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Ewens distribution on Sn is a wavy probability distribution
with respect to n partitions

Udrea Păun

Abstract. We show that the Ewens distribution on Sn, the set of permutations of order n, is
a wavy probability distribution with respect to an order relation and n partitions which will

be specified — the fact that the number of partitions is n is important. We then construct a

Gibbs sampler in a generalized sense for the Ewens distribution. This chain leads
1) to a fast exact (not approximate) Markovian method for sampling from Sn according to

the Ewens distribution and, as a result, to a fast exact method for sampling from An, a set

which will be specified, according to the Ewens sampling formula;
2) to the computation of normalization constant of Ewens distribution;

3) to the computation, by Uniqueness Theorem, of certain important probabilities for the

Ewens distribution and, as a result, to upper bounds for the cumulative distribution function
of number of cycles of permutation chosen from Sn according to the Ewens distribution.

Our sampling Markovian method has something in common with the swapping method. The
number of steps of our sampling Markovian method is equal to the number of steps of swap-

ping method, i.e., n − 1; moreover, both methods use the best probability distributions on

sampling, the swapping method uses uniform probability distributions while our method uses
almost uniform probability distributions (all the components of an almost uniform probability

distribution are, here, identical, excepting at most one of them).
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1. Basic things, I

In this section, we present some basic things on nonnegative matrices, products
of stochastic matrices, our hybrid Metropolis-Hastings chain, our Gibbs sampler in a
generalized sense, and our wavy probability distributions.

Set
Par (E) = {∆ | ∆ is a partition of E } ,

where E is a nonempty set. We shall agree that the partitions do not contain the
empty set.

Definition 1.1. Let ∆1,∆2 ∈Par(E) . We say that ∆1 is finer than ∆2 if ∀V ∈ ∆1,
∃W ∈ ∆2 such that V ⊆W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
In this article, a vector is a row vector and a stochastic matrix is a row stochastic

matrix.

Received May 10, 2019. Accepted May 17, 2020.
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The entry (i, j) of a matrix Z will be denoted Zij or, if confusion can arise, Zi→j .
Set

〈m〉 = {1, 2, ...,m} (m ≥ 1),

Nm,n = {P | P is a nonnegative m× n matrix} ,

Sm,n = {P | P is a stochastic m× n matrix} ,

Nn = Nn,n,

Sn = Sn,n.

Let P = (Pij) ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Set the matrices

PU = (Pij)i∈U,j∈〈n〉 , P
V = (Pij)i∈〈m〉,j∈V , and PVU = (Pij)i∈U,j∈V .

Set

({i})i∈{s1,s2,...,st} = ({s1} , {s2} , ..., {st}) ;

({i})i∈{s1,s2,...,st} ∈ Par ({s1, s2, ..., st}) (t ≥ 1).

E.g.,

({i})i∈〈n〉 = ({1} , {2} , ..., {n}) .

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic matrix if
∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Definition 1.3. ([8].) Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We
say that P is a [∆]-stable matrix on Σ if PLK is a generalized stochastic matrix,
∀K ∈ ∆,∀L ∈ Σ. In particular, a [∆]-stable matrix on ({i})i∈〈n〉 is called [∆]-stable

for short.

Definition 1.4. ([8].) Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We say
that P is a ∆-stable matrix on Σ if ∆ is the least fine partition for which P is a [∆]-
stable matrix on Σ. In particular, a ∆-stable matrix on ({i})i∈〈n〉 is called ∆-stable

while a (〈m〉)-stable matrix on Σ is called stable on Σ for short. A stable matrix on
({i})i∈〈n〉 is called stable for short.

Let ∆1 ∈Par(〈m〉) and ∆2 ∈Par(〈n〉). Set (see [8] for G∆1,∆2
and [9] for G∆1,∆2

)

G∆1,∆2
= {P | P ∈ Sm,n and P is a [∆1] -stable matrix on ∆2 }

and

G∆1,∆2
= {P | P ∈ Nm,n and P is a [∆1] -stable matrix on ∆2 } .

When we study or even when we construct products of nonnegative matrices (in
particular, products of stochastic matrices) using G∆1,∆2

or G∆1,∆2
, we shall refer

this as the G method. G comes from the verb to group and its derivatives.
Below we give an important beautiful result on products of stochastic matrices.

Theorem 1.1. ([8].) Let P1 ∈ G(〈m1〉),∆2
⊆ Sm1,m2

, P2 ∈ G∆2,∆3
⊆ Sm2,m3

, ...,
Pn−1 ∈ G∆n−1,∆n

⊆ Smn−1,mn , Pn ∈ G∆n,({i})i∈〈mn+1〉
⊆ Smn,mn+1

. Then

P1P2...Pn

is a stable matrix (i.e., a matrix with identical rows, see Definition 1.4).

Proof. See [8]. �
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Definition 1.5. (See, e.g., [16, p. 80].) Let P ∈ Nm,n. We say that P is a row-
allowable matrix if it has at least one positive entry in each row.

Let P ∈ Nm,n. Set

P =
(
P ij
)
∈ Nm,n, P ij =

{
1 if Pij > 0,
0 if Pij = 0,

∀i ∈ 〈m〉 ,∀j ∈ 〈n〉 . We call P the incidence matrix of P (see, e.g., [7, p. 222]).

In this article, the transpose of a vector x is denoted x′. Set e = e (n) =
(1, 1, ..., 1) ∈ Rn, ∀n ≥ 1.

In this article, some statements on the matrices hold eventually by permutation of
rows and columns. For simplification, further, we omit to specify this fact.

Warning! In this article, if a Markov chain has the transition matrix P = P1P2...Ps,
where s ≥ 1 and P1, P2, ..., Ps are stochastic matrices, then any 1-step transition of
this chain is performed via P1, P2, ..., Ps, i.e., doing s transitions: one using P1, one
using P2, ..., one using Ps.

Let S be a finite set with |S| = r, where r ≥ 2 (|·| is the cardinal; for “r ≥ 2”,
see below). Let π = (πi)i∈S be a positive probability distribution on S. One way to
sample approximately or, at best, exactly from S is by means of our hybrid Metropolis-
Hastings chain from [9]. Below we define this chain.

Let E be a nonempty set. Set ∆ � ∆′ if ∆′ � ∆ and ∆′ 6= ∆, where ∆,
∆′ ∈Par(E) .

Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S ,
where t ≥ 1. (∆1 � ∆2 implies r ≥ 2.) Let Q1, Q2, ..., Qt ∈ Sr, Q1 =

(
(Q1)ij

)
i,j∈S

,

Q2 =
(

(Q2)ij

)
i,j∈S

, ..., Qt =
(

(Qt)ij

)
i,j∈S

, such that

(C1) Q1, Q2, ..., Qt are symmetric matrices;

(C2) (Ql)
L
K = 0,∀l ∈ 〈t〉 − {1} ,∀K,L ∈ ∆l,K 6= L (this assumption implies that

Ql is a block diagonal matrix and ∆l-stable matrix on ∆l,∀l ∈ 〈t〉 − {1});
(C3) (Ql)

U
K is a row-allowable matrix, ∀l ∈ 〈t〉 , ∀K ∈ ∆l, ∀U ∈ ∆l+1, U ⊆ K.

Define the matrices

Pl =
(

(Pl)ij

)
i,j∈S

(Pl ∈ Sr),

(Pl)ij =


0 if j 6= i and (Ql)ij = 0,

(Ql)ij min
(

1,
πj(Ql)ji
πi(Ql)ij

)
if j 6= i and (Ql)ij > 0,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 . Set P = P1P2...Pt.

Theorem 1.2. ([9].) Concerning P above we have πP = π and P > 0.

Proof. See [9]. �

By Theorem 1.2, Pn → e′π as n → ∞. We call the Markov chain with transition
matrix P the hybrid Metropolis-Hastings chain. In particular, we call this chain the
hybrid Metropolis chain when Q1, Q2, ..., Qt are symmetric matrices.

The next result is a corrected version of Theorem 2.1 from [14].
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Theorem 1.3. ([15].) Consider a hybrid Metropolis-Hastings chain with state space S
above (|S| = r ≥ 2) and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding
to Q1, Q2, ..., Qt, respectively. Suppose that ∀l ∈ 〈t〉 , ∀i, j ∈ S,

(Ql)ij =
πj∑

k∈S,(Ql)ik>0

πk
if (Ql)ij > 0

(see above for Ql, l ∈ 〈t〉 , π = (πi)i∈S , ...). Then

(Pl)ij =



0 if j 6= i and (Ql)ij = 0,

(Ql)ij if j 6= i and πj (Ql)ji ≥ πi (Ql)ij > 0,
πj∑

k∈S, (Ql)jk>0

πk
if j 6= i and πj (Ql)ji < πi (Ql)ij ,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 , ∀i, j ∈ S. If, moreover,

πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈t〉 ,∀i, j ∈ S,

then

Pl = Ql, ∀l ∈ 〈t〉 .

Proof. See [15]. �

We call the hybrid Metropolis-Hastings chain from Theorem 1.3 the cyclic Gibbs
sampler in a generalized sense — the Gibbs sampler in a generalized sense for short.

Further, we consider that S = {s1, s2, ..., sr} , where r ≥ 2 (|S| = r). Equip S with
an order relation, 5 . Suppose that s1 5 s2 5 ... 5 sr. Let π = (πsi)i∈〈r〉 be a positive

probability distribution (on S). Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) �
∆2 � ... � ∆t+1 = ({si})i∈〈r〉 , where t ≥ 1 and ({si})i∈〈r〉 = ({s1} , {s2} , ..., {sr}) .

(∆1 � ∆2 implies r ≥ 2.) Consider that ∆l =
(
K

(l)
1 ,K

(l)
2 , ...,K

(l)
ul

)
, K

(l)
1 having the

first
∣∣∣K(l)

1

∣∣∣ elements of S, K
(l)
2 having the next

∣∣∣K(l)
2

∣∣∣ elements of S (this condition

and the next ones vanish when l = 1), ..., K
(l)
ul having the last

∣∣∣K(l)
ul

∣∣∣ elements of S,

∀l ∈ 〈t+ 1〉 . Consider that

(c1)
∣∣∣K(l)

1

∣∣∣ =
∣∣∣K(l)

2

∣∣∣ = ... =
∣∣∣K(l)

ul

∣∣∣ , ∀l ∈ 〈t+ 1〉 with ul ≥ 2;

(c2) r = r1r2...rt with r1r2...rl = |∆l+1| , ∀l ∈ 〈t− 1〉 , and rt =
∣∣∣K(t)

1

∣∣∣.
We have

K(l)
v =

⋃
w∈Dv,bl∪{vbl}

K(l+1)
w , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 ,

where

bl =
|∆l+1|
|∆l|

, ∀l ∈ 〈t〉 ,

and

Dv,bl = {(v − 1) bl + 1, (v − 1) bl + 2, ..., vbl − 1} , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 .
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Suppose that ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀w ∈ Dv,bl , ∃α
(l,v)
w > 0 such that

πs
i+d

(l,v)
w

= α(l,v)
w πsi (direct proportionality), ∀i ∈ 〈r〉 with si ∈ K(l+1)

(v−1)bl+1,

which, using vectors, is equivalent to

(πsi)i∈〈r〉, si∈K(l+1)
w+1

= α(l,v)
w (πsi)i∈〈r〉, si∈K(l+1)

(v−1)bl+1

,

where

d(l,v)
w =

∣∣∣K(l+1)
(v−1)bl+1

∣∣∣+
∣∣∣K(l+1)

(v−1)bl+2

∣∣∣+ ...+
∣∣∣K(l+1)

w

∣∣∣ ,
∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀w ∈ Dv,bl .

Definition 1.6. (Based on Definition 3.1 from [14].) The probability distribution
π = (πsi)i∈〈r〉 having the above property (direct proportionality) we call the wavy

probability distribution (with respect to the order relation 5 and partitions ∆1, ∆2,
..., ∆t+1).

The wavy probability distributions of first type and those of second type from [10]
are, according to Definition 1.6, wavy probability distributions (see also Example 3.1
in [14]). Below we give another simple example of wavy probability distribution.

Example 1.1. Let S = 〈9〉 . Let 5=≤ . Let

π =

(
a

Z
,
a3

Z
,
a4

Z
,
a3

Z
,
a5

Z
,
a6

Z
,
a10

Z
,
a12

Z
,
a13

Z

)
,

a probability distribution on S, where a > 0 and

Z = a+ a3 + a4 + a3 + a5 + a6 + a10 + a12 + a13

(the normalization constant). Let

∆1 = (S) = (〈9〉) ,

∆2 = ({1, 2, 3} , {4, 5, 6} , {7, 8, 9}) ,
∆3 = ({i})i∈〈9〉

(∆1 � ∆2 � ∆3; |{1, 2, 3}| = |{4, 5, 6}| = |{7, 8, 9}| = 3).

First, we consider ∆1 and ∆2. We have

π4 = a2π1, π5 = a2π2, π6 = a2π3,

which, using vectors, is equivalent to

(π4, π5, π6) = a2 (π1, π2, π3)

(the proportionality factor is a2), and

π7 = a9π1, π8 = a9π2, π9 = a9π3,

which is equivalent to

(π7, π8, π9) = a9 (π1, π2, π3)

(the proportionality factor is a9). Second, we consider ∆2 and ∆3. We have

π2 = a2π1

(here, we do not use vectors anymore; the proportionality factor is a2),

π3 = a3π1
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(the proportionality factor is a3),

π5 = a2π4,

π6 = a3π4

(the proportionality factors are a2 and a3, respectively),

π8 = a2π7,

π9 = a3π7

(the proportionality factors are also a2 and a3, respectively). Consequently, π is a
wavy probability distribution on S (neither of the first type nor of the second type
because S = 〈9〉 and, moreover, 5=≤).

The next result is another important result.

Theorem 1.4. (Based on Theorem 3.1 from [14].) Let π = (πsi)i∈〈r〉 be a wavy

probability distribution (on S) with respect to the order relation 5 and partitions ∆1,
∆2, ..., ∆t+1 — for S, 5, ..., see Definition 1.6 and above this definition. Consider a
Markov chain with state space S and transition matrix P = P1P2...Pt (t ≥ 1), where
(we again use the notation from Definition 1.6 and above this definition)

(Pl)s
i+d

(l,v)
w
→ξ =


πs
i+d

(l,v)
u∑

z∈{0}∪Dv,bl

πs
i+d

(l,v)
z

if ξ = s
i+d

(l,v)
u

for some u ∈ {0} ∪Dv,bl ,

0 if ξ 6= s
i+d

(l,v)
u

, ∀u ∈ {0} ∪Dv,bl ,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀i ∈ 〈r〉 with si ∈ K(l+1)
(v−1)bl+1, ∀w ∈ {0} ∪Dv,bl , ∀ξ ∈ S, setting

d
(l,v)
0 = 0, ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 . Then this chain is a Gibbs sampler in a generalized

sense and

P = e′π

(therefore, this chain attains its stationarity at time 1, its stationary probability dis-
tribution (limit probability distribution) being, obviously, π).

Proof. It is easy to see that

πsi (Pl)sisj = πsj (Pl)sjsi , ∀l ∈ 〈t〉 , ∀i, j ∈ 〈r〉 .

Taking — Theorem 1.3 together with the above equations, definitions of matrices Pl,
l ∈ 〈t〉 , ... suggest to take so —

Ql = Pl, ∀l ∈ 〈t〉 ,
we obtain that the above Markov chain is a Gibbs sampler in a generalized sense. For
the proof of equation P = e′π — this equation follows from Theorems 1.1 and 1.2 —,
see the proof of Theorem 3.1 in [14]. �

Theorem 1.4 leads to the next result.

Theorem 1.5. (Based on Theorem 3.2 from [14].) Let π = (πsi)i∈〈r〉 be a wavy

probability distribution (on S) with respect to the order relation 5 and partitions ∆1,
∆2, ..., ∆t+1 — for S, 5, ..., see Definition 1.6 and above this definition. Suppose
that

πsi =
νsi
Z
, ∀i ∈ 〈r〉 ,
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where
Z =

∑
i∈〈r〉

νsi ,

Z is the normalization constant (π is a positive probability distribution, so, νsi ∈ R+,
∀i ∈ 〈r〉 , and, as a result, Z ∈ R+). Then

Z = νs1
∏
l∈〈t〉

1 +
∑

w∈D1,bl

α(l,1)
w

 .

Proof. See the proof of Theorem 3.2 from [14]. �

2. Basic things, II

In this section, we present the Ewens distribution, Ewens sampling formula, and,
in connection with these, some basic things on permutations.

We begin with some basic things on permutations in connection with the Ewens
distribution and Ewens sampling formula.

Consider the group (Sn, ◦), where Sn is the set of permutations of order n (n ≥ 1)
and ◦ is the usual composition of functions. (u1, u2, ..., uk) is a cycle of length k, where
k, u1, u2, ..., uk ∈ 〈n〉 , us 6= ut,∀s, t ∈ 〈k〉 , s 6= t; (u1) is a degenerate (improper)
cycle and (u1, u2) is a transposition. Set (u) =Id, ∀u ∈ 〈n〉 , where (u) is a degenerate
cycle, ∀u ∈ 〈n〉 , and Id is the identity permutation.

Setting (u, u) =Id, ∀u ∈ 〈n〉 , we have the following result.

Theorem 2.1. (Similar to Theorem 2.1 from [11].) Let n ≥ 2. Let

En,l = {(1, i1) ◦ (2, i2) ◦ ... ◦ (l, il) ◦ σl | i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n,
2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, σl ∈ Sn, σl (v) = v, ∀v ∈ 〈l〉} , ∀l ∈ 〈n− 1〉 .

Then
En,l = Sn, ∀l ∈ 〈n− 1〉 .

Proof. (Similar to the proof of Theorem 2.1 from [11].) Let l ∈ 〈n− 1〉 . Since (Sn, ◦)
is a group, we have En,l ⊆ Sn. Therefore, |En,l| ≤ |Sn| = n!. To finish the proof, we
show that |En,l| = n!.

The number of permutations σl ∈ Sn with σl (v) = v, ∀v ∈ 〈l〉 , is equal to (n− l)!.
Since 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, it follows that |En,l| is at most equal to

n (n− 1) ... (n− l + 1) [(n− l)!] = n!.

We show that

(1, i1) ◦ (2, i2) ◦ ... ◦ (l, il) ◦ σl = (1, j1) ◦ (2, j2) ◦ ... ◦ (l, jl) ◦ τl
if and only if

ik = jk, ∀k ∈ 〈l〉 , and σl = τl,

where i1, j1, i2, j2, ..., il, jl ∈ 〈n〉 , 1 ≤ i1, j1 ≤ n, 2 ≤ i2, j2 ≤ n, ..., l ≤ il, jl ≤ n,
σl, τl ∈ Sn, σl (v) = τl (v) = v, ∀v ∈ 〈l〉 .

“⇐= ” Obvious.
“ =⇒ ” We have

[(1, i1) ◦ (2, i2) ◦ ... ◦ (l, il) ◦ σl] (1) = [(1, j1) ◦ (2, j2) ◦ ... ◦ (l, jl) ◦ τl] (1) .
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Therefore,

i1 = j1.

Since i1 = j1, we have

(2, i2) ◦ ... ◦ (l, il) ◦ σl = (2, j2) ◦ ... ◦ (l, jl) ◦ τl.
It follows that

[(2, i2) ◦ ... ◦ (l, il) ◦ σl] (2) = [(2, j2) ◦ ... ◦ (l, jl) ◦ τl] (2) .

Therefore,

i2 = j2.

Proceeding in this way, we obtain

i1 = j1, i2 = j2, ..., il = jl,

and, as a result of these equations,

σl = τl.

We conclude that

|En,l| = n!.

�

Theorem 2.1 says that we can work with En,l instead of Sn, ∀l ∈ 〈n− 1〉 (this fact
will be used in Section 3 (Theorem 3.1, ...) and Section 4 (Theorem 4.1, ...)).

Let ψ = (u1, u2, ..., uk) be a (proper or not) cycle (ψ ∈ Sn, 1 ≤ k ≤ n). We call u1,
u2, ..., uk the cyclic elements of (cycle) ψ. E.g., the cyclic elements of cycle

(1, 2, 4) =

(
1234
2431

)
= (2431) ∈ S4

are 1, 2, 4 while the cyclic element (this is not a proper cyclic element) of cycle

(2) =

(
1234
1234

)
= (1234) = Id ∈ S4

is 2 (not 1, 3, or 4). We call {u1, u2, ..., uk} the set (or orbit) of cyclic elements of
(cycle) ψ.

Let N (σ) be the number of pair-wise disjoint cycles of permutation σ, where
σ ∈ Sn. E.g., N (Id) = n because Id= (1) ◦ (2) ◦ ... ◦ (n) ((1) , (2) , ..., (n) are
degenerate cycles).

Theorem 2.2. Let n ≥ 2. Then

N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl) =

=



N ((1, i1)◦(2, i2)◦ ... ◦(l − 1, il−1)◦(l, k)◦σl)
if j = k = l or
j, k > l,

N ((1, i1)◦(2, i2)◦ ... ◦(l − 1, il−1)◦(l, k)◦σl) + 1 if j = l, k > l,

N ((1, i1)◦(2, i2)◦ ... ◦(l − 1, il−1)◦(l, k)◦σl)− 1 if j > l, k = l,



EWENS DISTRIBUTION 9

∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il−1, j, k ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l− 1 ≤ il−1 ≤ n,
l ≤ j, k ≤ n, ∀σl ∈ Sn, σl (v) = v, ∀v ∈ 〈l〉 ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) , etc.
vanish when l = 1).

Proof. Case 1. j = k = l or j, k > l.
Subcase 1.1. j = k = l. Obvious ((l, j) = (l, k) =Id).
Subcase 1.2. j, k > l. Since σl (v) = v, ∀v ∈ 〈l〉 , ∃u ∈ 〈n− l〉 , ∃γ1, γ2, ..., γu ∈ Sn,

γ1, γ2, ..., γu are pair-wise disjoint cycles and bγwe ≥ 1, ∀w ∈ 〈u〉 , where bγwe is the
length of cycle γw, ∀w ∈ 〈u〉, such that (the cycles of length 1 are not omitted)

σl = (1) ◦ (2) ◦ ... ◦ (l) ◦ γ1 ◦ γ2 ◦ ... ◦ γu.
Since j, k > l, ∃s, t ∈ 〈u〉 such that j is a cyclic element of γs and k is a cyclic element
of γt. It follows that

(l, j) ◦ σl = (1) ◦ (2) ◦ ... ◦ (l − 1) ◦ ξ(1)
1 ◦ ξ(1)

2 ◦ ... ◦ ξ(1)
u ,

where

ξ(1)
z =


γz if z 6= s,

the cycle whose set of cyclic elements
contains l, j, and the cyclic elements of γs

if z = s,

∀z ∈ 〈u〉 (obviously, ξ
(1)
1 , ξ

(1)
2 , ..., ξ

(1)
u are pair-wise disjoint cycles), and

(l, k) ◦ σl = (1) ◦ (2) ◦ ... ◦ (l − 1) ◦ ϕ(1)
1 ◦ ϕ

(1)
2 ◦ ... ◦ ϕ(1)

u ,

where

ϕ(1)
z =


γz if z 6= t,

the cycle whose set of cyclic elements
contains l, k, and the cyclic elements of γt

if z = t,

∀z ∈ 〈u〉. Consequently,

N ((l, j) ◦ σl) = N ((l, k) ◦ σl)
Further, we consider the permutations

(l − 1, il−1) ◦ (l, j) ◦ σl and (l − 1, il−1) ◦ (l, k) ◦ σl.
If il−1 = l − 1, from (recall that (x, x) =Id, ∀x ∈ 〈n〉)

N ((l − 1, il−1) ◦ (l, j) ◦ σl) = N ((l, j) ◦ σl) =

= N ((l, k) ◦ σl) = N ((l − 1, il−1) ◦ (l, k) ◦ σl) ,
we obtain

N ((l − 1, il−1) ◦ (l, j) ◦ σl) = N ((l − 1, il−1) ◦ (l, k) ◦ σl) .

If il−1 > l− 1, then ∃s, t ∈ 〈u〉 such that il−1 is a cyclic element of ξ
(1)
s and, on the

other hand, il−1 is a cyclic element of ϕ
(1)
t . It follows that

(l − 1, il−1) ◦ (l, j) ◦ σl = (1) ◦ (2) ◦ ... ◦ (l − 2) ◦ ξ(2)
1 ◦ ξ(2)

2 ◦ ... ◦ ξ(2)
u ,

where

ξ(2)
z =


ξ

(1)
z if z 6= s,

the cycle whose set of cyclic elements

contains l − 1, il−1, and the cyclic elements of ξ
(1)
s

if z = s,
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∀z ∈ 〈u〉 , and

(l − 1, il−1) ◦ (l, k) ◦ σl = (1) ◦ (2) ◦ ... ◦ (l − 2) ◦ ϕ(2)
1 ◦ ϕ

(2)
2 ◦ ... ◦ ϕ(2)

u ,

where

ϕ(2)
z =


γ

(1)
z if z 6= t,

the cycle whose set of cyclic elements

contains l − 1, il−1, and the cyclic elements of γ
(1)
t

if z = t,

∀z ∈ 〈u〉. Consequently, if il−1 > l − 1, then

N ((l − 1, il−1) ◦ (l, j) ◦ σl) = N ((l − 1, il−1) ◦ (l, k) ◦ σl) .
Finally, for il−1 ≥ l − 1 (il−1 = l − 1 or il−1 > l − 1), we have

N ((l − 1, il−1) ◦ (l, j) ◦ σl) = N ((l − 1, il−1) ◦ (l, k) ◦ σl) .
Proceeding in this way for

(l − 2, il−2) ◦ (l − 1, il−1) ◦ (l, j) ◦ σl and (l − 2, il−2) ◦ (l − 1, il−1) ◦ (l, k) ◦ σl,
for

(l − 3, il−3) ◦ (l − 2, il−2) ◦ (l − 1, il−1) ◦ (l, j) ◦ σl and

(l − 3, il−3) ◦ (l − 2, il−2) ◦ (l − 1, il−1) ◦ (l, k) ◦ σl,
...

for

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl and

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, k) ◦ σl,
we obtain (finally)

N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl) =

= N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, k) ◦ σl) .

Case 2. j = l, k > l. In this case, we have (l, j) = (l, l) = (l). Further, we proceed
in a way similar to that used in Subcase 1.2 — finally, we obtain

N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl) =

= N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, k) ◦ σl) + 1.

Case 3. j > l, k = l. Similar to Case 2 — finally, we obtain

N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl) =

= N ((1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, k) ◦ σl)− 1.

�

Recall that R+ = {x | x ∈ R and x > 0} .
Let

πσ =
θN(σ)

Z
, ∀σ ∈ Sn,

where θ ∈ R+ and

Z =
∑
σ∈Sn

θN(σ)
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(n ≥ 1). Z is known;
Z = θ (θ + 1) ... (θ + n− 1)

(see also Comment 5 from Section 4 — a new computation method for Z is given
there). The probability distribution π = (πσ)σ∈Sn (on Sn) is called the Ewens distri-

bution, see, e.g., [1] and [4]. This probability distribution is called so because, from it,
we can obtain the Ewens sampling formula, a formula for a probability distribution
on

An={(m1,m2, ...,mn) | (m1,m2, ...,mn)∈Nn and m1+2m2+...+nmn=n}
(n ≥ 1). The Ewens sampling formula is

P ({(m1,m2, ...,mn)}) =
n!

θ (θ + 1) ... (θ + n− 1)

n∏
j=1

θmj

jmjmj !
,

∀ (m1,m2, ...,mn) ∈ An, where P is the probability on (An,P (An)) (P (An) is the
power set of An; (An,P (An)) is a measurable space),

P (B) =


∑

(m1,m2,...,mn)∈B

n!
θ(θ+1)...(θ+n−1)

n∏
j=1

θmj

jmjmj !
if ∅ 6= B ⊆ An,

0 if B = ∅,
P ({(m1,m2, ...,mn)}) is the probability of {(m1,m2, ...,mn)} , and θ ∈ R+, see [5],
see, e.g., also [2], [6], and [17]. This formula is used in genetics and other fields. Below

we derive this formula from the formula of Ewens distribution, πσ = θN(σ)

Z , ∀σ ∈ Sn.
Let σ ∈ Sn. σ can be written as a composition of pair-wise disjoint cycles. Let

ki (σ) be the number of pair-wise disjoint cycles of length i of σ, where i ∈ 〈n〉 . The
vector k (σ) = (k1 (σ) , k2 (σ) , ..., kn (σ)) is called the cycle structure vector of σ (see,
e.g., [1]).

Note that k (σ) ∈ An. Let (m1,m2, ...,mn) ∈ An. We have (see, e.g., also [1]),
using the Cauchy formula on permutations (see, e.g., [18]-[19]),

PSn ({σ | σ ∈ Sn and k (σ) = (m1,m2, ...,mn)}) =

=
∑

σ∈Sn, k(σ)=(m1,m2,...,mn)

πσ =
∑

σ∈Sn, k(σ)=(m1,m2,...,mn)

θm1+m2+...+mn

Z
=

=
θm1+m2+...+mn

Z
· |{σ | σ ∈ Sn and k (σ) = (m1,m2, ...,mn)}| =

=
θm1+m2+...+mn

Z
·

n!

n∏
j=1

1

jmjmj !

 =
n!

θ (θ + 1) ... (θ + n− 1)

n∏
j=1

θmj

jmjmj !
=

= P ({(m1,m2, ...,mn)}) ,
therefore, we obtained the Ewens sampling formula from the formula of Ewens dis-
tribution, where — it is obvious or almost obvious — PSn is the probability on
(Sn,P (Sn)) ,

PSn (A) =


∑
σ∈A

πσ if ∅ 6= A ⊆ Sn,

0 if A = ∅.
Above we were forced to use “P” with the subscript Sn. When no confusion can

arise, we use “P” for probability.
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3. A basic property of Ewens distribution

In this section, we show that the Ewens distribution on Sn is a wavy probability
distribution with respect to an order relation and n partitions which will be specified
— recall that the fact that the number of partitions is n is important.

Let n ≥ 2. Set

W(i1,i2,...,il) = {(1, i1) ◦ (2, i2) ◦ ... ◦ (l, il) ◦ σl | σl ∈ Sn, σl (v) = v,∀v ∈ 〈l〉} ,
∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n.

Theorem 3.1. (
W(i1,i2,...,il)

)
i1,i2,...,il∈〈n〉

1≤i1≤n
2≤i2≤n

...
l≤il≤n

is a partition of Sn (n ≥ 2), ∀l ∈ 〈n− 1〉 .

Proof. We have ⋃
i1,i2,...,il∈〈n〉

1≤i1≤n
2≤i2≤n

...
l≤il≤n

W(i1,i2,...,il) = En,l = Sn, ∀l ∈ 〈n− 1〉

(see Theorem 2.1).
Now, we show that

W(i1,i2,...,il) ∩W(j1,j2,...,jl) = ∅
if ∃u ∈ 〈l〉 such that iu 6= ju, where l ∈ 〈n− 1〉 , i1, j1, i2, j2, ..., il, jl ∈ 〈n〉 , 1 ≤ i1,
j1 ≤ n, 2 ≤ i2, j2 ≤ n, ..., l ≤ il, jl ≤ n. Suppose that ∃u ∈ 〈l〉 with iu 6= ju such that

W(i1,i2,...,il) ∩W(j1,j2,...,jl) 6= ∅.
Let ω ∈W(i1,i2,...,il) ∩W(j1,j2,...,jl). We have

ω = (1, i1) ◦ (2, i2) ◦ ... ◦ (l, il) ◦ σl = (1, j1) ◦ (2, j2) ◦ ... ◦ (l, jl) ◦ τl,
where σl, τl ∈ Sn, σl (v) = τl (v) = v,∀v ∈ 〈l〉 . Proceeding as in the proof of Theorem
2.1, we obtain

i1 = j1, i2 = j2, ..., il = jl, σl = τl.

Therefore, we obtained a contradiction. �

Set the partitions (this can now be done)

∆1 = (Sn) ,

∆l+1 =
(
W(i1,i2,...,il)

)
i1,i2,...,il∈〈n〉

1≤i1≤n
2≤i2≤n

...
l≤il≤n

,

∀l ∈ 〈n− 1〉 . Obviously, we have ∆n = ({σ})σ∈Sn .
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Let n ≥ 2. Set

Bn = {1, 2, ..., n} × {2, 3, ..., n} × ...× {n− 1, n} .

Note that
(1)

En,n−1 = Sn
(by Theorem 2.1, taking l = n− 1);

(2)

En,n−1 =
⋃

(i1,i2,...,in−1)∈Bn

W(i1,i2,...,in−1)

(by (1) and Theorem 3.1, taking l = n− 1);
(3)

W(i1,i2,...,in−1) = {(1, i1) ◦ (2, i2) ◦ ... ◦ (n− 1, in−1)}
(σl =Id when l = n− 1).

Let σ, τ ∈ Sn. By (1)–(3), ∃ (i1, i2, ..., in−1) , (j1, j2, ..., jn−1) ∈ Bn such that

σ = (1, i1) ◦ (2, i2) ◦ ... ◦ (n− 1, in−1) and τ = (1, j1) ◦ (2, j2) ◦ ... ◦ (n− 1, jn−1) .

Set

σ
E
≤ τ if (i1, i2, ..., in−1)

lex
≤ (j1, j2, ..., jn−1) ,

where
lex
≤ is the lexicographic order on Bn.

Theorem 3.2.
E
≤ is an order relation on Sn (n ≥ 2).

Proof. Obvious (because
lex
≤ is an order relation). �

Remark 3.1. Similar to the above definition (construction) of
E
≤, we can define

(construct) an order relation on Sn for the Mallows model through Cayley metric (see

[11] for this model and other things). Moreover, the above definition of
E
≤ gives a

suggestion to define an order relation on Sn for the Mallows model through Kendall
metric (see [12] for this model and other things).

Below we give the first main result of this article.

Theorem 3.3. Let n ≥ 2. The Ewens distribution on Sn is a wavy probability distri-

bution with respect to the order relation
E
≤ and n partitions above.

Proof. Since σl (v) = v, ∀v ∈ 〈l〉 , and σl+1 (v) = v, ∀v ∈ 〈l + 1〉 , ∀l ∈ 〈n− 2〉 , we
have

W(i1,i2,...,il+1) ⊂W(i1,i2,...,il),

∀l ∈ 〈n− 2〉 , ∀i1, i2, ..., il+1 ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l + 1 ≤ il+1 ≤ n.
Obviously, W(i1) ⊂ Sn, ∀i1 ∈ 〈n〉. Therefore,

∆1 � ∆2 � ... � ∆n.

The conditions (c1) and (c2) also hold.
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Fix l ∈ 〈n− 1〉 . Consider the partitions ∆l and ∆l+1 (see the definition of wavy
probability distribution again). Let K ∈ ∆l. We have

K =

 Sn if l = 1,

W(i1,i2,...,il−1)
for some i1, i2, ..., il−1 ∈ 〈n〉 , 1 ≤ i1 ≤ n,
2 ≤ i2 ≤ n, ..., l − 1 ≤ il−1 ≤ n if l 6= 1.

Using the order relation
E
≤, the first subset of K belonging to ∆l+1 is W(i1,i2,...,il−1,l),

the second one is W(i1,i2,...,il−1,l+1), ..., the last one is W(i1,i2,...,il−1,n) (i1, i2, ..., il−1

vanish when l = 1). The first element of W(i1,i2,...,il−1,l) is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l) ◦ (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)

(here, σl = (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)), the second one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l) ◦ (l + 1, l + 2) ◦ (l + 2, l + 2) ◦ ... ◦ (n−1, n−1)

(here, σl = ...), ..., the last one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l) ◦ (l + 1, n) ◦ (l + 2, n) ◦ ... ◦ (n− 1, n) ;

the first element of W(i1,i2,...,il−1,l+1) is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l + 1) ◦ (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)

(here, σl = (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)), the second one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l−1, il−1) ◦ (l, l+1) ◦ (l+1, l+2) ◦ (l+2, l+2) ◦ ... ◦ (n−1, n−1) ,

...

the last one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l + 1) ◦ (l + 1, n) ◦ (l + 2, n) ◦ ... ◦ (n− 1, n) ;

...

...

the first element of W(i1,i2,...,il−1,n) is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, n) ◦ (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)

(here, σl = (l + 1, l + 1) ◦ ... ◦ (n− 1, n− 1)), the second one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, n) ◦ (l+1, l+2) ◦ (l+2, l+2) ◦ ... ◦ (n−1, n−1) ,

...

the last one is

(1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, n) ◦ (l + 1, n) ◦ (l + 2, n) ◦ ... ◦ (n− 1, n) .

So, by Theorem 2.2 we have, using vectors,

(πσ)σ∈W(i1,i2,...,il)
=

1

θ
(πσ)σ∈W(i1,i2,...,il−1,l)

, ∀il ∈ 〈n〉 , l + 1 ≤ il ≤ n

(not l ≤ il ≤ n; the proportionality factor is 1
θ , ∀il ∈ 〈n〉 , l + 1 ≤ il ≤ n). �
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Remark 3.2. At present we know six interesting wavy probability distributions: the
probability distribution from Application 3.5 in [10], the probability distribution of a
random vector with independent components in the finite case, i.e., when the number
of components is finite and each component has a finite number of values, at least two
values (see [15]), the Mallows model through Cayley metric and that through Kendall
metric (see [11]-[12] and Remark 3.1), the Potts model on the tree (see [13] and [15,
Remark 5.1]), and the Ewens distribution (see Theorem 3.3).

4. Fast exact sampling, normalization constant, important probabilities

In this section, we present our fast Markovian method for sampling exactly (not
approximately) from Sn according to the Ewens distribution — further, this method
leads to a fast exact method for sampling from An according to the Ewens sampling
formula. In addition to sampling, for the Ewens distribution, we compute the nor-
malization constant and, by Uniqueness Theorem, certain important probabilities —
further, using these probabilities, we give upper bounds for the cumulative distribu-
tion function of number of cycles of permutation chosen from Sn according to the
Ewens distribution.

Recall that e = e (n) = (1, 1, ..., 1) ∈ Rn, ∀n ≥ 1, and e′ is its transpose.

Below we give the second main result of this article — the Gibbs sampler in a gen-
eralized sense from this result is constructed using the G method such that Theorem
1.1 can be applied.

Theorem 4.1. Let n ≥ 2. Let π = (πσ)σ∈Sn be the Ewens distribution. Consider a
Markov chain with state space Sn and transition matrix P = P1P2...Pn−1, where Pl,
l ∈ 〈n− 1〉 , are stochastic matrices on Sn,

(Pl)(1,i1)◦(2,i2)◦...◦(l,il)◦σl→ξ =

=


π(1,i1)◦(2,i2)◦...◦(l−1,il−1)◦(l,j)◦σl∑

l≤k≤n
π(1,i1)◦(2,i2)◦...◦(l−1,il−1)◦(l,k)◦σl

if ξ = (1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1)
◦ (l, j) ◦ σl for some j, l ≤ j ≤ n,

0
if ξ 6= (1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1)
◦ (l, j) ◦ σl, ∀j, l ≤ j ≤ n,

∀l ∈ 〈n− 1〉 ((1, i1)◦(2, i2)◦ ...◦(l − 1, il−1) vanishes when l = 1), ∀i1, i2, ..., il ∈ 〈n〉 ,
1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, ∀σl ∈ Sn, σl (v) = v, ∀v ∈ 〈l〉 , ∀ξ ∈ Sn. Then
this chain is a Gibbs sampler in a generalized sense and

P = e′π

(therefore, this chain attains its stationarity at time 1, its stationary probability dis-
tribution (limit probability distribution) being, obviously, π).

Proof. Theorems 1.4 and 3.3. �

We comment on Theorem 4.1.

1. We can work with the chain with transition matrix P or, equivalently, with the
chain with transition matrices P1, P2, ..., Pn−1, P1, P2, ..., Pn−1, ... (the former chain
is homogeneous while the latter one is nonhomogeneous when n ≥ 3). We chose the
first case. (For finite Markov chain theory, see, e.g., [7].) Any 1-step of the chain with
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transition matrix P is performed via P1, P2, ..., Pn−1, i.e., doing n−1 transitions: one
using P1, one using P2, ..., one using Pn−1. By Theorem 4.1 the chain with transition
matrix P attains its stationarity at time 1 (to attain the stationarity, the chain with
transition matrix P makes one step while the other chain makes n− 1 steps (due to
P1, P2, ..., Pn−1)).

2. By Theorem 2.2 we can compute the transition probabilities from Theorem 4.1.
We have

(Pl)(1,i1)◦(2,i2)◦...◦(l,il)◦σl→ξ =

=


θN((1,i1)◦(2,i2)◦...◦(l−1,il−1)◦(l,j)◦σl)∑

l≤k≤n
θN((1,i1)◦(2,i2)◦...◦(l−1,il−1)◦(l,k)◦σl)

if ξ = (1, i1)◦(2, i2)◦...◦(l − 1, il−1)
◦ (l, j) ◦ σl for some j, l ≤ j ≤ n,

0
if ξ 6= (1, i1)◦(2, i2)◦...◦(l − 1, il−1)
◦ (l, j) ◦ σl, ∀j, l ≤ j ≤ n,

=



θ
θ+n−l

if ξ = (1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, l) ◦ σl,

1
θ+n−l

if ξ = (1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl
for some j, l < j ≤ n,

0
if ξ 6= (1, i1) ◦ (2, i2) ◦ ... ◦ (l − 1, il−1) ◦ (l, j) ◦ σl,
∀j, l ≤ j ≤ n,

∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, ∀σl ∈ Sn,
σl (v) = v, ∀v ∈ 〈l〉 , ∀ξ ∈ Sn, and, as a result,

Pl ∈ G∆l,∆l+1
, ∀l ∈ 〈n− 1〉

— and Theorem 1.1 can be applied!

3. To define transition probabilities of Pl, l ∈ 〈n− 1〉 fixed, we used states from
En,l. So, using Pl, the chain passes from a state, say, γ of En,l to a state, say, δ of
En,l also. For Pl+1, when l+ 1 ≤ n− 1, we need states from En,l+1, so, when we run
the chain, we must rewrite δ using the generators of En,l+1.

4. There exists a case, a happy case, for which rewriting the states from Comment
3 is not necessary, namely, when σl =Id. So, to avoid rewriting the states, we consider
the chain with the initial state Id. Since P = e′π, we have

p0P
m = π, ∀m ≥ 1,∀p0, p0 = initial probability distribution.

So, for the initial probability distribution p0 with (p0)Id = 1, the above equations
hold as well. From Id= (1, 1) ◦Id∈ En,1 (σ1 =Id) the chain passes in one of the states

Id = (1, 1) = (1, 1) ◦ Id ∈ En,1,

(1, 2) = (1, 2) ◦ Id ∈ En,1,
...

(1, n) = (1, n) ◦ Id ∈ En,1,
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the transition probabilities being (see Comment 2)

θ

θ + n− 1
,

1

θ + n− 1
,

1

θ + n− 1
, ...,

1

θ + n− 1
,

respectively. Suppose that it passed in the state (1, 3) (when n ≥ 3). From (1, 3) =
(1, 3) ◦ (2, 2) ◦Id∈ En,2 (σ2 =Id), the chain passes in one of the states

(1, 3) = (1, 3) ◦ (2, 2) = (1, 3) ◦ (2, 2) ◦ Id ∈ En,2,

(1, 3) ◦ (2, 3) = (1, 3) ◦ (2, 3) ◦ Id ∈ En,2,
...

(1, 3) ◦ (2, n) = (1, 3) ◦ (2, n) ◦ Id ∈ En,2,
the transition probabilities being

θ

θ + n− 2
,

1

θ + n− 2
,

1

θ + n− 2
, ...,

1

θ + n− 2
,

respectively. Suppose that it passed in the state (1, 3) ◦ (2, n− 1) . Etc. Therefore,
the states are generated proceeding similar to the swapping method, the difference
being that, here, we use the probability distributions (see Comment 2 (the 0’s do not
count)) (

θ

θ + n− l
,

1

θ + n− l
,

1

θ + n− l
, ...,

1

θ + n− l

)
, l ∈ 〈n− 1〉 ,

instead of uniform probability distributions. (For the swapping method, see, e.g., [3,
pp. 645−646].) The above probability distributions, the former being almost uniform
probability distributions — we call them almost uniform probability distributions be-
cause each of these probability distributions has identical components, excepting at
most one of them (all the components are identical when θ = 1) — and the latter,
those of swapping method, being uniform probability distributions, are, concerning
the implementation, the best ones. To see that this is also true for the (above) almost
uniform probability distributions, we split each almost uniform probability distribu-
tion into two blocks (l ∈ 〈n− 1〉),(

θ

θ + n− l

)
,

(
1

θ + n− l
,

1

θ + n− l
, ...,

1

θ + n− l

)
.

If

X >
θ

θ + n− l
, X ∼ U (0, 1) ,

further, we work with the latter block, which, by normalization, leads to the uniform
probability distribution (

1

n− l
,

1

n− l
, ...,

1

n− l

)
.

Therefore, our exact sampling Markovian method, having n − 1 steps, is simple and
good.

5. We can compute the normalization constant Z. To compute Z, the reader, if
he/she wishes, can — using Theorem 4.1, Comment 2, ... — proceed as in [11], [12],
or [13], but, here, we will use Theorem 1.5. (Theorem 4.1 is a special case of Theorem
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1.4; Theorem 1.4 leads to Theorem 1.5; so, Theorem 4.1 leads to the formula for Z
we give here.) Since

πId =
θn

Z

(Id is the first element of Sn, which is equipped with the order relation
E
≤),

bl =
|∆l+1|
|∆l|

=

{
n if l = 1,

n(n−1)...(n−l+1)
n(n−1)...(n−l+2) if l ∈ 〈n− 1〉 − {1}

= n− l + 1, ∀l ∈ 〈n− 1〉 ,

D1,bl = {1, 2, ..., bl − 1} , ∀l ∈ 〈n− 1〉 ,
and (see the proof of Theorem 3.3)

α(l,1)
w =

1

θ
, ∀l ∈ 〈n− 1〉 , ∀w ∈ D1,bl ,

we have (by Theorem 1.5)

Z = θn
(

1 +
1

θ
(n− 1)

)(
1 +

1

θ
(n− 2)

)
...

(
1 +

1

θ

)
=

=
θn

θn−1
(θ + n− 1) (θ + n− 2) ... (θ + 1) = θ (θ + 1) ... (θ + n− 1) .

This result is known (see, e.g., [1]) — above we gave a new computation method, a
Markovian computation method.

6. By Uniqueness Theorem from [10] (the presentation of this result is too long, so,
we do not give it here) we can compute certain important probabilities for the Ewens
distribution and, further, as a result, we can give upper bounds for the cumulative
distribution function of number of cycles of permutation chosen from Sn according to
the Ewens distribution. Using the Kronecker delta (symbol),

δij =

{
1 if i = j,
0 if i 6= j,

∀i, j ∈ 〈n〉, Comment 2, and Uniqueness Theorem, we have

P
(
W(i1)

)
=

∑
σ∈W(i1)

πσ =
θδ1i1

θ + n− 1
,

∀i1 ∈ 〈n〉 (P (A) =
∑
σ∈A

πσ, ∀A, ∅ 6= A ⊆ Sn). Note that

W(i1) = {σ | σ ∈ Sn, σ (1) = i1 } , ∀i1 ∈ 〈n〉

(W(i1) is the set of permutations from Sn, each permutation having the first component
equal to i1). Further, by Uniqueness Theorem, we have

P
(
W(i1,i2)

)
P
(
W(i1)

) =

∑
σ∈W(i1,i2)

πσ∑
σ∈W(i1)

πσ
=

θδ2i2

θ + n− 2
,
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∀i1, i2 ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, so,

P
(
W(i1,i2)

)
= P

(
W(i1)

)
·
P
(
W(i1,i2)

)
P
(
W(i1)

) =
θδ1i1

θ + n− 1
· θδ2i2

θ + n− 2
,

∀i1, i2 ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n. To compute P
(
W(i1,i2,i3)

)
, etc., we use (see

Uniqueness Theorem, see also Comment 2)

P
(
W(i1,i2,...,iu)

)
P
(
W(i1,i2,...,iu−1)

) =

∑
σ∈W(i1,i2,...,iu)

πσ∑
σ∈W(i1,i2,...,iu−1)

πσ
=

θδuiu

θ + n− u
,

∀i1, i2, ..., iu ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., u ≤ iu ≤ n (3 ≤ u ≤ n − 1). We
conclude that

P
(
W(i1,i2,...,il)

)
=

θδ1i1

θ + n− 1
· θδ2i2

θ + n− 2
· ... · θδlil

θ + n− l
=

=
θδ1i1+δ2i2+...+δlil

(θ + n− 1) (θ + n− 2) ... (θ + n− l)
,

∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, because

P
(
W(i1,i2,...,il)

)
= P

(
W(i1)

)
·
P
(
W(i1,i2)

)
P
(
W(i1)

) · ... · P (W(i1,i2,...,il)

)
P
(
W(i1,i2,...,il−1)

) ,
∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n. Now, we give
upper bounds for the cumulative distribution function of X, where X = the number
of cycles of permutation chosen from Sn according to the Ewens distribution. We give
upper bounds for P (X ≤ k) , k ∈ 〈n− 1〉 only (P (X ≤ 0) = 0; P (X ≤ n) = 1) —
from these bounds, it can be derived the upper bounds for P (X ≤ x) , x ∈ R. Note
that (the first fact)

N (σ) ≥ 1 +

l∑
k=1

δkik ,

∀l ∈ 〈n− 1〉 , ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, ∀σ ∈
W(i1,i2,...,il) (see the definition of W(i1,i2,...,il); if σ ∈W(i1,i2,...,il) and ik = k for some
k ∈ 〈l〉 , then (k) is a cycle of σ). Note also that (the second fact)

min
σ∈W(i1,i2,...,il−1,l)

N (σ) = 1 + min
σ∈W(i1,i2,...,il)

N (σ) ,

∀l ∈ 〈n− 1〉 (i1, i2, ..., il−1 vanish when l = 1), ∀i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n,
2 ≤ i2 ≤ n, ..., l − 1 ≤ il−1 ≤ n, l < il ≤ n (not l ≤ il ≤ n), because the Ewens
distribution is a wavy probability distribution and 1

θ is the proportionality factor in
all cases. Based on the first fact, we have, e.g.,

P (X > k) ≥ P
(
W(1,2,...,k)

)
, ∀k ∈ 〈n− 1〉 ,

so,

P (X ≤ k) ≤ 1− P
(
W(1,2,...,k)

)
=

= 1− θk

(θ + n− 1) (θ + n− 2) ... (θ + n− k)
, ∀k ∈ 〈n− 1〉 .
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We can give bounds for P (X ≤ k) better these. E.g., we have

P (X > k) ≥ P
(
W(1,2,...,k)

)
+

n∑
a=k+1

P
(
W(1,2,...,k−1,a,k+1)

)
+

+

n∑
b=2

P
(
W(b,2,3,...,k+1)

)
, ∀k ∈ 〈n− 2〉

(P (X > n− 1) = P (X = n) = πId = θn

Z ), so,

P (X ≤ k) ≤ 1− θk

(θ + n− 1) (θ + n− 2) ... (θ + n− k)
−

− (2n− k − 1) · θk

(θ + n− 1) (θ + n− 2) ... (θ + n− (k + 1))
=

= 1− θk

(θ+n−1) (θ+n−2) ... (θ+n−k)

(
1 +

2n−k−1

θ+n−k−1

)
, ∀k ∈ 〈n− 2〉 .

Using the probabilities P
(
W(i1,i2,...,il)

)
, l ∈ 〈n− 1〉 , i1, i2, ..., il ∈ 〈n〉 , 1 ≤ i1 ≤ n,

2 ≤ i2 ≤ n, ..., l ≤ il ≤ n, and the facts mentioned above or other facts — the tree
of inclusions can also be used, see [10] and, here, Example 5.1 for examples of trees
of inclusions —, we can obtain better and better upper bounds for P (X ≤ k) , even
the exact value of P (X ≤ k) for some k ∈ 〈n− 1〉 or, e.g., when n is small, for all
k ∈ 〈n− 1〉 .

7. Sampling from Sn according to the Ewens distribution leads to sampling from
An according to the Ewens sampling formula. Indeed, to sample from An according
to the Ewens sampling formula, we, based on Section 2, proceed as follows.

Choose a permutation, σ, from Sn according to the Ewens distribution.
Write σ as a composition of pair-wise disjoint cycles.
Compute k (σ) .
k (σ) is the result of sampling from An according to the Ewens sampling

formula.

5. An example

In this section, we give an example to illustrate some things from previous sections.

Example 5.1. Consider the Ewens distribution on S3. Consider that S3 is equipped

with the order relation
E
≤ . We have (for cycles of length greater than 1, we use

commas (“(1, 1)”, “(2, 2)”, and (this is not used below) “(3, 3)” also contain commas)
while for permutations we do not)

(1, 1) ◦ (2, 2) = (1) ◦ (2) ◦ (3) = (123) = Id,

(1, 1) ◦ (2, 3) = (1) ◦ (2, 3) = (132) ,

(1, 2) ◦ (2, 2) = (1, 2) ◦ (3) = (213) ,

(1, 2) ◦ (2, 3) = (1, 2, 3) = (231) ,
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(1, 3) ◦ (2, 2) = (1, 3) ◦ (2) = (321) ,

(1, 3) ◦ (2, 3) = (1, 3, 2) = (312) ,

so,

Id = (123)
E
≤ (132)

E
≤ (213)

E
≤ (231)

E
≤ (321)

E
≤ (312) ,

π(123) =
θ3

Z
, π(132) =

θ2

Z
, π(213) =

θ2

Z
,

π(231) =
θ

Z
, π(321) =

θ2

Z
, π(312) =

θ

Z
,

W(1) = {(123) , (132)} , W(2) = {(213) , (231)} , W(3) = {(321) , (312)}

(
∣∣W(1)

∣∣ =
∣∣W(2)

∣∣ =
∣∣W(3)

∣∣ = 2, see (c1)),

W(1,2) = {(123)} , W(1,3) = {(132)} , W(2,2) = {(213)} ,

W(2,3) = {(231)} , W(3,2) = {(321)} , W(3,3) = {(312)} .
Since

∆1 = (S3) ,

∆2 =
(
W(1),W(2),W(3)

)
,

∆3 =
(
W(1,2),W(1,3),W(2,2),W(2,3),W(3,2),W(3,3)

)
(∆1 = (S3) � ∆2 � ∆3 = ({σ})σ∈S3 ),

we have, considering ∆1 and ∆2,(
π(213), π(231)

)
=

1

θ

(
π(123), π(132)

)
,

(
π(321), π(312)

)
=

1

θ

(
π(123), π(132)

)
,

(the proportionality factor is 1
θ in both cases), and, considering ∆2 and ∆3 (here, we

do not use vectors anymore),

π(132) =
1

θ
π(123), π(231) =

1

θ
π(213), π(312) =

1

θ
π(321)

(the proportionality factor is 1
θ in all three cases). Therefore, π = (πσ)σ∈S3 is a wavy

probability distribution with respect to the order relation
E
≤ and partitions ∆1, ∆2,

∆3. By Theorem 4.1 or Comment 2 we have

(123) (132) (213) (231) (321) (312)

P1 =

(123)

(132)

(213)

(231)

(321)

(312)



θ
θ+2 0 1

θ+2 0 1
θ+2 0

0 θ
θ+2 0 1

θ+2 0 1
θ+2

θ
θ+2 0 1

θ+2 0 1
θ+2 0

0 θ
θ+2 0 1

θ+2 0 1
θ+2

θ
θ+2 0 1

θ+2 0 1
θ+2 0

0 θ
θ+2 0 1

θ+2 0 1
θ+2
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(the rows and columns of P1 are labeled using the order relation
E
≤) and

(123) (132) (213) (231) (321) (312)

P2 =

(123)

(132)

(213)

(231)

(321)

(312)



θ
θ+1

1
θ+1

θ
θ+1

1
θ+1

θ
θ+1

1
θ+1

θ
θ+1

1
θ+1

θ
θ+1

1
θ+1

θ
θ+1

1
θ+1


.

It is easy to see — or see Theorem 4.1 — that the chain with transition matrix
P = P1P2 is a Gibbs sampler in a generalized sense taking Q1 = P1, Q2 = P2

(Theorem 1.3 together with the equations

πσ (Pl)στ = πτ (Pl)τσ , ∀l ∈ 〈2〉 , ∀σ, τ ∈ S3

(it is easy to prove these equations) and other things (see also the proof of Theorem
1.4) suggest this choice). It is easy to see that P1 ∈ G∆1,∆2

, P2 ∈ G∆2,∆3
. By

Theorem 4.1 or direct computation, P = e′π. Since π(123) = θ3

Z , it is easy to see —
or see Comment 5 —, using P = e′π, that Z = θ (θ + 1) (θ + 2) . Obviously, P2 is a
block diagonal matrix and (see Definition 1.4) ∆2-stable matrix on ∆2. Moreover, P2

is a ∆2-stable matrix. P1 is a stable matrix both on ∆1 and on ∆2. By Uniqueness
Theorem from [10], Comment 6, or direct computation we have, using Comment 6,

P
(
W(1)

)
=

θδ11

θ + 2
=

θ

θ + 2
, P

(
W(2)

)
=

θδ12

θ + 2
=

1

θ + 2
,

P
(
W(3)

)
=

θδ13

θ + 2
=

1

θ + 2
,

P
(
W(1,2)

)
=

θδ11

θ + 2
· θ

δ22

θ + 1
=

θ2

(θ + 1) (θ + 2)
,

P
(
W(1,3)

)
=

θδ11

θ + 2
· θ

δ23

θ + 1
=

θ

(θ + 1) (θ + 2)
,

P
(
W(2,2)

)
=

θδ12

θ + 2
· θ

δ22

θ + 1
=

θ

(θ + 1) (θ + 2)
,

P
(
W(2,3)

)
=

θδ12

θ + 2
· θ

δ23

θ + 1
=

1

(θ + 1) (θ + 2)
,

P
(
W(3,2)

)
=

θδ13

θ + 2
· θ

δ22

θ + 1
=

θ

(θ + 1) (θ + 2)
,

P
(
W(3,3)

)
=

θδ13

θ + 2
· θ

δ23

θ + 1
=

1

(θ + 1) (θ + 2)
.
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The tree of inclusions is (the tree from here is weighted)

S3

2� 1 | �1
W(1) W(2) W(3)

3� �2 2� �1 2� �1
W(1,2) W(1,3) W(2,2) W(2,3) W(3,2) W(3,3)

By direct computation or, in some cases, by Comment 6 (the second fact),
min
σ∈W(3)

N (σ) = 1, 1 is assigned to the edge
[
S3,W(3)

]
, etc. This tree gives, e.g., the

sets of permutations with at least 2 cycles and number of permutations with 2 cycles;
these sets are W(1), W(2,2), W(3,2) and the number of permutations with 2 cycles =
the number of permutations with at least 2 cycles − the number of permutations with
at least 3 cycles =

∣∣W(1)

∣∣ +
∣∣W(2,2)

∣∣ +
∣∣W(3,2)

∣∣ − ∣∣W(1,2)

∣∣ = 2 + 1 + 1 − 1 = 3. If the
initial state of chain is Id (to avoid rewriting the states, we must choose Id as the
initial state of chain, see Comment 4), then from this state the chain passes in one
of the states (see Theorem 4.1, Comment 2, Comment 4, or P1) Id= (1, 1) = (123) ,
(1, 2) = (213) , (1, 3) = (321) , the transition probabilities being (see Theorem 4.1,
Comment 2, Comment 4, or P1)

θ

θ + 2
,

1

θ + 2
,

1

θ + 2
,

respectively. Suppose that it passed in the state (213) . From (213) the chain passes
in one of the states (see Theorem 4.1, Comment 2, or P2) (213) ◦ (2, 2) = (213) ,
(213) ◦ (2, 3) = (231) , the transition probabilities being (see Theorem 4.1, Comment
2, or P2)

θ

θ + 1
,

1

θ + 1
,

respectively. Suppose that it passed in the state (231) . (231) is the state selected
from S3 with our method, having, here, 2 (3− 1 = 2) steps.

References
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[9] U. Păun, A hybrid Metropolis-Hastings chain, Rev. Roumaine Math. Pures Appl. 56 (2011),

207−228.



24 U. PĂUN
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[14] U. Păun, A Gibbs sampler in a generalized sense, An. Univ. Craiova Ser. Mat. Inform. 43

(2016), 62−71.
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