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Superposition operators on some new type of order modular
spaces

E. HERAWATI AND M. MURSALEEN

ABSTRACT. In this paper, we introduce E-valued sequence spaces, namely X (E, p¢), where E
is a Riesz space, py an order modular and f is an order y-function. Further, we characterize
the classes X (E, py) into ¢1(E, p,) by superposition for X € {co,¢1}.
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1. Introduction and preliminaries

Let E be a Riesz space with a cone E™. In this work, we introduce and study E-valued
sequence spaces defined by an order modular p¢, where f is an order ¢-function.
For any E-sequence space X (FE) and a real number o > 0 we define the set

X(B.p) = {o = (@) € 218 (5s(2)) € x(B)).

where pf(%) = f(%) for every k.

We show that X (E, py) is an ideal Riesz space under coordinate wise ordering. We
obtain the sufficient condition for the superposition operator acting from X (F, py)
into 41 (F, pp); and the necessary condition of the superposition operator acting from
X(E,py) into ¢1(E, py) where f and h are order o-function. Finally, we obtain the
sufficient and necessary condition of the superposition operator P, from X (E, ps) into
01 (E, pr) where X € {co, (1}

An even function f : E — E7 is called order ¢-function if f is vanishing at zero,
non-decreasing in Et and if z;, -2 t in E implies f(zx) — f(t). Furthermore, a
function p : £ — E7 is called an order modular if

(i) p(t) =6 if and only if t = 6

(i) p(t) = p([t)
(iii) p(tl \Y tz) < p(t1) + p(tg).
Let N be the set of all natural numbers and let g : Nx E — E be such that g(k,0) =0
for every £ € N. If X and Y are two E-sequence spaces then the function Py : X — Y
is called a superposition operator if

Py(z) = (g(k,zx)) for every z € X.
In an implicit form, the superposition operator can be found in the terminology as
”composite operator”. For case £ = R, the characterization of P, was given by
several authors. For example, éragin [1] defined the superposition operator on Orlicz

Received March 08, 2019. Accepted December 27, 2019.

285



286 E. HERAWATI AND M. MURSALEEN

sequence space. Appel and Dedegich [2] defined for the classical sequence spaces
loo,co, and £, (1 < p < 00). Other researchers such as [3, 4, 5, 6, 7] have shown some
properties of superposition operator P, on some real sequence spaces.

The notation z,, | (resp. x, 1) is used for decreasing (resp. increasing) sequence
in £ and z,, | x (resp.z, 1 z) provided that z,, | and infx,, = x exists in F (resp.
Zn T and supx, = z exists in F). If every nonempty countable subset of E that
is bounded from above has supremum, then E is called Dedekind o-complete (or,
equivalently, if 0 < x,, T < x implies the existence of sup {z,, : n € N}. A Riesz space
E is Archimedean if %x 10 for each z € ET.

A Sequence (mn) C FE is said to be o-order convergent to x € E, denoted by

Tn —> x or T = o — lim x,, if there exists a sequence p, | 0 in E such that
n—oo

|z, — x| < p,, holds for all n. In this case x € E is called order limit of the sequence
(25,) where |z| = 2 V (—x) for any * € E. A sequence can have at most one order
limit. Indeed, if x, —+ = and x,, — y, then pick two sequences (p,) and (g,) with
prn 4 0 and g, | 0 such that |z, — x| < p, and |z, — y| < ¢, for all n and note that

0<|z—y|<l|zpn—a|+|zn —y| < (Pn+¢n) L 0 for all n

implies © = y. The norm || - || in E is called a Riesz norm if |z| < |y| in E implies
[lz]| < ly||. Any Riesz space equipped with Riesz norm is called a normed Riesz space.
However, norm convergence and o-order convergence do not coincide. A complete
normed Riesz space is called a Banach lattice. Furthermore, we say a Riesz norm || - ||
in E has

o0
(i) the Riesz-Fischer property, if for any sequence (zj) C ET for which kglﬂmkll <

00, then the order limit of kZ xy, exists and H b ka < Z ||a:k||

(ii) the o-Fatou property, if ||zk| T ||| whenever 0 < zj T x

It is easy to see that o-Fatou property property implies the Riesz-Fischer property,
but not conversely.

For notation and the facts regarding Riesz spaces we refer to [8, 9]. We have

Theorem 1.1. The normed Riesz space E is a Banacah lattice if and only if E has
the Riesz-Fischer property.

The space of all E-valued sequences is denoted by Q(FE). Any linear subspace of
Q(FE) is called E-valued sequence space. We denote the kth term of a sequence x in
an E-sequence space by zj in E, and write = (xy).

As examples of E-valued sequence spaces, we recall the following spaces [10, 11]
which are needed in this paper.

e /1(F) = {x = (z1) € UE): (Ja€E), ki:1|xk| R a}
o ¢(E) = {x = (zx) €QUE): (Ja€E), ), - a}

o co(E) = {x = (z1) € UE) : xx - o}.
Furthermore, let E be a real Kothe sequence space and ¢ be an Orlicz function.
The space E,, introduced by Calederon-Lozanovskii [12] is defined as follows

E, = {z = (z3) € QR) : I (cz) < oo for some ¢ > 0}

where I, is a convex semi-modular on Q(R) defined by



SUPERPOSITION OPERATORS ON SOME NEW TYPE OF ORDER MODULAR SPACES 287

L le@le i pla)eE
@ 00 otherwise

and equipped with Luxemberg-Nakano norm
|z]l, = inf {A >0 : I(z/)) <1}
(se [13, 14, 15] and [16]).

Lemma 1.2. Let p be an order modular on a Riesz space E. Then
(i) if 0 <ty <ty in E implies p(t1) < p(ta).
(i) plat) = |l p(t) for [af < 1. .
(iii) if ; € RT and t; € E for every i = 1,---n such that > a; =1, then

k=1
p( D aiti) < 32 p(ts).
k=1 k=1
For any F-sequence space X (F) and a real number a > 0 we define the set
T
X(Bps)) = {o = (w) € 2B): (p(2)) € X(B))

where pf(%) = f(x—k) for every k.
o @
The following example shows that the set X (E, py) may not be linear.

Example 1.1. Let X (E) = {o(F) and u > 0 be a unit in E. Then there exists a real
number A > 0 such that |t| < Au for every t € E. Therefore, there exists a positive
real number sequence (\;) where A < A, 1. If we define order -function by

1y < A
L il
2\ T«
ft) =
t TR Au
1 JE—
2\ o
AU u
and take a sequence x = (Aug) where uy, = u for every k, then sup f(—) =% e L.
k>1 @ e
Hence = € {o(E, pf). But 2z = (2\uy) € € (E, py) for every k, because
2\ 2\
sup f( uk) < sup f( ku) =Y sup Ar undefined in F.
k>1 o k>1 (e QO p>1

Therefore £o (E, pf)_is not a sequence space.

It is easy to check that X (E, ps) is E-sequence space under restriction on X (E).

2. Topological properties of X(E, py)

We have the following basic result (see [4]).

Theorem 2.1. If X(E) be an ideal in Q(E), then X (FE,pys) is an ideal Riesz space
under coordinate-wise ordering.

Now we prove the following:

Theorem 2.2. Let X(E) = (X(E),|| - |x(r)) be an ideal normed Riesz space in
Q(E). If X(E) has the o-Fatou property, then X (E, py) is a Banach lattice equipped
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with the following norm

o[l = inf {e >0 pr( ixm) <1}

for every x € X(E, py), where pf(g) = (Pj»(%)),

Proof. Theorem 2.1 gives that X (E, ps) is an ideal Riesz space. It is easy to show
that X (F, py) is a normed Riesz space. Furthermore, we will show the norm || - || has
the o-Fatou property. If it fails, then there exists a sequence (") C X (E, py)

for every n and x € Q(E); where 0 < 2™ 1,, < z and ||z"|| - ||z| as n — oo. Since
[l=™||T< oo, it follows that there exists r € R such that » = sup {||z"| : n € N}.

Since f is a nondecreasing function on ET, we have ps(z™/(r + 1)) 1, ps(z/r). B
the definition of ||| x (g, we have

Dl = o)l =
pr(r+1 xm = P an s My

for every n € N. Next, since X (F) has the o-Fatou property, it follows that

Jos (52l vy = i os (55)]
Py r+1llx@E) — noeo Pi r+1/lx(E)

Hence, [|z"™]| < r+ 1. Since ||2™| -n [|z||, there exists a real number gy > 0 and
subsequence ([|z"7||) C (|| #™||) such that ||z™]| < ||z| —&o for every j € N. Therefore

i
oo () ey = o () e

Since (||x||—50)_1:z:"j 15 (||:1:H—50)_ x and X (F) has o-Fatou, we get

X
L My I Cror |
H”¢(||x\|—eo)Hx<E> iSeellP? ||$"J||

Hence, ||z|| < ||z|| —eo which is impossible. Therefore, X(E,pf) has the o-Fatou
property. Consequently, X ((E, py) is a Banach lattice. O

3. Superposition operators on X (E, py)

Let E be a Dedekind o-complete Riesz space equipped with the Riesz norm || - || g
and let g : N x E — FE be such that g(k,0) = 0 for each k € N.

We begin with the following theorem which gives the sufficient condition for the
superposition operator acting from X (E, py) into ¢1(E, p,) where f and h are order
p-function.

Theorem 3.1. Let X(E, py) be an E-valued sequence space, where X € {co,l1}. If
there exist an E-sequence d = (dy,) € (1(E)T,c € ET and a non negative real number
v such that for every t € E, f(t) < c implies h(g(k,t)) < di +~ f(t). Then the
superposition operator P, maps the space X (E, py) into the space £1(E, py).

Proof. Firstly, consider the case X = (1. For any = = (zj) € {1(E, py), we will show
that there exists o € F such that
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n

kzzjlh(g(k, xk)) 25, To.

Since x = (xy) € t1(E, py), it follows that there exists ¢; € E such that > (x) Ty, c1.
k=1
Therefore, under the hypotheses

h’(g(kvxk)) < dk + ’Yf(xk) for every ku

we have

n

S h(g(k,ax)) < S i+ 30 Flan) < 30 di+ e
k=1 k=1 k=1 k=1

Since (di) € ¢1(FE)™, we see that there exists co € ET such that > di 1, ca. Then
k=1

n

> h(g(k,ack)) < ¢ where ¢ = ¢y + ey
k=1

Since E is Dedekind o-complete, there exists xg € F such that > h(g(k,xk)) T 20,
k=1

which shows that P,(z) = (g(k,zx)) € (1(E, py) for every x € (1(E, py).

Secondly, suppose X = ¢o and consider x = (x1) € co(E, py), then there exists a
sequence pg J 0 in E such that f(xzx) < pg for every k. It follows that f(xg) < p1
for every k > ky. Furthermore, under the hypotheses and the same argument of the
first case, we have Py(f) = (g(k,xx)) € £1(E, ps). This shows that the superposition
operator P, maps the space X (E, py) into the space {1 (E, py).

This completes the proof. U

The next theorem gives the necessary condition of the superposition operator acting
from X (E, py) into ¢1(E, pp,) where f and h are order g-function.

Theorem 3.2. Let X(E) be E-valued sequence space, where X € {co,¢1} and let
g :NXE — FE be a function such that g(k,0) =0 for every k € N. If Py : X(E, py) —
1(E, pr) is superposition operator, then there exist a real number § > 0 and ¢ € ET
and sequence a = (a) € 1(E)t such that for every sequence (z") € X(E,py),

> f(67 ) < c implies Y h(g(k,ax)) < 3 ak, for every n € N.

k=1 k=1 k=1

Proof. We take the case X = ¢;. That is P, : {1(E, ps) — ¢1(E, pn) is a superposition

operator. Let x = (z) € ¢1(E, py) where ¢1(E, py) has o-Fatou property. Then there

exists xg € F such that ||s,||Tn ||zol|, where s,, = > f(xx). Therefore, there exists
k=1

real number § > 0 such that 0 < 6 < ||zp|. Furthermore, for any n € N, we define

the function G,, : Q(F) — E by

Gz =

.
its:

U ED)E
For the real number § > 0, we define the operator

F:Q(E) - Et by F(z) = élf(ﬂ).
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Since @(Q(E)) C FE is an order bounded subset, it follows that there exists v € BT
n

such that F(Q(E)) < c¢. If for any k,n € N, we take 2 = Zlf(é’lx;?), then for
J:

every k € N we get zF 1,,< c. Since F is a Dedekind o-complete, we see that for every
k € N there exists y = (yx) such that 2% 1, yr. It means 2% = (2%),>1 € (1(E, py)
and ®(z%) 14 F(y). Then

F(y) =sup{F(z") | F(z*) < h}.

P
Therefore, for every k € N there exists y; € F such that > f(:%k) < cand
k=1

32 ok, ) = sup { S h(oh, ) | 3 £(37158) <h}

k=1

P
Next, we shall show that there exists 2y € E such that > h(g(k;, yk)) L>p zg.
k=1

Since F(y) = > f(%) < ¢ in the Dedekind o-complete Riesz space E, there
k=1

n

exists u € ET such that kzlf(%) 1p u. Hence, a sequence y = (yx) € (1(E, py).

n

Since P, is a superposition operator, there exists xy € E such that ) f (%k
k=1

Let ay = h(g(k, yk)) be any sequence, then there exist a sequence (a) € ¢1(F, pp)™"

and a real number § > 0 such that

> h(g((k,x) < > ay for every n € N.
k=1 k=1

) Lﬁ) fo-

This proves the theorem. O
By using Theorem 3.2, we get the following theorem:

Theorem 3.3. Let X(E) be E-valued sequence space, where X € {{1,co} and let
g:Nx E — E be such that g(k,0) =0 for every k e N. If P, : X(E, py) — 1(E, pp)
is a superposition operator, then there exist an E- sequence (d) € ¢1(F)T, a real
number v > 0 and ¢ € EV such that f(t) < ¢ for every t € E which implies that
h(g(k,t)) < dy +7f(1).

In this case v = 0, whenever X = cg.

Proof. Let Py : X(E, ps) — ¢1(E, pr) be a superposition operator where X = ¢; and
let = (z1) € €1(E, py) be a any sequence. Then under the same arguments as in
Theorem 3.2, there exist § € (0,1) and ¢ € E™ such that f(x)) < dc. We define

ooty = | Pl =57 F(4/5) it h(g(kit) = 57 (/0
’ 0 otherwise

Therefore ¢ (k,t) > 0 for every k € N. Since the set {t € E : f(t/d) <c} = {t €
E : t/6 < f~!(c)} is bounded from above in the Dedekind o-complete Riesz space
E, there exists v = sup{t eEE :t)5< f’l(h)} € E. Next, let t = 2. Then for every

N
N € N we should show the following summation »_ f <%) could be decomposed as
k=1
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N Ny N-2 N—¢
r(5)=2i(F)+ X i(F) e X a(F)
k=1 k=1 k=Ni+1 k=Ng_,+1

=2 (F) 2 (F) e A ()
(1) (2) (0)
where
(Zl):f(%k) zk_Ngflﬂf(?) < cforeveryi=1,2,--- £ — 1 with
Ny =0 and g < Zf(%k) <e.

(9]

N Zk Zk N Zk
If — ) < h, then £ =1 and — )= — .
k;f((s)—  thett a (Zl)f((s) k;f(a)
If it is not so, take the least natural number N; such that

kgflf(?) > cand ]\:zfllf(z(;) <ec.

Since f(zn,) < ¢, we have

gjlf(?) - ]\;i_:llf(zjgl> + f(2n,) < 2c.

N N

Next, if Zf(z—k> = i f(ﬁ) and Y f(ﬁ) < h, then ¢ = 2.
o \9 k=1 \ O k=Ni41 VO

If it is not so, take the least natural number Ny such that

% f(%c) > c and Ni?f(%) <ec.

Ni+1 Ni+1

Since f(zN2) < ¢, we see that

c< % f(%): Nil f(zi)+f(ZN2)<20.

k=Ni+1 k=Ni41 \ O
If %f(%k) - k—zzjﬂf(?) and k—%-&-lf(?) < ¢, then ¢ =3,

If we continue this process then the decomposition like above will be obtained.
As in the proof of Theorem 3.3, there exists a sequence (ay) € ¢1(E, py)*. Further,
if we put ¢, = ¥(k, zi), we shall show that for every N € N

N N
e < > ag.
k=1 k=1
Since
h(g(k, z)) > f(%’“) for every k € N,

we have
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L= Snloteean) - £1(3) = Epto ) - 2 (3)

k=1
for every j, where 1 < j < ¢. Putting z; = (Z](Cj)) by
. z  for some index k in >
(@ _ ~
1  otherwise

Then for every j, 1 < j < ¢, we obtain

S () = o) < eand S5 hlote ) = Shioth ),

J

N , N
which means > h(g(k7 z,(cj))) < > ag. Furthermore, for j, 1 < j < ¢, we have
k=1 k=1

Shig(k, 7)) < é‘

Therefore, for every N € N

ch<62h 9k 2() = (=) Y1 ()

J
SfZak—(ﬁ—l)C
k=1

N
Since Y a1 cfor N — oo and FE is a Dedekind o-complete, there exists v € E such
k=1

N
that > cx—> v in E for N — oo. Hence, there exists (cx) € £(E)*.
k=1
Furthermore, since for every k € N, h(g(k,t)) > f(t), we have

h(g(k,)) < cx + 0L f(2) for f(t) < f(%) < de.

On the other hand, if h(g(k,t)) < 6='f(t), then h(g(k,t)) < cp + 261 f(t). Take
~ =261, then there exists v > 0 such that

h(g(k,t)) < cx +~f(t) for f(t) < e
This completes the proof. O

Finally, we shall apply the Theorem 3.1 and 3.3 to obtain the sufficient and neces-
sary conditions of the superposition operator P, from X (E, py) into ¢4 (E, py), where
X e {Co, 61}

Theorem 3.4. Let X € {co,¢1}. Then Py : X(E,ps) — (1(E, pn) is a superposition
operator if and only if there exist a sequence (dy) € (1(E)", ¢ € ET and a real number
v > 0 such that

h(g(k,t)) < di + f(t) whenever f(t) < c.

In this case v = 0, whenever X = cg.
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4. Conclusion

In this paper, we introduced E-valued sequence spaces, namely X (E, py), where
E is a Riesz space, py an order modular and f is an order ¢-function. We proved
that If an ideal normed Riesz space X (F) has the o-Fatou property, then X (E, py)
is a Banach lattice. Further, we have characterized here the classes X (E, py) into
01(E, pr) by superposition for X € {00761}.
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