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Abstract. Banach-Mazur-Caccioppoli global inversion theorem is applied to obtain a gen-

eralization of a previous result of the authors and a result due to Ambrosetti and Prodi

concerning unique solvability of a Dirichlet problem for a second order differential equation.
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In [1] and [2] Ambrosetti and Prodi had proved the following result.
Theorem 1. Let ψ : R → R be a C2 map such that ψ(0) = 0, ψ′(0) = π2,

tψ′′(t) < 0 if t 6= 0. Then for every continuous map f : [0, 1] → R the Dirichlet
problem

ẍ(t) + ψ(x(t)) = f(t), x(0) = x(1) = 0 (1)

has a unique solution.

The above result was generalised in [15], in a Hilbert space framework by the
authors of this paper who proved the following two theorems:

Theorem 2.[15, Thm.4] Let H be a real finite dimensional Hilbert space and
f : [0, 1]×H → H be a continuous map such that f ′

x , the derivative of f with respect
to the second argument exists and is continuous. Consider b ≥ 0, a ∈ [0, π2) and
suppose that:

〈x, f(t, x)〉 ≤ a‖x‖2 + b‖x‖, x ∈ H (2)

µ(f ′x(t, x)) ≤ π2 t ∈ [0, 1], x ∈ H (3)

Denote W = {x ∈ H : µ(f ′x(t, x))) = π2 ∀t ∈ [0, 1]}.
If W is at most countable then for every continuous map p : [0, 1] → H the

problem:

ẍ(t) + f(t, x(t)) = p(t), x(0) = x(1) = 0 (4)

has exactly one solution.

Theorem 3.[15, Thm.6] Let H be a real finite dimensional Hilbert space and
ψ : H → H be a C1 map with the properties

ψ(0) = 0, µ (ψ′(0)) = π2 and µ (ψ′(x)) ≤ π2, for every x ∈ H (5)

For every r ≥ 0 denote

m (r) = sup {‖ψ (x)‖ : ‖x‖ ≤ 2r} ,
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M (r) = sup {µ (ψ′(x)) : ‖x‖ ≥ r} .

Suppose that there exist r > 0 and b > 0 such that

m (r) ≤ b and M (r) < π2. (6)

Denote W = {x ∈ H : µ (ψ′(x)) = π2}.
If W is at most countable then for every continuous map f : [0, 1] → H the

problem:

ẍ(t) + ψ(x(t)) = f(t), x(0) = x(1) = 0 (7)

has exactly one solution.

In the above two theorems we denoted by µ the logarithmic norm. We recall that
if E be a linear normed space, then the logarithmic norm is a functional defined on
L(E,E) by

µ (A) = lim
t↓0

‖I+tA‖−1
t

A ∈ L(E,E)

One can easily see that:

µ(A) ≤ ‖A‖

µ(αA) = αµ(A), for every nonnegative number α

|µ(A) − µ(B)| ≤ ‖A−B‖ .

The functional µ is not a norm since it may take negative values.
In case E is a Hilbert space, we have:

µ(A) = sup‖h‖=1 <e〈Ah, h〉 = the greatest eigenvalue of (A+A∗)
2 .

More properties of the logarithmic norm can be found in [ 7 ], [ 11 ].

The proofs of Theorem 2 and Theorem 3 were based on the application of the
Banach-Mazur-Caccioppoli global inversion theorem.

Caccioppoli [5] and Banach and Mazur [3] gave an interesting and simple condition
for global invertibility of a mapping.

Theorem 4. Let E,F be two Banach spaces. Then f : E → F is a global
homeomorphism if and only if f is a local homeomorphism and a proper map.

Here by a global homeomorphism (diffeomorphism of class Cp for some p ≥ 1)
we understand a homeomorphism (diffeomorphism of class Cp) which is onto. More
information on global inversion theorems can be found in [9]-[15]. Several authors
applied the Banach-Mazur-Caccioppoli theorem to existence and uniqueness results
for boundary value problems. See for example [1], [2], [4], [6],[8],[15].

In the following we shall give a generalization of a result due to Ambrosetti and
Prodi [1] based on the Banach-Mazur-Caccioppoli theorem. Our approach uses a
different argument than that given in [1] to prove the invertibility of a nonlinear
operator which is a local homeomorphism except a small set. Our result represents a
slight generalization of our previous result (Theorem 2 in this paper).

Let H be a Hilbert space. Consider the following norms:
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‖x‖0 = sup
t∈[0,1]

‖x (t)‖ , x ∈ C([0, 1] ,H), (8)

‖x‖2 =

(∫ 1

0

‖x (t)‖
2
dt

) 1

2

, x ∈ L2([0, 1] ,H). (9)

To prove our result we need the following two lemmas:
Lemma 1. Let H be a Hilbert space and x : [0, 1] → H be a C1 map such that

x (0) = x (1) = 0.
Then the following inequalities hold:

∥∥∥ ·
x
∥∥∥

2
≥ π ‖x‖2 , (10)

∥∥∥ ·
x
∥∥∥

2
≥ 2 ‖x‖0 . (11)

Inequality (10) is known as the Wirtinger’s inequality and inequality (11) is known
as the Lees’ inequality. The following lemma is due to Plastock [8].

Lemma 2. Let E,F be two Banach spaces whose dimensions are 3 or greater and
f : E → F be a C1 Fredholm proper map of zero index. Denote B = {x ∈ E : f ′ (x) is
not surjective}. If b ∈ B is isolated in B then f is a local homeomorphism about b.

Theorem 5. Let H be a real finite dimensional Hilbert space and f : [0, 1]×H →
H be a continuous map such that f ′

x , the derivative of f with respect to the second
argument exists and is continuous. Consider b ≥ 0, a ∈ [0, π2) and suppose that:

〈x, f(t, x)〉 ≤ a‖x‖2 + b‖x‖, x ∈ H (12)

µ(f ′x(t, x)) ≤ π2 t ∈ [0, 1], x ∈ H (13)

Denote W = {x ∈ H : µ(f ′x(t, x))) = π2 ∀t ∈ [0, 1]}.
If W is at most countable then for every continuous map p : [0, 1] → H and

every real constant c, the problem:

ẍ(t) + c
·
x (t) + f(t, x(t)) = p(t), x(0) = x(1) = 0 (14)

has exactly one solution.
Proof. Let X = {x ∈ C2([0, 1],H) : x(0) = x(1) = 0}, Y = C ([0, 1] ,H) . Endow

Y with the the sup norm, that is with the norm ‖x‖0 from (1). Endow X with the
norm:

‖x‖1 = ‖x‖0 + ‖ẍ‖0 , x ∈ X.

Let ‖x‖2 be the L2 norm as it was defined in (9). Consider the operator S : X → Y ,

(Sx) (t) =
··
x (t) + c

·
x (t) + f (t, x (t)) , t ∈ [0, 1] , x ∈ X.
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Let x ∈ X. Then applying Wirtinger’s inequality we obtain:

‖Sx‖2 ‖x‖2 ≥ −

∫ 1

0

〈x (t) , (Sx) (t)〉 dt =

=

∫ 1

0

∥∥∥ ·
x (t)

∥∥∥
2

dt− c

∫ 1

0

〈
x (t) ,

·
x (t)

〉
dt−

−

∫ 1

0

〈x (t) , f(t, x (t))〉 dt =

=

∫ 1

0

∥∥∥ ·
x (t)

∥∥∥
2

dt−
1

2
c

∫ 1

0

d

dt
‖x (t)‖

2
dt−

−

∫ 1

0

〈x (t) , f(t, x (t))〉 dt =

=

∫ 1

0

∥∥∥ ·
x (t)

∥∥∥
2

dt−

∫ 1

0

〈x (t) , f(t, x (t))〉 dt ≥

≥
∥∥∥ ·
x
∥∥∥

2

2
− a

∫ 1

0

‖x (t)‖
2
dt− b

∫ 1

0

‖x (t)‖ dt ≥

≥
∥∥∥ ·
x
∥∥∥

2
π ‖x‖2 − a ‖x‖

2
2 − b ‖x‖2 =

= ‖x‖2

(
π

∥∥∥ ·
x
∥∥∥

2
− a ‖x‖2 − b

)
≥ ‖x‖2

(
π

∥∥∥ ·
x
∥∥∥

2
−
a

π

∥∥∥ ·
x
∥∥∥

2
− b

)
.

If we divide by ‖x‖2 and apply Lees inequality we obtain:

‖Sx‖0 ≥ ‖Sx‖2 ≥
π2 − a

π

∥∥∥ ·
x
∥∥∥

2
− b ≥ 2

π2 − a

π
‖x‖0 − b. (15)

We shall prove that (15) implies that S : (X, ‖·‖1) → (Y, ‖·‖0) is a proper map.

To prove this let (xn)n≥1be a sequence of X and y ∈ Y such that Sxn → y as
n→ ∞.

By (15) it follows that there exists M > 0 such that ‖xn‖0 ≤M for every n ≥ 1.

Consider the operators L,N : X → Y, Lx =
··
x+ c

·
x, (Nx) (t) = f (t, x (t)) , x ∈ X,

t ∈ [0, 1].
Note that L is one-to-one and onto and L−1 : (Y, ‖·‖0) → (X, ‖·‖0) is continuous.(
L−1y

)
(t) = 1−e−ct

e−c−1

∫ 1

0
e−cs

(∫ s

0
ecτy (τ) dτ

)
ds +

∫ t

0
e−cs

(∫ s

0
ecτy (τ) dτ

)
ds, t ∈

[0, 1] , y ∈ Y .
Since N : (X, ‖·‖0) → (Y, ‖·‖0) is a compact operator it follows that the sequence

(Nxn)n≥1 contains a convergent subsequence. Without loss of generality we may

suppose that (Nxn)n≥1is convergent to z ∈ Y . Letting n → ∞ in the equality

xn = L−1S (xn) − L−1N (xn) we obtain

lim
n→∞

∥∥ xn − L−1y − L−1z
∥∥

0
= 0. (16)

By (16) and

lim
n→∞

∥∥ Lxn − L(L−1y − L−1z)
∥∥

0
= lim

n→∞
‖ (Sxn − y) − (Nxn − z)‖0 = 0,

it follows that

lim
n→∞

∥∥ xn − L−1(y − z)
∥∥

1
= 0.

Consequently S : (X, ‖·‖1) → (Y, ‖·‖0) is a proper map.
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For every w ∈ W consider the map w̃ ∈ X, w̃ (t) = w, t ∈ [0, 1] . Denote

W̃ = {w̃ : w ∈W}.

Note that
(
S

′

x
)

(h) (t) =
··

h (t) + c
·

h (t) + f ′
x (t, x (t))h (t) , t ∈ [0, 1] , x, h ∈ X.

We shall prove that S
′

x : X → Y is one-to-one for every x ∈ X − W̃ .

Suppose that x ∈ X − W̃ . Denote ϕ (t) = µ (f ′
x (t, x (t))) , t ∈ [0, 1] .

Let J = t ∈ [0, 1] : x (t) ∈ H − W}. One can easily see that J is infinite and
ϕ (t) < π2 for every t ∈ J.

If h ∈ X − {0} and
(
S

′

x
)

(h) = 0 , then

0 = −
〈(
S

′

x
)

(h) , h
〉

=

=

∫ 1

0

∥∥∥∥
·

h (t)

∥∥∥∥
2

dt− c

∫ 1

0

〈
·

h (t) , h (t)

〉
dt−

−

∫ 1

0

〈f ′
x (t, x (t))h (t) , h (t)〉 dt =

=

∫ 1

0

∥∥∥∥
·

h (t)

∥∥∥∥
2

dt−
1

2
c

∫ 1

0

d

dt
‖h (t)‖

2
dt−

−

∫ 1

0

〈f ′
x (t, x (t))h (t) , h (t)〉 dt =

=

∫ 1

0

∥∥∥∥
·

h (t)

∥∥∥∥
2

dt−

∫ 1

0

〈f ′
x (t, x (t))h (t) , h (t)〉 dt ≥

≥

∫ 1

0

[
π2 − ϕ (t)

]
‖h (t)‖

2
dt,

hence h = 0 on J. If t0 is a limit point of J then h (t0) = h′ (t0) = 0. Since h is the
unique solution of an initial value problem we obtain that h = 0 on [0, 1] . Hence we

obtain a contradiction. Consequently
(
S

′

x
)

(h) = 0 implies that h = 0.

Since L−1
(
S

′

x
)

is a compact perturbation of the identity for every x ∈ X−W̃ the

Fredholm alternative implies that S
′

x is bijective for every x ∈ X − W̃ .The local

inversion theorem implies that S is a local diffeomorphism on X − W̃ .

Lemma 2 implies that S is a local homeomorphism on X. Now the Banach-Mazur-
Caccioppoli theorem implies that S : (X, ‖‖1) → (Y, ‖‖0) is a global homeomorphism.

We recall the following lemma from [15].
Lemma 3. Let H be a real Hilbert space and ψ : H → Hbe a C1 map with the

properties (5) and (6). Then there exists a ∈
(
0, π2

)
such that

〈x, ψ (x)〉 ≤ a‖x‖2 + b‖x‖, x ∈ H. (17)

Theorem 6. Let H be a real finite dimensional Hilbert space and ψ : H → H be
a C1 map with the properties (5) and (6). Denote W = {x ∈ H : µ (ψ′(x)) = π2}.

If W is at most countable then for every continuous map f : [0, 1] → H the
problem:

ẍ(t) + c
·
x (t) + ψ(x(t)) = f(t), x(0) = x(1) = 0 (18)

has exactly one solution.
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Proof. The result from the statement follows at once from Theorem 5 and Lemma
3.
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