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New generalized inequalities using arbitrary operator means
and their duals

Leila Nasiri and Mojtaba Bakherad

Abstract. In this article, we present some operator inequalities via arbitrary operator means
and unital positive linear maps. For instance, we show that if A,B ∈ B(H) are two positive

invertible operators such that 0 < m ≤ A,B ≤M and σ is an arbitrary operator mean, then

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A),

where σ⊥ is dual σ, p ≥ 0 and K(h) =
(M+m)2

4Mm
is the classical Kantorovich constant. We also

generalize the above inequality for two arbitrary means σ1, σ2 which lie between σ and σ⊥.
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1. Introduction

In this paper, B(H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space (H, 〈·, ·〉). I stands for the identity operator. A self-adjoint operator
A ∈ B(H) is said to be positive if 〈Ax, x〉 ≥ 0 for all x ∈ H, and in this case we write
A ≥ 0. For self-adjoint operators A,B ∈ B(H), the order relation A ≤ B means that
B − A ≥ 0. A linear map Φ is positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said to be
unital provided that it preserves the identity operator, that is, Φ(I) = I.

The axiomatic theory for pairs of positive operators has been developed by Kubo
and Ando [10]. If A,B ∈ B(H) are two positive invertible operators, then the
ν−weighted arithmetic mean, geometric mean and harmonic mean of A and B are
denoted by A∇νB, A]νB A!νB, respectively, and are defined as follows

A∇νB = νA+ (1− ν)B, A]νB = A
1
2

(
A−

1
2BA−

1
2

)ν
A

1
2 ,

and
A!νB = (νA−1 + (1− ν)B−1)−1.

When ν = 1
2 , we write A∇B, A]B and A!B for the arithmetic mean, geometric mean

and harmonic mean, respectively. The ν−weighted arithmetic-geometric (AM-GM)
operator inequality, which is proved in [16] says that if A,B ∈ B(H) are two positive
operators and 0 ≤ ν ≤ 1, then A]νB ≤ A∇νB. For a particular case, when ν = 1

2 , we
obtain the AM-GM operator inequality

A]B ≤ A+B

2
. (1)
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For two positive operators A,B ∈ B(H), the Löwner–Heinz inequality states that, if
A ≤ B, then

Ap ≤ Bp, (0 ≤ p ≤ 1). (2)

In general (2) is not true for p > 1.
Lin [13, Theorem 2.1] showed a squaring of a reverse of (1), namely that the inequality

Φ2

(
A+B

2

)
≤
(

(M +m)2

4Mm

)2

Φ2(A]B) (3)

as well as

Φ2

(
A+B

2

)
≤
(

(M +m)2

4Mm

)2

(Φ(A)]Φ(B))2, (4)

where Φ is a positive unital linear map.
The Löwner–Heinz inequality and two inequalities (3) and (4) follow that for 0 < p ≤
2,

Φp
(
A+B

2

)
≤
(

(M +m)2

4Mm

)p
Φp(A]B) (5)

and

Φp
(
A+B

2

)
≤
(

(M +m)2

4Mm

)p
(Φ(A)]Φ(B))p. (6)

In [6], the authors showed that inequalities (5) and (6) for p ≥ 2 hold.
For more improvements and refinements on the above inequalities see [7, 14, 15] and
references therein.
Let σ be an operator mean with the representing function f . The operator mean
with the representing function t

f(t) is called the dual of σ and denoted by σ⊥. For

A,B ∈ B(H),

Aσ⊥B = (B−1σA−1)−1.

It is trivial that for two invertible operators A,B ∈ B(H), A∇⊥B = A!B and A!B ≤
A]B.
Let 0 < m ≤ A,B ≤ M, Φ be a positive unital linear map and σ, τ be two arbitrary
means between the harmonic and arithmetic means. In [8], the authors obtained the
following inequality:

Φ2(AσB) ≤ K2(h)Φ2(AτB), (7)

where K(h) = (h+1)2

4h with h = M
m is the Kantorovich constant.

The authors in [5] generalized inequality (7) for the higher powers as follows:

Φp(AσB) ≤ Kp(h)Φp(AτB), (8)

where p > 0.
Motivated by the above discussion, in this paper we first obtain the following inequal-
ity:

Φ2(AσB) ≤ K2(h)Φ2(Bσ⊥A), (9)
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where 0 < m ≤ A,B ≤ M, σ is an arbitrary mean and σ⊥ is its dual and K(h) =
(M+m)2

4Mm is the Kantorovich constant. Then, we generalize inequality (9) for two

arbitrary means σ1 and σ2 between σ and σ⊥.

2. Main results

To obtain the main results we need to recall the following Lemmas.

Lemma 2.1. [3](Choi’s inequality) Let A ∈ B(H) be positive and Φ be a positive
unital linear map. Then

Φ(A)−1 ≤ Φ
(
A−1

)
. (10)

Lemma 2.2. [16] Suppose that 0 < m ≤ A ≤M. Then

A+MmA−1 ≤M +m.

Lemma 2.3. [4, 1, 2] Let A,B ∈ B(H) be positive and λ > 0. Then
(i) ||AB|| ≤ 1

4 ||A + B||2.
(ii) If λ > 1, then ||Aλ +Bλ|| ≤ ||(A+B)λ||.
(iii) A ≤ λB if and only if ||A 1

2B−
1
2 || ≤ λ 1

2 .

Lemma 2.4. [9] Let X ∈ B(H). Then ‖X‖ ≤ t if and only if(
tI X
X∗ tI

)
≥ 0.

Theorem 2.5. Let 0 < m ≤ A,B ≤M such that 0 < m < M and σ be an arbitrary
mean. Then

Φ2(AσB) ≤ K2(h)Φ2(Bσ⊥A), (11)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. It follows from 0 < m ≤ A,B ≤ M that (M − A)(m − A)A−1 ≤ 0 and
(M −B)(m−B)B−1 ≤ 0. Therefore

A+MmA−1 ≤M +m and B +MmB−1 ≤M +m.

Now, the subadditivity and monotonicity properties of the operator mean to conclude
that

AσB +Mm(A−1σB−1) ≤ (A+MmA−1)σ(B +MmB−1)

≤ (M +m)σ(M +m)

= M +m.

Using the linearity and positivity of Φ and the latter inequality, we get

Φ(AσB) +MmΦ(A−1σB−1) ≤M +m. (12)

Applying two inequalities (10) and (12), respectively, we have

Φ(AσB) +MmΦ−1(Bσ⊥A) ≤ Φ(AσB) +MmΦ(Bσ⊥A)−1

≤ Φ(AσB) +MmΦ(A−1σB−1)

≤M +m.
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By Lemma 2.3(i) and the latter inequality, we get∥∥Φ(AσB)MmΦ−1(Bσ⊥A)
∥∥ ≤ 1

4

∥∥Φ(AσB) +MmΦ(Bσ⊥A)−1
∥∥2

≤ Φ(AσB) +MmΦ(A−1σB−1)

≤M +m.

This proves the assertion as desired. �

Remark 2.1. In special case, when σ = ∇, since σ⊥ =! and ! ≤ ], inequality (11)
becomes inequality (3).

Corollary 2.6. Let 0 < m ≤ A,B ≤ M such that 0 < m < M, σ be an arbitrary
mean and let p ≥ 0. Then

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A), (13)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. If 0 ≤ p ≤ 2, then 0 ≤ p
2 ≤ 1. Applying inequality (11) we obtain the desired

result. If p > 2, then∥∥∥Φ
p
2 (AσB)M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥
≤ 1

4

∥∥∥Φ
p
2 (AσB) +M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥2 (by Lemma 2.3 (i))

≤ 1

4

∥∥Φ(AσB) +MmΦ−1(Bσ⊥A)
∥∥p (by Lemma 2.3 (ii))

≤ 1

4

∥∥Φ(AσB) +MmΦ((Bσ⊥A))−1
∥∥p (by (10))

=
1

4

∥∥Φ(AσB) +MmΦ(A−1σ⊥B−1)
∥∥p

≤ 1

4
(M +m)p (by inequality (12)).

Therefore, by Lemma 2.3(iii) we have

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A).

�

Remark 2.2. Using the same reason as in Remark 2.1 says that inequality (13) is a
generalization of inequality (5) which is presented in [6].

In the following theorem, we generalize inequality (7).

Theorem 2.7. Let 0 < m ≤ A,B ≤M , σ1 and σ2 be two arbitrary means which lie
between σ and σ⊥ and let p ≥ 0. Then for every positive unital linear map Φ,

Φp(Aσ2B) ≤ Kp(h)Φp(Bσ1A), (14)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.
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Proof. To prove (14), let σ1 ≥ σ⊥ and σ2 ≤ σ. Therefore,

Φ(Aσ2B) +MmΦ−1(Bσ1A) ≤ Φ(Aσ2B) +MmΦ(Bσ1A)−1 (by (10))

≤ Φ(AσB) +MmΦ(Bσ⊥A)−1

= Φ(AσB) +MmΦ(A−1σB−1)

≤M +m (by (12)).

Using the same ideas as used in the proof of Theorem 2.5 and Corollary 2.6, one can
obtain the desired result. �

To find a better bound than the obtained bound in inequality (13), we need to
state the following Lemma.

Lemma 2.8. [13] Let 0 < m ≤ A,B ≤ M and σ be an arbitrary mean. Then for
every positive unital linear map Φ

‖Φ2(AσB) +M2m2Φn((AσB)−1)‖ ≤M2 +m2.

Theorem 2.9. Let 0 < m ≤ A,B ≤M, σ be an arbitrary mean and p ≥ 4. Then

Φp(AσB) ≤
(
K(h)(M2 +m2)

2
4
pMm

)p
Φp(Bσ⊥A), (15)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. By Theorem 2.5 we have

Φ−2(Bσ⊥A) ≤ K2(h)Φ−2(AσB). (16)

A simple computation shows that∥∥∥Φ
p
2 (AσB)M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥
≤ 1

4

∥∥∥∥∥K p
4 (h)Φ

p
2 (AσB) +

(
M2m2

K(h)

) p
4

Φ−
p
2 (Bσ⊥A)

∥∥∥∥∥
2

( by Lemmas 2.3(i) )

≤ 1

4

∥∥∥∥KΦ2(AσB) +
M2m2

K(h)
Φ−2(Bσ⊥A)

∥∥∥∥
p
2

( by Lemmas 2.3(ii) )

≤ 1

4

∥∥K(h)Φ2(AσB) +M2m2K(h)Φ−2(AσB)
∥∥ p2 ( by (16) )

≤ 1

4
K

p
2 (h)

∥∥Φ2(AσB) +M2m2Φ2(AσB)−1
∥∥ p2 ( by (10))

≤ 1

4

(
K(h)

(
M2 +m2

)) p
2 ( by Lemma 2.8).

Therefore ∥∥∥Φ
p
2 (AσB)Φ−

p
2 (Bσ⊥A)

∥∥∥ ≤ 1

4

(
K(h)

(
M2 +m2

)
Mm

) p
2

.

The latter relation is equivalent to

Φp(AσB) ≤

(
K(h)

(
M2 +m2

)
2

4
pMm

)p
Φp(Bσ⊥A).

This proves the desired result. �
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Remark 2.3. When p ≥ 4, the derived result in Theorem 2.9 is tighter than inequality
(13).

Moreover, we show that Theorem 2.9 holds for 0 ≤ p ≤ 4.

Corollary 2.10. Let 0 < m ≤ A,B ≤M, σ be an arbitrary mean and let 0 ≤ p ≤ 4.
Then

Φp(AσB) ≤

(
K(h)

(
M2 +m2

)
2Mm

)p
Φp(Bσ⊥A),

where σ⊥ is dual σ and K(h) = (M+m)2

4MM .

Proof. By Theorem 2.5 we have

Φ4(AσB) ≤

(
K(h)

(
M2 +m2

)
2Mm

)4

Φ4(Bσ⊥A).

If 0 ≤ p ≤ 4, then 0 ≤ p
4 ≤ 1. With the aid of the latter inequality and inequality (2),

we conclude the desired inequality. �

Theorem 2.11. Let 0 < m ≤ A,B ≤M, σ1 and σ2 be two arbitrary means between
σ and σ⊥, 1 < α ≤ 2 and p ≥ 2α. Then for every positive unital linear map Φ

Φp(Aσ2B) ≤ (K
α
2 (h)(Mα +mα))

2p
α

16Mpmp
Φp(Bσ1A) (17)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. At once from inequality (14) follows that for 1 < α ≤ 2

Φ−α(Bσ1A) ≤ Kα(h)Φ−α(Aσ2B). (18)

Using the fact that 0 < m ≤ A,B ≤ M, it deduces that 0 < m ≤ Aσ2B ≤ M. Now,
the linearity property Φ results that 0 < m ≤ Φ(Aσ2B) ≤ M. Since 1 < α ≤ 2, one
can easily prove that

Φα(Aσ2B) +MαmαΦ−α(Aσ2B) ≤Mα +mα. (19)

Therefore∥∥∥M p
2m

p
2 Φ

p
2 (Aσ2B)Φ−

p
2 (Bσ1A)

∥∥∥
≤ 1

4

∥∥∥K− p4 (h)M
p
2m

p
2 Φ−

p
2 (Bσ1A) +K

p
4 (h)Φ

p
2 (Aσ2B)

∥∥∥2 ( by Lemma 2.3(i) )

≤ 1

4

∥∥∥(K−α2 (h)MαmαΦ−α(Bσ1A) +K
α
2 (h)Φα(Aσ2B)

) p
2α

∥∥∥2 ( by Lemma 2.3(ii) )

=
1

4

∥∥K−α2 (h)MαmαΦ−α(Bσ1A) +K
α
2 (h)Φα(Aσ2B)

∥∥ pα
≤ 1

4

∥∥K α
2 (h)MαmαΦ−α(Aσ2B) +K

α
2 (h)Φα(Aσ2B)

∥∥ pα ( by (18))

≤ 1

4
K

p
2 (h)(Mα +mα)

p
α ( by (19)),

that is ∥∥∥Φ
p
2 (Aσ2B)Φ−

p
2 (Bσ1A)

∥∥∥ ≤ K
p
2 (h)(Mα +mα)

p
α

4M
p
2m

p
2

,
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or equivalently

Φp(Aσ2B) ≤
(
K

α
2 (h)(Mα +mα)

) 2p
α

16Mm
Φp(Bσ1A).

�

Remark 2.4. In special case, for α = 2, inequality (17) becomes inequality (15).

Remark 2.5. By taking σ = ∇ in inequality (17), we get inequality (8).

Theorem 2.12. Let 0 < m ≤ A,B ≤M such that 0 < m < M and σ be an arbitrary
mean. Then for every positive unital linear map Φ and two arbitrary means σ1 and
σ2 which lie between σ and σ⊥ and p ≥ 0, the following inequality holds

Φp(Aσ2B)Φ−p(Bσ1A) + Φ−p(Bσ1A)Φp(Aσ2B) ≤ 2Kp(h)Φp(Bσ1A) (20)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. It follows from (14) that

‖Φp(Aσ2B)Φ−p(Bσ1A)‖ ≤ Kp(h). (21)

Applying Lemma 2.4 we have(
K(h)pI Φ−p(Bσ1A)Φp(Aσ2B)

Φp(Aσ2B)Φ−p(Bσ1A) K(h)pI

)
≥ 0

and (
K(h)pI Φp(Aσ2B)Φ−p(Bσ1A)

Φ−p(Bσ1A)Φp(Aσ2B) K(h)pI

)
≥ 0.

Summing up two above inequalities, we obtain the following inequality(
2K(h)pI β1

β2 2K(h)pI

)
≥ 0,

where

β1 = Φ−p(Bσ1A)Φp(Aσ2B) + Φp(Aσ2B)Φ−p(Bσ1A)

and

β2 = Φp(Aσ2B)Φ−p(Bσ1A) + Φ−p(Bσ1A)Φp(Aσ2B).

Again using Lemma 2.4 we get the desired result. �

Remark 2.6. Put σ = ∇, inequality (20) reduces to some results in [2]

3. A refined inequality for the arithmetic-geometric mean

Let A,B ∈ B(H) be two invertible positive operators, 0 ≤ ν ≤ 1 and −1 ≤ q ≤ 1.
We use from the notation A]q,νB to define the power mean

A]q,νB = A
1
2

(
(1− ν)I + ν

(
A

1
2BA

1
2

)q) 1
q

A
1
2 .
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For more information see [11]. The authors in [12] proved that if 0 < m ≤ A,B ≤M
such that 0 < m < M and 0 < ν ≤ µ < 1, −1 ≤ q ≤ 1. Then for every positive unital
linear map Φ and p ≥ 0, the following inequality holds

Φp
(
A∇νB +

ν

µ
Mm

(
A−1∇µB−1 −A−1]q,µB−1

))
≤ Kp(h)Φp(A]q,νB), (22)

where K(h) = (M+m)2

4Mm is the Kantorovich constant.
Using the following theorem, we obtain a generalization from inequality (22).

Theorem 3.1. Suppose that 0 < m ≤ A,B ≤ M such that 0 < m < M and
0 < ν ≤ µ < 1, −1 ≤ q ≤ 1 and 1 < α ≤ 2. Then for every positive unital linear map
Φ and p ≥ 0, the following inequality holds

Φp
(
A∇νB +

ν

µ
Mm(A−1∇νB−1 −A−1]q,µB−1)

)

≤
(
K

α
4 (h)(Mα +mα)

) 2p
α

16Mpmp
Φp(A]q,νB), (23)

where K(h) = (M+m)2

4Mm is the Kantorovich constant.

Proof. For 1 < α ≤ 2, by inequality (22), we have

Φα
(
A∇νB +

ν

µ
Mm

(
A−1∇µB−1 −A−1]q,µB−1

))
≤ Kα(h)Φα(A]q,νB) (24)

The last inequality deduces using a process similar to inequality (19). This shows
that ∥∥∥∥Φ

p
2

(
A∇νB +

ν

µ
Mm

(
A−1∇µB−1 −A−1]q,µB−1

))
Φ−

p
2 (A]q,νB)

∥∥∥∥
≤ K

p
2 (h)(Mα +mα)

p
α

4M
p
2m

p
2

.

Then

Φp
(
A∇νB +

ν

µ
Mm

(
A−1∇µB−1 −A−1]q,µB−1

))

≤
(
K

α
4 (h)(Mα +mα)

) 2p
α

16Mpmp
Φp(A]q,νB).

�

Remark 3.1. Taking α = 2, inequality (23) becomes inequality (22).

Remark 3.2. By putting α = 2, µ = 1
2 and taking q → 0, inequality (23) collapse to

the derived result in [2].
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