbb{N}$. If X and Y are two E-sequence spaces then the function $P_g: X \to Y$ is called a *superposition operator* if

$$P_g(x) = (g(k, x_k))$$
 for every $x \in X$.

In an implicit form, the superposition operator can be found in the terminology as "composite operator". For case $E = \mathbb{R}$, the characterization of P_g was given by several authors. For example, Šragin [1] defined the superposition operator on Orlicz

Received March 08, 2019. Accepted December 27, 2019.

sequence space. Appel and Dedegich [2] defined for the classical sequence spaces ℓ_{∞}, c_0 , and ℓ_p $(1 \le p < \infty)$. Other researchers such as [3, 4, 5, 6, 7] have shown some properties of superposition operator P_q on some real sequence spaces.

The notation $x_n \downarrow$ (resp. $x_n \uparrow$) is used for decreasing (resp. increasing) sequence in E and $x_n \downarrow x$ (resp. $x_n \uparrow x$) provided that $x_n \downarrow$ and $\inf x_n = x$ exists in E (resp. $x_n \uparrow$ and $\sup x_n = x$ exists in E). If every nonempty countable subset of E that is bounded from above has supremum, then E is called *Dedekind* σ -complete (or, equivalently, if $0 \le x_n \uparrow \le x$ implies the existence of $\sup \{x_n : n \in \mathbb{N}\}$. A Riesz space E is Archimedean if $\frac{1}{n}x \downarrow 0$ for each $x \in E^+$.

A sequence $(x_n) \subset E$ is said to be σ -order convergent to $x \in E$, denoted by $x_n \xrightarrow{o} x$ or $x = o - \lim_{n \to \infty} x_n$, if there exists a sequence $p_n \downarrow 0$ in E such that $|x_n - x| \leq p_n$ holds for all n. In this case $x \in E$ is called order limit of the sequence (x_n) where $|x| = x \lor (-x)$ for any $x \in E$. A sequence can have at most one order limit. Indeed, if $x_n \xrightarrow{o} x$ and $x_n \xrightarrow{o} y$, then pick two sequences (p_n) and (q_n) with $p_n \downarrow 0$ and $q_n \downarrow 0$ such that $|x_n - x| \leq p_n$ and $|x_n - y| \leq q_n$ for all n and note that

$$0 \le |x - y| \le |x_n - x| + |x_n - y| \le (p_n + q_n) \downarrow 0$$
 for all n

implies x = y. The norm $\|\cdot\|$ in E is called a *Riesz norm* if $|x| \leq |y|$ in E implies $\|x\| \leq \|y\|$. Any Riesz space equipped with Riesz norm is called a *normed Riesz space*. However, norm convergence and σ -order convergence do not coincide. A complete normed Riesz space is called a *Banach lattice*. Furthermore, we say a Riesz norm $\|\cdot\|$ in E has

(i) the Riesz-Fischer property, if for any sequence $(x_k) \subset E^+$ for which $\sum_{k=1}^{\infty} ||x_k|| < \infty$

 ∞ , then the order limit of $\sum_{k=1}^{\infty} x_k$ exists and $\left\|\sum_{k=1}^{\infty} x_k\right\| \le \sum_{k=1}^{\infty} \|x_k\|$. (ii) the σ -Fatou property, if $\|x_k\| \uparrow \|x\|$ whenever $\theta \le x_k \uparrow x$

It is easy to see that σ -Fatou property property implies the Riesz-Fischer property, but not conversely.

For notation and the facts regarding Riesz spaces we refer to [8, 9]. We have

Theorem 1.1. The normed Riesz space E is a Banacah lattice if and only if E has the Riesz-Fischer property.

The space of all *E*-valued sequences is denoted by $\Omega(E)$. Any linear subspace of $\Omega(E)$ is called *E*-valued sequence space. We denote the *k*th term of a sequence *x* in an *E*-sequence space by x_k in *E*, and write $x = (x_k)$.

As examples of E-valued sequence spaces, we recall the following spaces [10, 11] which are needed in this paper.

•
$$\ell_1(E) = \left\{ x = (x_k) \in \Omega(E) : (\exists a \in E), \sum_{k=1}^n |x_k| \xrightarrow{o} a \right\}$$

• $c(E) = \left\{ x = (x_k) \in \Omega(E) : (\exists a \in E), x_k \xrightarrow{o} a \right\}$
• $c_0(E) = \left\{ x = (x_k) \in \Omega(E) : x_k \xrightarrow{o} 0 \right\}.$

Furthermore, let E be a real Köthe sequence space and φ be an Orlicz function. The space E_{φ} introduced by Calederon-Lozanovskii [12] is defined as follows

$$E_{\varphi} = \left\{ x = (x_k) \in \Omega(\mathbb{R}) : I_{\varphi}(cx) < \infty \text{ for some } c > 0 \right\}$$

where I_{φ} is a convex semi-modular on $\Omega(\mathbb{R})$ defined by

$$I_{\varphi} = \begin{cases} \|\varphi(x)\|_E & \text{if } \varphi(x) \in E \\ \infty & \text{otherwise} \end{cases}$$

and equipped with Luxemberg-Nakano norm

$$||x||_{\varphi} = \inf \left\{ \lambda > 0 : I_{\varphi}(x/\lambda) \le 1 \right\}$$

(se [13, 14, 15] and [16]).

Lemma 1.2. Let ρ be an order modular on a Riesz space E. Then

- (i) if $0 \le t_1 \le t_2$ in E implies $\rho(t_1) \le \rho(t_2)$.
- (ii) $\rho(\alpha t) = |\alpha| \ \rho(t) \ for \ |\alpha| \le 1.$

(iii) if $\alpha_i \in \mathbb{R}^+$ and $t_i \in E$ for every $i = 1, \dots n$ such that $\sum_{k=1}^n \alpha_i = 1$, then

$$\rho\left(\sum_{k=1}^{n} \alpha_i t_i\right) \le \sum_{k=1}^{n} \rho(t_i).$$

For any E-sequence space X(E) and a real number $\alpha > 0$ we define the set

$$X(E,\rho_f)) = \left\{ x = (x_k) \in \Omega(E) : \left(\rho_f\left(\frac{x_k}{\alpha}\right)\right) \in X(E) \right\}$$

where $\rho_f\left(\frac{x_k}{\alpha}\right) = f\left(\frac{x_k}{\alpha}\right)$ for every k.

The following example shows that the set $X(E, \rho_f)$ may not be linear.

Example 1.1. Let $X(E) = \ell_{\infty}(E)$ and u > 0 be a unit in E. Then there exists a real number $\lambda > 0$ such that $|t| \leq \lambda u$ for every $t \in E$. Therefore, there exists a positive real number sequence (λ_k) where $\lambda \leq \lambda_k \uparrow$. If we define order φ -function by

$$f(t) = \begin{cases} \frac{|t|}{2\lambda} & \text{if } t \leq \frac{\lambda u}{\alpha} \\ \frac{t}{2\lambda} & \text{if } t > \frac{\lambda u}{\alpha} \end{cases}$$

and take a sequence $x = (\lambda u_k)$ where $u_k = u$ for every k, then $\sup_{k \ge 1} f\left(\frac{\lambda u_k}{\alpha}\right) = \frac{u}{2\alpha} \in E$. Hence $x \in \ell_{\infty}(E, \rho_f)$. But $2x = (2\lambda u_k) \notin \ell_{\infty}(E, \rho_f)$ for every k, because $\sup_{k \ge 1} f\left(\frac{2\lambda u_k}{\alpha}\right) \le \sup_{k \ge 1} f\left(\frac{2\lambda_k u}{\alpha}\right) = \frac{u}{\alpha} \sup_{k \ge 1} \lambda_k$ undefined in E. Therefore $\ell_{\infty}(E, \rho_f)$ is not a sequence space.

It is easy to check that $X(E, \rho_f)$ is E-sequence space under restriction on X(E).

2. Topological properties of $X(E, \rho_f)$

We have the following basic result (see [4]).

Theorem 2.1. If X(E) be an ideal in $\Omega(E)$, then $X(E, \rho_f)$ is an ideal Riesz space under coordinate-wise ordering.

Now we prove the following:

Theorem 2.2. Let $X(E) = (X(E), \|\cdot\|_{X(E)})$ be an ideal normed Riesz space in $\Omega(E)$. If X(E) has the σ -Fatou property, then $X(E, \rho_f)$ is a Banach lattice equipped

with the following norm

$$\|x\| = \inf \left\{ \varepsilon > 0 : \|\rho_f\left(\frac{x}{\alpha}\right)\|_{X(E)} \le 1 \right\}$$

where $o_{\varepsilon}\left(\frac{x}{\alpha}\right) = \left(o_{\varepsilon}\left(\frac{x_k}{\alpha}\right)\right)$

for every $x \in X(E, \rho_f)$, where $\rho_f\left(\frac{x}{\alpha}\right) = \left(\rho_f\left(\frac{x_k}{\alpha}\right)\right)$.

Proof. Theorem 2.1 gives that $X(E, \rho_f)$ is an ideal Riesz space. It is easy to show that $X(E, \rho_f)$ is a normed Riesz space. Furthermore, we will show the norm $\|\cdot\|$ has the σ -Fatou property. If it fails, then there exists a sequence $(x^n) \subset X(E, \rho_f)$

$$x^n = (x_k^n) = (x_1^n, x_2^n, \cdots)$$

for every n and $x \in \Omega(E)$; where $0 \leq x^n \uparrow_n \leq x$ and $||x^n|| \neq ||x||$ as $n \to \infty$. Since $||x^n||\uparrow_n < \infty$, it follows that there exists $r \in \mathbb{R}$ such that $r = \sup \{||x^n|| : n \in \mathbb{N}\}$. Since f is a nondecreasing function on E^+ , we have $\rho_f(x^n/(r+1))\uparrow_n \rho_f(x/r)$. By the definition of $||\cdot||_{X(E)}$, we have

$$\left\|\rho_f\left(\frac{x^n}{r+1}\right)\right\|_{X(E)} \le \left\|\rho_f\left(\frac{x^n}{\|x^n\|_{\phi}}\right)\right\|_{X(E)} \le 1.$$

for every $n \in \mathbb{N}$. Next, since X(E) has the σ -Fatou property, it follows that

$$\left\|\rho_f\left(\frac{x}{r+1}\right)\right\|_{X(E)} = \lim_{n \to \infty} \left\|\rho_f\left(\frac{x^n}{r+1}\right)\right\|_{X(E)} \le 1.$$

Hence, $||x^n|| \le r+1$. Since $||x^n|| \nleftrightarrow_n ||x||$, there exists a real number $\varepsilon_0 > 0$ and subsequence $(||x^{n_j}||) \subset (||x^n||)$ such that $||x^{n_j}|| \le ||x|| - \varepsilon_0$ for every $j \in \mathbb{N}$. Therefore

$$\left\|\rho_{\phi}\left(\frac{x^{n_j}}{\|x\|-\varepsilon_0}\right)\right\|_{X(E)} = \left\|\rho_{\phi}\left(\frac{x^{n_j}}{\|x^{n_j}\|}\right)\right\|_{X(E)} \le 1$$

Since $(||x|| - \varepsilon_0)^{-1} x^{n_j} \uparrow_j (||x|| - \varepsilon_0)^{-1} x$ and X(E) has σ -Fatou, we get

$$\left\|\rho_{\phi}\left(\frac{x}{\|x\|-\varepsilon_{0}}\right)\right\|_{X(E)} = \lim_{j \to \infty} \left\|\rho_{\phi}\left(\frac{x^{n_{j}}}{\|x^{n_{j}}\|}\right)\right\|_{X(E)} \le 1$$

Hence, $||x|| \leq ||x|| -\varepsilon_0$ which is impossible. Therefore, $X(E, \rho_f)$ has the σ -Fatou property. Consequently, $X((E, \rho_f)$ is a Banach lattice.

3. Superposition operators on $X(E, \rho_f)$

Let *E* be a Dedekind σ -complete Riesz space equipped with the Riesz norm $\|\cdot\|_E$ and let $g: \mathbb{N} \times E \to E$ be such that g(k, 0) = 0 for each $k \in \mathbb{N}$.

We begin with the following theorem which gives the sufficient condition for the superposition operator acting from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ where f and h are order φ -function.

Theorem 3.1. Let $X(E, \rho_f)$ be an E-valued sequence space, where $X \in \{c_0, \ell_1\}$. If there exist an E-sequence $d = (d_k) \in \ell_1(E)^+, c \in E^+$ and a non negative real number γ such that for every $t \in E$, $f(t) \leq c$ implies $h(g(k, t)) \leq d_k + \gamma f(t)$. Then the superposition operator P_q maps the space $X(E, \rho_f)$ into the space $\ell_1(E, \rho_h)$.

Proof. Firstly, consider the case $X = \ell_1$. For any $x = (x_k) \in \ell_1(E, \rho_f)$, we will show that there exists $x_0 \in E$ such that

$$\sum_{k=1}^{n} h(g(k, x_k)) \xrightarrow{o}_{n} x_0.$$

Since $x = (x_k) \in \ell_1(E, \rho_f)$, it follows that there exists $c_1 \in E$ such that $\sum_{k=1}^n (x_k) \uparrow_n c_1$. Therefore, under the hypotheses

$$h(g(k, x_k)) \leq d_k + \gamma f(x_k)$$
 for every k ,

we have

$$\sum_{k=1}^{n} h(g(k, x_k)) \le \sum_{k=1}^{n} d_k + \gamma \sum_{k=1}^{n} f(x_k) \le \sum_{k=1}^{n} d_k + \gamma c_1.$$

Since $(d_k) \in \ell_1(E)^+$, we see that there exists $c_2 \in E^+$ such that $\sum_{k=1}^n d_k \uparrow_n c_2$. Then

$$\sum_{k=1}^{n} h(g(k, x_k)) \uparrow_n \leq c \text{ where } c = c_2 + \gamma c_1.$$

Since E is Dedekind σ -complete, there exists $x_0 \in E$ such that $\sum_{k=1}^n h(g(k, x_k)) \uparrow x_0$, which shows that $P_q(x) = (g(k, x_k)) \in \ell_1(E, \rho_h)$ for every $x \in \ell_1(E, \rho_f)$.

Secondly, suppose $X = c_0$ and consider $x = (x_k) \in c_0(E, \rho_f)$, then there exists a sequence $p_k \downarrow 0$ in E such that $f(x_k) \leq p_k$ for every k. It follows that $f(x_k) \leq p_1$ for every $k \geq k_0$. Furthermore, under the hypotheses and the same argument of the first case, we have $P_g(f) = (g(k, x_k)) \in \ell_1(E, \rho_h)$. This shows that the superposition operator P_g maps the space $X(E, \rho_f)$ into the space $\ell_1(E, \rho_h)$.

This completes the proof.

The next theorem gives the necessary condition of the superposition operator acting from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ where f and h are order φ -function.

Theorem 3.2. Let X(E) be E-valued sequence space, where $X \in \{c_0, \ell_1\}$ and let $g : \mathbb{N} \times E \to E$ be a function such that g(k, 0) = 0 for every $k \in \mathbb{N}$. If $P_g : X(E, \rho_f) \to \ell_1(E, \rho_h)$ is superposition operator, then there exist a real number $\delta > 0$ and $c \in E^+$ and sequence $a = (a_k) \in \ell_1(E)^+$ such that for every sequence $(x^n) \in X(E, \rho_f)$, $\sum_{k=1}^n f(\delta^{-1}x_k^n) \leq c$ implies $\sum_{k=1}^n h(g(k, x_k)) \leq \sum_{k=1}^n a_k$, for every $n \in \mathbb{N}$.

Proof. We take the case $X = \ell_1$. That is $P_g : \ell_1(E, \rho_f) \to \ell_1(E, \rho_h)$ is a superposition operator. Let $x = (x_k) \in \ell_1(E, \rho_f)$ where $\ell_1(E, \rho_f)$ has σ -Fatou property. Then there exists $x_0 \in E$ such that $||s_n||\uparrow_n ||x_0||$, where $s_n = \sum_{k=1}^n f(x_k)$. Therefore, there exists real number $\delta > 0$ such that $0 < \delta < ||x_0||$. Furthermore, for any $n \in \mathbb{N}$, we define the function $G_n : \Omega(E) \to E$ by

$$G_n(x = \sum_{j=1}^n \varphi(g(j, x_j))).$$

For the real number $\delta > 0$, we define the operator

$$F: \Omega(E) \to E^+$$
 by $F(x) = \sum_{j=1}^n f\left(\frac{x_j}{\delta}\right)$.

Since $\Phi(\Omega(E)) \subset E$ is an order bounded subset, it follows that there exists $v \in E^+$ such that $F(\Omega(E)) \leq c$. If for any $k, n \in \mathbb{N}$, we take $z_n^k = \sum_{j=1}^n f(\delta^{-1}x_j^k)$, then for every $k \in \mathbb{N}$ we get $z_n^k \uparrow_n \leq c$. Since E is a Dedekind σ -complete, we see that for every $k \in \mathbb{N}$ there exists $y = (y_k)$ such that $z_n^k \uparrow_n y_k$. It means $z^k = (z_n^k)_{n\geq 1} \in \ell_1(E, \rho_f)$ and $\Phi(z^k) \uparrow_k F(y)$. Then

$$F(y) = \sup\{F(z^k) \mid F(z^k) \le h\}.$$

Therefore, for every $k \in \mathbb{N}$ there exists $y_k \in E$ such that $\sum_{k=1}^p f\left(\frac{x_k}{\delta}\right) \leq c$ and

$$\sum_{k=1}^{p} h(g(k, y_k)) = \sup \left\{ \sum_{k=1}^{p} h(g(k, z_n^k)) \mid \sum_{k=1}^{p} f(\delta^{-1} z_n^k) \le h \right\}.$$

Next, we shall show that there exists $x_0 \in E$ such that $\sum_{k=1}^p h(g(k, y_k)) \xrightarrow{o}_p x_0$.

Since $F(y) = \sum_{k=1}^{n} f\left(\frac{y_k}{\delta}\right) \leq c$ in the Dedekind σ -complete Riesz space E, there exists $u \in E^+$ such that $\sum_{k=1}^{n} f\left(\frac{y_k}{\delta}\right) \uparrow_p u$. Hence, a sequence $y = (y_k) \in \ell_1(E, \rho_f)$. Since P_g is a superposition operator, there exists $x_0 \in E$ such that $\sum_{k=1}^{n} f\left(\frac{y_k}{\delta}\right) \xrightarrow{o}_p f_0$.

Let $a_k = h(g(k, y_k))$ be any sequence, then there exist a sequence $(a_k) \in \ell_1(E, \rho_h)^+$ and a real number $\delta > 0$ such that

$$\sum_{k=1}^{n} h(g((k, x_k)) \le \sum_{k=1}^{n} a_k \text{ for every } n \in \mathbb{N}.$$

This proves the theorem.

By using Theorem 3.2, we get the following theorem:

Theorem 3.3. Let X(E) be E-valued sequence space, where $X \in \{\ell_1, c_0\}$ and let $g : \mathbb{N} \times E \to E$ be such that g(k, 0) = 0 for every $k \in \mathbb{N}$. If $P_g : X(E, \rho_f) \to \ell_1(E, \rho_h)$ is a superposition operator, then there exist an E- sequence $(d_k) \in \ell_1(E)^+$, a real number $\gamma \ge 0$ and $c \in E^+$ such that $f(t) \le c$ for every $t \in E$ which implies that $h(g(k, t)) \le d_k + \gamma f(t)$.

In this case $\gamma = 0$, whenever $X = c_0$.

Proof. Let $P_g: X(E, \rho_f) \to \ell_1(E, \rho_h)$ be a superposition operator where $X = \ell_1$ and let $x = (x_k) \in \ell_1(E, \rho_f)$ be a any sequence. Then under the same arguments as in Theorem 3.2, there exist $\delta \in (0, 1)$ and $c \in E^+$ such that $f(x_k) \leq \delta c$. We define

$$\psi(k,t) = \begin{cases} h(g(k,t)) - \delta^{-1} f(t/\delta) & \text{if } h(g(k,t)) \ge \delta^{-1} f(t/\delta) \\ 0 & \text{otherwise} \end{cases}$$

Therefore $\psi(k,t) \geq 0$ for every $k \in \mathbb{N}$. Since the set $\{t \in E : f(t/\delta) \leq c\} = \{t \in E : t/\delta \leq f^{-1}(c)\}$ is bounded from above in the Dedekind σ -complete Riesz space E, there exists $v = \sup\{t \in E : t/\delta \leq f^{-1}(h)\} \in E$. Next, let $t = z_k$. Then for every $N \in \mathbb{N}$ we should show the following summation $\sum_{k=1}^{N} f\left(\frac{z_k}{\delta}\right)$ could be decomposed as

$$\sum_{k=1}^{N} f\left(\frac{z_k}{\delta}\right) = \sum_{k=1}^{N_1} f\left(\frac{z_k}{\delta}\right) + \sum_{k=N_1+1}^{N-2} f\left(\frac{z_k}{\delta}\right) + \dots + \sum_{k=N_{\ell-1}+1}^{N-\ell} f\left(\frac{z_k}{\delta}\right)$$
$$= \sum_{(1)} f\left(\frac{z_k}{\delta}\right) + \sum_{(2)} f\left(\frac{z_k}{\delta}\right) + \dots + \sum_{(\ell)} f\left(\frac{z_k}{\delta}\right)$$

where

$$\sum_{(i)} f\left(\frac{z_k}{\delta}\right) = \sum_{k=N_{i-1}+1}^{N_i} f\left(\frac{z_k}{\delta}\right) < c \text{ for every } i = 1, 2, \cdots, \ell - 1 \text{ with}$$
$$N_0 = 0 \text{ and } \frac{h}{2} \le \sum_{(\ell)} f\left(\frac{z_k}{\delta}\right) \le c.$$

If $\sum_{k=1}^{N} f\left(\frac{z_k}{\delta}\right) \le h$, then $\ell = 1$ and $\sum_{(1)} f\left(\frac{z_k}{\delta}\right) = \sum_{k=1}^{N} f\left(\frac{z_k}{\delta}\right)$.

If it is not so, take the least natural number N_1 such that

$$\sum_{k=1}^{N_1} f\left(\frac{z_k}{\delta}\right) \ge c \text{ and } \sum_{k=1}^{N_1-1} f\left(\frac{z_k}{\delta}\right) < c.$$

Since $f(z_{N_1}) \leq c$, we have

$$\sum_{k=1}^{N_1} f\left(\frac{z_k}{\delta}\right) = \sum_{k=1}^{N_1-1} f\left(\frac{z_{N_1}}{\delta}\right) + f\left(z_{N_1}\right) < 2c.$$

Next, if $\sum_{(1)} f\left(\frac{z_k}{\delta}\right) = \sum_{k=1}^{N_1} f\left(\frac{z_k}{\delta}\right)$ and $\sum_{k=N_1+1}^N f\left(\frac{z_k}{\delta}\right) \le h$, then $\ell = 2$. If it is not so, take the least natural number N_2 such that

$$\sum_{N_1+1}^{N_2} f\left(\frac{z_k}{\delta}\right) \ge c \text{ and } \sum_{N_1+1}^{N_2-1} f\left(\frac{z_k}{\delta}\right) < c.$$

Since $f(z_{N_2}) < c$, we see that

$$c \leq \sum_{k=N_1+1}^{N_2} f\left(\frac{z_k}{\delta}\right) = \sum_{k=N_1+1}^{N_2-1} f\left(\frac{z_2}{\delta}\right) + f\left(z_{N_2}\right) < 2c.$$

If $\sum_{(2)} f\left(\frac{z_k}{\delta}\right) = \sum_{k=N_1+1}^{N_2} f\left(\frac{z_k}{\delta}\right)$ and $\sum_{k=N_2+1}^{N} f\left(\frac{z_k}{\delta}\right) < c$, then $\ell = 3$,

If we continue this process then the decomposition like above will be obtained.

As in the proof of Theorem 3.3, there exists a sequence $(a_k) \in \ell_1(E, \rho_h)^+$. Further, if we put $c_k = \psi(k, z_k)$, we shall show that for every $N \in \mathbb{N}$

$$\sum_{k=1}^{N} c_k \le \sum_{k=1}^{N} a_k.$$

Since

$$h(g(k, z_k)) \ge f\left(\frac{z_k}{\delta}\right)$$
 for every $k \in \mathbb{N}$.

we have

$$\sum_{k=1}^{N} c_k = \sum_{k=1}^{N} h(g(k, z_k)) - \sum_{k=1}^{N} f(\frac{z_k}{\delta}) = \sum_{j=1}^{\ell} h(g(k, z_k)) - \sum_{j=1}^{\ell-1} f(\frac{z_k}{\delta})$$

for every j, where $1 \leq j \leq \ell$. Putting $z_j = (z_k^{(j)})$ by

$$z_k^{(j)} = \begin{cases} z_k & \text{for some index } k \text{ in } \sum_j \\ 1 & \text{otherwise} \end{cases}$$

Then for every $j, 1 \leq j \leq \ell$, we obtain

$$\sum_{k=1}^{N} f\left(\frac{z_k^{(j)}}{\delta}\right) = \sum_j f\left(\frac{z_k}{\delta}\right) \le c \text{ and } \sum_{k=1}^{N} h\left(g(k, z_k^{(j)})\right) = \sum_j h\left(g(k, z_k^{(j)})\right),$$

which means $\sum_{k=1}^{N} h(g(k, z_k^{(j)})) \leq \sum_{k=1}^{N} a_k$. Furthermore, for $j, 1 \leq j \leq \ell$, we have

$$\sum_{j} h\big(g(k, z_k^{(j)})\big) \le \sum_{k=1}^N a_k.$$

Therefore, for every $N \in \mathbb{N}$

$$\sum_{k=1}^{N} c_k \leq \ell \sum_j h\big(g(k, z_k^{(j)})\big) - (\ell - 1) \sum_j f\Big(\frac{z_k}{\delta}\Big)$$
$$\leq \ell \sum_{k=1}^{N} a_k - (\ell - 1)c.$$

Since $\sum_{k=1}^{N} a_k \uparrow c$ for $N \to \infty$ and E is a Dedekind σ -complete, there exists $v \in E$ such that $\sum_{k=1}^{N} c_k \xrightarrow{o} v$ in E for $N \to \infty$. Hence, there exists $(c_k) \in \ell(E)^+$.

Furthermore, since for every $k \in \mathbb{N}$, $h(g(k,t)) \ge f(t)$, we have

$$h(g(k,t)) \leq c_k + \delta^{-1}f(t) \text{ for } f(t) \leq f\left(\frac{t}{\delta}\right) \leq \delta c.$$

On the other hand, if $h(g(k,t)) < \delta^{-1}f(t)$, then $h(g(k,t)) < c_k + 2\delta^{-1}f(t)$. Take $\gamma = 2\delta^{-1}$, then there exists $\gamma > 0$ such that

$$h(g(k,t)) < c_k + \gamma f(t) \text{ for } f(t) \leq c.$$

This completes the proof.

Finally, we shall apply the Theorem 3.1 and 3.3 to obtain the sufficient and necessary conditions of the superposition operator P_g from $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$, where $X \in \{c_0, \ell_1\}.$

Theorem 3.4. Let $X \in \{c_0, \ell_1\}$. Then $P_g : X(E, \rho_f) \to \ell_1(E, \rho_h)$ is a superposition operator if and only if there exist a sequence $(d_k) \in \ell_1(E)^+$, $c \in E^+$ and a real number $\gamma > 0$ such that

 $h(g(k,t)) \leq d_k + \gamma f(t)$ whenever $f(t) \leq c$. In this case $\gamma = 0$, whenever $X = c_0$.

292

4. Conclusion

In this paper, we introduced *E*-valued sequence spaces, namely $X(E, \rho_f)$, where *E* is a Riesz space, ρ_f an order modular and *f* is an order φ -function. We proved that If an ideal normed Riesz space X(E) has the σ -Fatou property, then $X(E, \rho_f)$ is a Banach lattice. Further, we have characterized here the classes $X(E, \rho_f)$ into $\ell_1(E, \rho_h)$ by superposition for $X \in \{c_0, \ell_1\}$.

References

- I.V. Šragin, Conditions for embedding of classes of sequence spaces and their consequences, Math Note 20 (1976), 942–948.
- [2] J. Appel, P.P. Zabreiko, Nonlinear Superposition Operators, Cambridge University Press, 1990.
- [3] F. Dedagich, P.P. Zabreiko, On superpointion operators in ℓ_p spaces, Siberian Math Journal 28 (1987), 63–73.
- [4] E. Herawaty, Supama, I.E. Wijayanti, Acting condition for superposition operator from ℓ_f to ℓ_1 , Proceeding of 6th SEAM-GMU International Conference on Math. Appl. (2011), 80–92.
- [5] E. Kolk, Superposition operators on sequence spaces defined by F-functions, Demonst. Math. 37 (2004), 159–175.
- [6] S. Suantai, Boundedness superposition operators on E_r and F_r , Comment. Math. Prace Mat. **37** (1997), 249–259.
- [7] S.D. Unoningsih, R. Pluciennik, L.P. Yee, Boundedness of superposition operators on sequence spaces, *Comment. Math. Prace Mat.* 35 (1995), 209–216.
- [8] A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, 1977.
- [9] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, Springer-Verlag Berlin Heidelberg, 2006.
- [10] E. Herawati, M. Mursaleen, Supama, I.E. Wijayanti, Order matrix transformations on some Banach lattice valued sequence spaces, *Appl. Math. Comput.* 247 (2014), 1122–1128.
- [11] E. Herawati, Supama, M. Mursaleen, Local structure of Riesz valued sequence spaces defined by order φ -function, *Linear Mult. Algebra* **65** (2016), 545–554.
- [12] J. Cerda, H. Hudzik, M. Mastylo, On the geometry of some Calderòn-Lovanovskiì interpolation spaces, Indag. Math. (NS) 6 (1995), 35–49.
- [13] H. Hudzik, A. Kaminska and M. Mastylo, Monotonicity and rotundity properties in Banach lattice, Rocky Mountain Jour. Math. 30 (2000), 933–950.
- [14] P. Kolwicz, Kadec-Kee properties of Calderòn-Lovanovskiì sequence spaces, Collect. Math. 63 (2012), 45–58.
- [15] P. Foralewski, H. Hudzik, Some geometrical and topological properties in Calderòn-Lovanovskiì spaces, Houston J. Math. 31 (2005), 883–912.
- [16] S. Petranuarat, Y. Kemprasit, Superposition operators of ℓ_p and c_0 into ℓ_q $(1 \le p, q < \infty)$, Southeast Asian Bull. Math. **21** (1997), 139–147.

(E. Herawati) Department of Mathematics, Universitas Sumatera Utara, Medan 20155, Indonesia

E-mail address: herawaty.elv@gmail.com or elvina@usu.ac.id

(M. Mursaleen) DEPARTMENT OF MEDICAL RESEARCH, CHINA MEDICAL UNIVERSITY HOSPITAL, CHINA MEDICAL UNIVERSITY (TAIWAN), TAICHUNG, TAIWAN DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH 202002, INDIA

E-mail address: mursaleenm@gmail.com