Existence of weak periodic solution for quasilinear parabolic problem with nonlinear boundary conditions

Abdelwahab Elaassri, Kaoutar Lamrini Uahabi, Abderrahim Charkaoui, Nour Eddine Alaa, and Salim Mesbahi

Abstract

In this work, we show the existence of weak periodic solutions of a quasilinear parabolic problem with arbitrary growth nonlinearity in gradient and nonlinear boundary conditions. The objective will be achieved by reformulating the problem in abstract form and applying some results and techniques of functional analysis such as the method of truncation associated with Schauder fixed point theorem.

2010 Mathematics Subject Classification. 35B10; 35K55; 35K59.
Key words and phrases. Fixed point theorem, nonlinear boundary conditions, parabolic equation, weak periodic solutions,

1. Introduction

In this work we are interesting in the existence of weak periodic solution for the following quasilinear problem

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta u+G(t, x, u, \nabla u)=f & \text { in } Q_{T} \tag{1}\\ u(0, .)=u(T, .) & \text { in } \Omega \\ -\frac{\partial u}{\partial \nu}=\beta(t, x) u+g(t, x, u) & \text { on } \Sigma_{T}\end{cases}
$$

where Ω is an open regular bounded subset of $\mathbb{R}^{N}, N \geqslant 1$, with smooth boundary $\partial \Omega$, $T>0$ is the period, $\left.Q_{T}=\right] 0, T\left[\times \Omega, \Sigma_{T}=\right] 0, T[\times \partial \Omega, \nu$ denote the unit normal vector to the boundary $\partial \Omega,-\Delta$ denotes the Laplacian operator with nonlinear boundary conditions, G is a caratheodory and f is a measurable function.

Many phenomena of biology, chemistry and physics are modelled by equations and systems of the form (1). Before stating the main result of this work, it is worth mentioning that several mathematicians have dealt with this type of problem in Dirichlet or Neumann boundary conditions using various analytical and numerical techniques and methods, under different hypotheses depending on the situation, see for example, Amman [5], Badii [6], [7], Browder [9], Nakao [16], Pao [17], Sun [21], Wang [22], [23], Zhang [24].

Concerning the existence of classical solutions, complete results were obtained by Amann in [5]. In [10], Duel and Hess have demonstrated the existence of at least one periodic solution of a very general second order nonlinear parabolic boundary value problem under the assumption that a lower solution ϕ and an upper solution
ψ with $\phi \leq \psi$ are known. In [17], Pao studied the existence and stability of periodic solutions for a nonlinear parabolic system under nonlinear boundary conditions. The approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. The objective of the study of Alaa and Igurnane in [3] is to show the existence of a weak periodic solutions for some quasi-linear parabolic equations with data measures having critical growth non-linearity on the gradient and Dirichlet boundary condition. In [6], Badii considered the case where G is independent of the gradient, he proved the existence of a weak periodic solutions for nonlinear parabolic equations with the Robin periodic boundary condition under normal general assumptions on the nonlinearities.

The objective of this paper is to present an existence result of at least one weak periodic solution to the problem (1) in the case where G depends on the gradient, applying techniques based on the truncation method joint with the Schauder fixed point theorem.

Our work is presented as follows. In Section 2, we choose the functional framework in which periodic solutions are sought and give the definition of the weak periodic solution. In Section 3, we demonstrate the existence of periodic solutions for an abstract problem in the case when the nonlinearities are bounded by using Schauder fixed point theorem to a nonlinear operator equation. Section 4 is devoted to study the existence when the nonlinearities has critical growth with respect to the gradient.

2. Statement of the main result

In this section we establish our main result, first of all we introduce necessary assumptions.
2.1. Assumptions. Let us now introduce the hypotheses which we assume throughout this section. We consider that
$\left.A_{1}\right) f$ is a periodic function such that $f \in L^{2}\left(Q_{T}\right)$.
$\left.A_{2}\right) \beta$ is a periodic positive continuous and bounded function such that

$$
0<\beta_{0} \leqslant \beta(t, x) \leqslant \beta_{1}, \quad \forall(t, x) \in \Sigma_{T}
$$

$\left.A_{3}\right) g: \Sigma_{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function periodic in time, $s \mapsto g(t, x, s)$ is nondecreasing with respect to s for a.e. $(t, x) \in \Sigma_{T}$ and

$$
\begin{gathered}
g(t, x, s) s \geqslant 0 \\
|g(t, x, s)| \leqslant \xi(t, x)+|s|
\end{gathered}
$$

where $\xi \in L^{2}\left(\Sigma_{T}\right)$.
$\left.A_{4}\right) G: Q_{T} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Caratheodory function periodic with respect to t, such that

$$
G(t, x, s, r) \in L^{1}\left(Q_{T}\right), \forall s \in \mathbb{R}, \forall r \in \mathbb{R}^{N} \text { and a.e. }(t, x) \in Q_{T}
$$

$\left.A_{5}\right) G$ satisfies the following sign assumption

$$
G(t, x, s, r) s \geqslant 0, \forall s \in \mathbb{R}, \forall r \in \mathbb{R}^{N} \text { and a.e. }(t, x) \in Q_{T}
$$

$\left.A_{6}\right)|G(t, x, s, r)| \leq \mu(|s|)\left(H(t, x)+d\|r\|^{\alpha}\right), \forall r \in \mathbb{R}^{N}, \forall s \in \mathbb{R}$, a.e. $(t, x) \in Q_{T}$, with $1 \leq \alpha<2, H \in L^{1}\left(Q_{T}\right), d>0$ and $\mu: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a nondecreasing continuous function.
2.2. Notations and definitions. In this section we present our functional framework for the periodic solutions of problem, we set

$$
\mathcal{V}:=L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { and } \mathcal{V}^{*}:=L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{*}\right)
$$

we denote by $\left(H^{1}(\Omega)\right)^{*}$ the topological dual space of $H^{1}(\Omega)$ and $<, .,>$ present the duality pairing between \mathcal{V} and \mathcal{V}^{*}, the standard norm of $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ is defined by

$$
\|u\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)}:=\left(\int_{Q_{T}}|\nabla u(t, x)|^{2} d t d x+\int_{Q_{T}}|u(t, x)|^{2} d t d x\right)^{\frac{1}{2}}
$$

Through this paper we equipped \mathcal{V} with the norm

$$
\|u\|_{\mathcal{V}}:=\left(\int_{Q_{T}}|\nabla u(t, x)|^{2} d t d x+\int_{\Sigma_{T}} \beta(t, \sigma)|u(t, \sigma)|^{2} d t d \sigma\right)^{\frac{1}{2}}
$$

which is equivalent to the standard norm of $L^{2}\left(0, T ; H^{1}(\Omega)\right)$, we denote by u the trace of u on Σ_{T}. Let us define the set

$$
\mathcal{W}(0, T)=\left\{u \in \mathcal{V} \left\lvert\, \frac{\partial u}{\partial t} \in \mathcal{V}^{*}\right. \text { and } u(0)=u(T)\right\}
$$

equipped with the norm

$$
\|u\|_{\mathcal{W}(0, T)}=\|u\|_{\mathcal{V}}+\left\|\frac{\partial u}{\partial t}\right\|_{\mathcal{V}^{*}}
$$

It is necessary to clarify in which sense we want to solve the problem (1), for which we introduce the notion of weak periodic solution.

Definition 2.1. A function u is said to be a weak periodic solution of the problem (1), if it satisfies

$$
u \in \mathcal{V}, G(t, x, u, \nabla u) \in L^{1}\left(Q_{T}\right), u G(t, x, u, \nabla u) \in L^{1}\left(Q_{T}\right)
$$

and $\forall \phi \in \mathcal{W}(0, T) \cap L^{\infty}\left(Q_{T}\right)$

$$
\begin{aligned}
-<u, \frac{\partial \phi}{\partial t}>+\int_{Q_{T}} \nabla u \nabla \phi & +\int_{Q_{T}} G(t, x, u, \nabla u) \phi+\int_{\Sigma_{T}} \beta(t, x) u \phi \\
& +\int_{\Sigma_{T}} g(t, x, u) \phi=\int_{Q_{T}} f \phi
\end{aligned}
$$

This enables us to state the first result of the existence of a weak periodic solution.

3. An existence result when G is bounded

Theorem 3.1. Under hypotheses $\left(A_{1}\right)-\left(A_{5}\right)$ and assuming that there exists a nonnegative function $h \in L^{2}\left(Q_{T}\right)$ such as for almost $(t, x) \in Q_{T}$ and all $s \in \mathbb{R}, r \in \mathbb{R}^{N}$,

$$
\begin{equation*}
|G(t, x, s, r)| \leqslant h(t, x) \tag{2}
\end{equation*}
$$

Then the problem (1) admits a weak periodic solution $u \in \mathcal{W}(0, T)$.
3.1. Proof of Theorem 3.1. The existence of weak solution to (1) will be based on the research of fixed points for the following mapping

$$
\begin{aligned}
\Psi: \mathcal{V} & \longrightarrow \mathcal{V} \\
w & \longmapsto \Psi(w)=u
\end{aligned}
$$

where u is the unique weak periodic solution of

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta u+G(t, x, w, \nabla w)=f & \text { in } Q_{T} \tag{3}\\ u(0)=u(T) & \text { in } \Omega \\ -\frac{\partial u}{\partial t}=\beta(t, x) u+g(t, x, u) & \text { on } \Sigma_{T}\end{cases}
$$

The existence and the uniqueness of $u \in \mathcal{W}(0, T) \subset \mathcal{V}$ weak periodic solution of (3) is a direct consequence of Badii's theorem in [6] and satisfy $\forall \varphi \in \mathcal{W}(0, T)$

$$
\begin{align*}
-<u, \frac{\partial \varphi}{\partial t}> & +\int_{Q_{T}} \nabla u \nabla \varphi+\int_{\Sigma_{T}} g(t, x, u) \varphi+\int_{\Sigma_{T}} \beta(t, x) u \varphi \\
& +\int_{Q_{T}} G(t, x, w, \nabla w) \varphi=\int_{Q_{T}} f \varphi \tag{4}
\end{align*}
$$

Then the mapping is well defined, to prove the existence of a fixed point of Ψ, we will pass by three steps.
3.1.1. Continuity of Ψ. To show the continuity of Ψ, we will prove some very important estimates and convergences. Let $w_{n} \in \mathcal{V}$ be a sequence converge strongly to w in \mathcal{V}. Moreover, let u_{n} denote the weak periodic solution of the problem

$$
\begin{align*}
-<u_{n}, \frac{\partial \varphi}{\partial t}> & +\int_{Q_{T}} \nabla u_{n} \nabla \varphi+\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) \varphi+\int_{\Sigma_{T}} \beta(t, x) u_{n} \varphi \\
& +\int_{Q_{T}} G\left(t, x, w_{n}, \nabla w_{n}\right) \varphi=\int_{Q_{T}} f \varphi \tag{5}
\end{align*}
$$

Setting $\varphi=u_{n}$ as a test function in (5), we have

$$
\begin{align*}
-<u_{n}, \frac{\partial u_{n}}{\partial t}> & +\int_{Q_{T}}\left|\nabla u_{n}\right|^{2}+\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u_{n}+\int_{\Sigma_{T}} \beta(t, x) u_{n}^{2} \\
& +\int_{Q_{T}} G\left(t, x, w_{n}, \nabla w_{n}\right) u_{n}=\int_{Q_{T}} f u_{n} \tag{6}
\end{align*}
$$

Conditions $\left(A_{2}\right),\left(A_{3}\right),\left(A_{5}\right)$ the periodicity and the Young's inequality give us,

$$
\begin{aligned}
\int_{Q_{T}}\left|\nabla u_{n}\right|^{2}+\int_{\Sigma_{T}} \beta(t, x)\left|u_{n}\right|^{2} & \leqslant \int_{Q_{T}}\left|f u_{n}\right| \\
& \leqslant C(\epsilon)\|f\|_{L^{2}\left(Q_{T}\right)}^{2}+\epsilon\left\|u_{n}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \\
& \leqslant C(\epsilon)\|f\|_{L^{2}\left(Q_{T}\right)}^{2}+\epsilon C(T, \Omega)\left\|u_{n}\right\|_{\mathcal{V}}^{2}
\end{aligned}
$$

we choose ϵ small enough to obtain the following classical energy estimate

$$
\begin{equation*}
\left(\int_{Q_{T}}\left|\nabla u_{n}(t, x)\right|^{2}+\int_{\Sigma_{T}} \beta(t, x)\left|u_{n}\right|^{2}\right) \leq C \tag{7}
\end{equation*}
$$

where the positive real constant C is independent of n. From (5) and the energy estimate (7) we get that $\left(\frac{\partial u_{n}}{\partial t}\right)$ is bounded in the \mathcal{V}^{*} norm. This provided the boundedness of u_{n} in the norm of the set $\mathcal{W}(0, T)$, i.e.

$$
\left\|u_{n}\right\|_{\mathcal{W}(0, T)} \leq C, \text { for all } n \in \mathbb{N}
$$

Thus, we can select a subsequence, still denoted by u_{n} such that

$$
u_{n} \rightharpoonup u \text { weakly in } \mathcal{V} \text { as } n \rightarrow+\infty
$$

By Aubin's Theorem [21], the sequence u_{n} is precompact in $L^{2}\left(Q_{T}\right)$ therefore,

$$
u_{n} \longrightarrow u \text { in } L^{2}\left(Q_{T}\right) \text { and a.e. in } Q_{T}
$$

Furthermore, according to the trace theorem, see Morrey [15], theorem 3.4.1, one has

$$
u_{n} \longrightarrow u \text { in } L^{2}\left(\Sigma_{T}\right) \text { and a.e. in } \Sigma_{T}
$$

To conclude we prove that the sequence ∇u_{n} converges strongly to ∇u in $L^{2}\left(Q_{T}\right)$. From (6), one has

$$
\begin{aligned}
\int_{Q_{T}}\left|\nabla u_{n}\right|^{2}=\int_{Q_{T}} f u_{n} & -\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u_{n}-\int_{\Sigma_{T}} \beta(t, x) u_{n}^{2} \\
& -\int_{Q_{T}} G\left(t, x, w_{n}, \nabla w_{n}\right) u_{n}
\end{aligned}
$$

since w_{n} converge strongly in \mathcal{V} and u_{n} converge strongly in $L^{2}\left(Q_{T}\right)$, we can pass to the limit in the last inequality, so

$$
\begin{align*}
\lim _{n \mapsto+\infty} \int_{Q_{T}}\left|\nabla u_{n}\right|^{2}=\int_{Q_{T}} f u & -\int_{\Sigma_{T}} g(t, x, u) u-\int_{\Sigma_{T}} \beta(t, x) u^{2} \\
& -\int_{Q_{T}} G(t, x, w, \nabla w) u \tag{8}
\end{align*}
$$

Moreover, setting $\varphi=u$ as a test function in (5), we obtain

$$
\begin{aligned}
-<u_{n}, \frac{\partial u}{\partial t}>+\int_{Q_{T}} \nabla u_{n} \nabla u=\int_{Q_{T}} f u & -\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u-\int_{\Sigma_{T}} \beta(t, x) u_{n} u \\
& -\int_{Q_{T}} G\left(t, x, w_{n}, \nabla w_{n}\right) u
\end{aligned}
$$

Taking the limit on $n \rightarrow+\infty$, we have

$$
\begin{align*}
\int_{Q_{T}}|\nabla u|^{2}=\int_{Q_{T}} f u & -\int_{\Sigma_{T}} g(t, x, u) u-\int_{\Sigma_{T}} \beta(t, x) u^{2} \\
& -\int_{Q_{T}} G(t, x, w, \nabla w) u \tag{9}
\end{align*}
$$

By comparing (8) and (9), we obtain

$$
\lim _{n \rightarrow+\infty} \int_{Q_{T}}\left|\nabla u_{n}\right|^{2}=\int_{Q_{T}}|\nabla u|^{2}
$$

which gives us the result indicated. Consequently, the mapping Ψ is continuous.
3.1.2. Compactness of Ψ. Let $\left(w_{n}\right)$ be a bounded sequence in \mathcal{V} and we denote $u_{n}=\Psi\left(w_{n}\right)$, by the same reasoning of the first step, we have (up to a subsequence)

$$
\begin{aligned}
w_{n} & \rightharpoonup w \text { weakly in } \mathcal{V} \\
u_{n} & \rightharpoonup u \text { weakly in } \mathcal{V} \\
\frac{\partial u_{n}}{\partial t} & \rightharpoonup \frac{\partial u}{\partial t} \text { weakly in } \mathcal{V}^{*} \\
u_{n} & \rightarrow u \text { strongly in } L^{2}\left(Q_{T}\right) \text { and a.e in } Q_{T} \\
u_{n} & \rightarrow u \text { strongly in } L^{2}\left(\Sigma_{T}\right) \text { and a.e in } \Sigma_{T}
\end{aligned}
$$

to get the compactness of Ψ, it suffices to prove the strong convergence of $\left(\nabla u_{n}\right)$ in $L^{2}\left(Q_{T}\right)$, noting that the difficulty is presented by the absence of the almost every where convergence of $\left(\nabla w_{n}\right)$ in Q_{T}, but we can overcome this problem. Observing that

$$
\int_{Q_{T}}\left|\nabla u_{n}-\nabla u\right|^{2}=\int_{Q_{T}} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right)-\int_{Q_{T}} \nabla u\left(\nabla u_{n}-\nabla u\right)
$$

thanks to the weak convergence of $\left(u_{n}\right)$ in \mathcal{V}, we have $\lim _{n \mapsto+\infty} \int_{Q_{T}} \nabla u\left(\nabla u_{n}-\nabla u\right)=0$, on the other hand, setting $\varphi=u$ as a test function in the equation satisfied by $\left(u_{n}\right)$, it follows

$$
\begin{gather*}
\int_{Q_{T}} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right)=\int_{Q_{T}} f\left(u_{n}-u\right)-<\frac{\partial u_{n}}{\partial t}, u_{n}-u>-\int_{\Sigma_{T}} g\left(t, x, u_{n}\right)\left(u_{n}-u\right) \tag{10}\\
-\int_{\Sigma_{T}} \beta(t, x) u_{n}\left(u_{n}-u\right)-\int_{Q_{T}} G\left(t, x, w_{n}, \nabla w_{n}\right)\left(u_{n}-u\right)
\end{gather*}
$$

By using (2), we have

$$
\int_{Q_{T}}\left|G\left(t, x, w_{n}, \nabla w_{n}\right)\left(u_{n}-u\right)\right| \leqslant\|h\|_{L^{2}\left(Q_{T}\right)}\left\|u_{n}-u\right\|_{L^{2}\left(Q_{T}\right)}
$$

then

$$
\lim _{n \mapsto+\infty} \int_{Q_{T}}\left|G\left(t, x, w_{n}, \nabla w_{n}\right)\left(u_{n}-u\right)\right|=0
$$

On the other hand, the periodicity and the weak convergence of $\left(\frac{\partial u_{n}}{\partial t}\right)$ in \mathcal{V}^{*} yields

$$
\lim _{n \mapsto+\infty}<\frac{\partial u_{n}}{\partial t}, u_{n}-u>=-\lim _{n \mapsto+\infty}<\frac{\partial u_{n}}{\partial t}, u>=<\frac{\partial u}{\partial t}, u>=0
$$

Now, we can pass to the limit in (10) to get

$$
\lim _{n \mapsto+\infty} \int_{Q_{T}} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right)=0
$$

So, we obtain the strong convergence of $\left(\nabla u_{n}\right)$ in $L^{2}\left(Q_{T}\right)$, this allows us to get the compactness of Ψ.
3.1.3. Ψ send the ball of \mathcal{V} of R radius to itself. In this step, we get the existence of a constant $R>0$ such that $\Psi(\mathcal{B}(0, R)) \subset \mathcal{B}(0, R)$ where $\mathcal{B}(0, R)$ is the ball of \mathcal{V} with radius R. Let $w \in \mathcal{V}$ and $u=\Psi(w)$, by taking u as test function in the equation satisfied by u, it is easy to prove the following estimate

$$
\|u\|_{\mathcal{V}} \leqslant\left(\|h\|_{L^{2}\left(Q_{T}\right)}+\|f\|_{L^{2}\left(Q_{T}\right)}\right):=R
$$

Then by a simple application of Schauder's fixed point theorem there exists $u \in \mathcal{V}$ such that $u=\Psi(u)$ i.e u solves (1).

4. Existence result when G has critical growth nonlinearities with respect to the gradient

In this section, we will study the existence of weak periodic solution of (1) when the nonlinearities G has critical growth with respect to the gradient, which can be satisfied by the assumption $\left(A_{6}\right)$.

Theorem 4.1. Assume that $\left(A_{1}\right)-\left(A_{6}\right)$ hold. Then (1) has a weak periodic solution u in the sense of the definition 2.1.
4.1. Proof of Theorem 4.1. To prove Theorem 4.1, we will use the method of truncation combined with the result of Theorem 3.1, the difficulty come back to prove the almost everywhere convergence of the gradient of the approximate solution under nonlinear boundary condition.
4.1.1. Approximating problem. For all $n \geqslant 1$, we approximate G as follows

$$
G_{n}(t, x, s, r)=\frac{G(t, x, s, r)}{1+\frac{1}{n}|G(t, x, s, r)|}
$$

we remark that G_{n} satisfies the following properties

$$
G_{n}(t, x, s, r) s \geqslant 0, \text { and }\left|G_{n}(t, x, s, r)\right| \leqslant n .
$$

We define the approximate problem of (1) by

$$
\left\{\begin{array}{l}
u_{n} \in \mathcal{W}(0, T) \tag{11}\\
-<u_{n}, \frac{\partial \phi}{\partial t}>+\int_{Q_{T}} \nabla u_{n} \nabla \phi+\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) \phi \\
\quad+\int_{\Sigma_{T}} \beta(t, x) u_{n} \phi+\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) \phi=\int_{Q_{T}} f \phi \\
\forall \phi \in \mathcal{W}(0, T)
\end{array}\right.
$$

Since G_{n} is bounded then we can applied the result of the Theorem 3.1 to obtain the existence of u_{n} a weak periodic solution of the approximate problem (11). We want to pass to the limit in (11), for which we need to prove some a priori estimates, we start by defining the truncation function that will be used after, for all $k>0$, $T_{k}(s)=\min \{k, \max \{s,-k\}\}$.

Lemma 4.2. Assume that $\left(A_{1}\right)-\left(A_{6}\right)$ hold, then
i) There exists a constant C_{1} independent of n such that

$$
\left\|u_{n}\right\|_{\mathcal{V}} \leq C_{1} .
$$

ii) There exists a constant C_{2} depending only on T, Ω and $\|f\|_{L^{2}\left(Q_{T}\right)}$ such that

$$
\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n} \leq C_{2}
$$

iii) There exists a constant C_{3} independent of n such that

$$
\int_{Q_{T}}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| \leq C_{3} .
$$

Proof. i) By taking $\phi=u_{n}$ as a test function in (11), we get

$$
\begin{aligned}
-<u_{n}, \frac{\partial u_{n}}{\partial t}>+\int_{Q_{T}}\left|\nabla u_{n}\right|^{2} & +\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n}+\int_{\Sigma_{T}} \beta(t, x)\left|u_{n}\right|^{2} \\
& +\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u_{n}=\int_{Q_{T}} f u_{n}
\end{aligned}
$$

Thanks to $\left(A_{3}\right),\left(A_{5}\right)$ and the periodicity, we have

$$
\int_{Q_{T}}\left|\nabla u_{n}\right|^{2}+\int_{\Sigma_{T}} \beta(t, x)\left|u_{n}\right|^{2} \leqslant \int_{Q_{T}}\left|f u_{n}\right|
$$

Using Young's inequality, one has

$$
\begin{aligned}
\left\|u_{n}\right\|_{\mathcal{V}}^{2} & \leqslant C(\epsilon)\|f\|_{L^{2}\left(Q_{T}\right)}^{2}+\epsilon\left\|u_{n}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \\
& \leqslant C(\epsilon)\|f\|_{L^{2}\left(Q_{T}\right)}^{2}+\epsilon C(T, \Omega)\left\|u_{n}\right\|_{\mathcal{V}}^{2}
\end{aligned}
$$

we choose ϵ small enough to obtain $\left(u_{n}\right)$ bounded in \mathcal{V}.
ii) Setting $\phi=u_{n}$ as test function in (11), we obtain

$$
\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n}+\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u_{n}=-\left\|u_{n}\right\|_{\mathcal{V}}^{2}+<u_{n}, \frac{\partial u_{n}}{\partial t}>+\int_{Q_{T}} f u_{n}
$$

we use the periodicity of $u_{n},(i)$ and the Hölder's inequality, we get

$$
\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n}+\int_{\Sigma_{T}} g\left(t, x, u_{n}\right) u_{n} \leqslant\|f\|_{L^{2}\left(Q_{T}\right)}\left\|u_{n}\right\|_{L^{2}\left(Q_{T}\right)}+C_{1}
$$

From the hypothesis $\left(A_{2}\right)$ and the result of (i), we have

$$
\int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n} \leqslant C_{2}
$$

iii) We remark that,

$$
\begin{aligned}
\int_{Q_{T}}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t=\int_{Q_{T} \cap\left[\left|u_{n}\right| \geqslant 1\right]} \mid & G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) \mid d x d t \\
& +\int_{Q_{T} \cap\left[\left|u_{n}\right| \leqslant 1\right]}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t
\end{aligned}
$$

From (ii), we have

$$
\int_{Q_{T} \cap\left[\left|u_{n}\right| \geqslant 1\right]}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t \leqslant \int_{Q_{T}} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) u_{n} d x d t \leqslant C_{2}
$$

To estimate the second integral, we use $\left(A_{6}\right)$ which gives

$$
\begin{aligned}
\int_{Q_{T} \cap\left[\left|u_{n}\right| \leqslant 1\right]}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| & d x d t \leqslant \mu(1)\left[\int_{Q_{T}} H(t, x) d x d t+d\left|\nabla u_{n}\right|^{\alpha} d x d t\right] \\
& \leqslant \mu(1)\left[\|H\|_{L^{1}\left(Q_{T}\right)}+d\left|Q_{T}\right|^{\frac{2-\alpha}{2}}\left\|\nabla u_{n}\right\|_{L^{2}\left(Q_{T}\right)}^{\frac{\alpha}{2}}\right] \\
& \leqslant \mu(1)\left[\|H\|_{L^{1}\left(Q_{T}\right)}+C\right]
\end{aligned}
$$

Consequently $G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)$ is bounded in $L^{1}\left(Q_{T}\right)$.

Since u_{n} is bounded in \mathcal{V} and G_{n} is bounded in $L^{1}\left(Q_{T}\right)$, it follows that $\frac{\partial u_{n}}{\partial t}$ is bounded in $\mathcal{V}^{*}+L^{1}\left(Q_{T}\right)$ and from the compactness result of Aubin-Simon [20], we obtain $\left(u_{n}\right)$ is relatively compact in $L^{2}\left(Q_{T}\right)$, so we can extract a subsequence still denoted by $\left(u_{n}\right)$ for simplicity, such that

$$
u_{n} \rightarrow u \text { strongly in } L^{2}\left(Q_{T}\right) \text { and a.e. in } Q_{T}
$$

On the other hand, the trace theorem [15] yields

$$
u_{n} \rightarrow u \text { strongly in } L^{2}\left(\Sigma_{T}\right) \text { and a.e. in } \Sigma_{T}
$$

In order to pass to the limit in the approximate problem (11), we need to prove the almost everywhere convergence of the sequence $\left(\nabla u_{n}\right)$. To do this, we adapt the technic presented by [19] to our case, this method consists to prove that $\left(\nabla u_{n}\right)$ is a Cauchy sequence in measure, which will give that $\left(\nabla u_{n}\right)$ converges almost everywhere to ∇u (up to a subsequence).

Lemma 4.3. The sequence $\left(\nabla u_{n}\right)$ converges almost everywhere to ∇u in Q_{T}.
Proof. We shall prove that $\left(\nabla u_{n}\right)$ is a Cauchy sequence in measure namely $\forall \delta>0, \forall \epsilon>0, \exists N_{0}$ such that $\forall m, n \geqslant N_{0} \operatorname{meas}\left\{(t, x),\left|\left(\nabla u_{n}-\nabla u_{m}\right)(t, x)\right| \geqslant \delta\right\} \leqslant \epsilon$.
Let $\delta>0, \epsilon>0$ and for $k>0, \eta>0$, we have the following inclusion

$$
\left\{(t, x),\left|\left(\nabla u_{n}-\nabla u_{m}\right)(t, x)\right| \geqslant \delta\right\} \subset \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}
$$

where,

$$
\begin{aligned}
& \Gamma_{1}=\left\{(t, x),\left|\nabla u_{n}\right| \geqslant k\right\}, \Gamma_{2}=\left\{(t, x),\left|\nabla u_{m}\right| \geqslant k\right\}, \Gamma_{3}=\left\{(t, x),\left|u_{n}-u_{m}\right| \geqslant \eta\right\} \\
& \Gamma_{4}=\left\{(t, x),\left|\nabla u_{n}-\nabla u_{m}\right| \geqslant \delta,\left|\nabla u_{n}\right| \leqslant k,\left|\nabla u_{m}\right| \leqslant k,\left|u_{n}-u_{m}\right| \leqslant \eta\right\}
\end{aligned}
$$

For meas $\left(\Gamma_{1}\right)$ and meas $\left(\Gamma_{2}\right)$, we have

$$
k \operatorname{meas}\left(\Gamma_{1}\right) \leqslant \int_{\Gamma_{1}}\left|\nabla u_{n}\right| \leqslant \int_{Q_{T}}\left|\nabla u_{n}\right| \leqslant\left|Q_{T}\right|^{\frac{1}{2}}\left\|\nabla u_{n}\right\|_{L^{2}\left(Q_{T}\right)}
$$

Since $\left(\nabla u_{n}\right)$ is bounded in $L^{2}\left(Q_{T}\right)$, then for k large enough, we have

$$
\operatorname{meas}\left(\Gamma_{1}\right) \leqslant \frac{C_{1}}{k} \leqslant \epsilon
$$

and by the same manner, we get

$$
\operatorname{meas}\left(\Gamma_{2}\right) \leqslant \frac{C_{1}}{k} \leqslant \epsilon
$$

Now, we fix k such that meas $\left(\Gamma_{1}\right) \leqslant \epsilon$ and meas $\left(\Gamma_{2}\right) \leqslant \epsilon$ for all $m, n \in \mathbb{N}$.
To bound meas $\left(\Gamma_{3}\right)$, one has

$$
\eta \operatorname{meas}\left(\Gamma_{3}\right) \leqslant \int_{\Gamma_{3}}\left|u_{n}-u_{m}\right| \leqslant \int_{Q_{T}}\left|u_{n}-u_{m}\right| \leqslant\left|Q_{T}\right|^{\frac{1}{2}}\left\|u_{n}-u_{m}\right\|_{L^{2}\left(Q_{T}\right)}
$$

we recall that $\left(u_{n}\right)$ converge strongly in $L^{2}\left(Q_{T}\right)$ (up to a subsequence), hence $\left(u_{n}\right)$ is a Cauchy sequence in $L^{2}\left(Q_{T}\right)$ then for a given η, there exists $N_{0} \in \mathbb{N}$ such that for $m, n \geqslant 0$, we have

$$
\begin{equation*}
\operatorname{meas}\left(\Gamma_{3}\right) \leqslant \epsilon \tag{12}
\end{equation*}
$$

It remains to bound $\operatorname{meas}\left(\Gamma_{4}\right)$, and to choose η, to do this, we will use the equation satisfied by u_{n} and the monotonicity of the operator $-\Delta$.
As well known $\left|\left(\nabla u_{1}-\nabla u_{2}\right)(t, x)\right|^{2}>0$ for $\nabla u_{1} \neq \nabla u_{2}$. It is easily verified that the set $\left(\nabla u_{1}, \nabla u_{2}\right)$ such that $\left|\nabla u_{1}\right| \leqslant k,\left|\nabla u_{1}\right| \leqslant k$ and $\left|\nabla u_{1}-\nabla u_{2}\right| \geqslant \delta$ is compact and the map is continuous

$$
\begin{aligned}
Q_{T} \times \mathbb{R}^{N} & \rightarrow \mathbb{R}^{N} \\
(t, x, \zeta) & \mapsto \zeta(t, x)
\end{aligned}
$$

is continuous for almost all $(t, x) \in Q_{T}$, then $\left|\left(\nabla u_{1}-\nabla u_{2}\right)(t, x)\right|^{2}>0$ achieved its minimum on this compact which can be noted by $\gamma(t, x)$ and satisfies $\gamma(t, x)>0$ a.e $\in Q_{T}$. Thanks to the property $\gamma(t, x)>0$ a.e, then to bound meas $\left(\Gamma_{4}\right)$, it suffices to prove the existence of $\epsilon^{\prime}>0$ such that

$$
\int_{\Gamma_{4}} \gamma(t, x) d x d t \leqslant \epsilon^{\prime}
$$

By using the definition of Γ_{4} and γ, we get

$$
\begin{aligned}
\int_{\Gamma_{4}} \gamma(t, x) d x d t & \left.\leqslant \int_{\Gamma_{4}}\left(\nabla u_{n}-\nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) 1_{\left\{\left|u_{n}-u_{m}\right| \leqslant \eta\right.}\right\} d x d t \\
& \leqslant \int_{Q_{T}}\left|\nabla T_{\eta}\left(u_{n}-u_{m}\right)\right|^{2} d x d t
\end{aligned}
$$

To estimate the last quantity, we use the equation satisfied by $\left(u_{n}-u_{m}\right)$, which can be written as

$$
\begin{aligned}
<\frac{\partial\left(u_{n}-u_{m}\right)}{\partial t}, \phi> & +\int_{Q_{T}} \nabla\left(u_{n}-u_{m}\right) \nabla \phi+\int_{\Sigma_{T}} \beta(t, x)\left(u_{n}-u_{m}\right) \phi \\
& +\int_{Q_{T}}\left(G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)-G_{m}\left(t, x, u_{m}, \nabla u_{m}\right)\right) \phi \\
& +\int_{\Sigma_{T}}\left(g\left(t, x, u_{n}\right)-g\left(t, x, u_{m}\right)\right) \phi=0
\end{aligned}
$$

By choosing $\phi=T_{\eta}\left(u_{n}-u_{m}\right) \in \mathcal{V} \cap L^{\infty}\left(Q_{T}\right)$ and we use the periodicity of $\left(u_{n}-u_{m}\right)$, we get

$$
\begin{aligned}
& \int_{Q_{T}}\left|\nabla T_{\eta}\left(u_{n}-u_{m}\right)\right|^{2}+\int_{\Sigma_{T}} \beta(t, x)\left(u_{n}-u_{m}\right) T_{\eta}\left(u_{n}-u_{m}\right) \\
& \leqslant \eta \int_{Q_{T}}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)-G_{m}\left(t, x, u_{m}, \nabla u_{m}\right)\right|+\eta \int_{\Sigma_{T}}\left|g\left(t, x, u_{n}\right)-g\left(t, x, u_{m}\right)\right| .
\end{aligned}
$$

We combine the fact that $s T_{\eta}(s) \geqslant 0$ with the assumption $\left(A_{3}\right)$ and the result (iii) of Lemma 4.2, we get

$$
\begin{aligned}
\int_{Q_{T}} \mid \nabla T_{\eta}\left(u_{n}\right. & \left.-u_{m}\right)\left.\right|^{2} \leqslant 2 \eta C_{3}+\eta \int_{\Sigma_{T}} 2\left(\xi(t, x)+\left|u_{n}\right|+\left|u_{m}\right|\right) \\
& \leqslant 2 \eta C_{3}+2 \eta\left|\Sigma_{T}\right|^{\frac{1}{2}}\left(\|\xi\|_{L^{2}\left(\Sigma_{T}\right)}+\left\|u_{n}\right\|_{L^{2}\left(\Sigma_{T}\right)}+\left\|u_{m}\right\|_{L^{2}\left(\Sigma_{T}\right)}\right) \\
& \leqslant \eta C
\end{aligned}
$$

where C is a constant independent of n and m. Then, for η small enough, we obtain $\int_{\Gamma_{4}} \gamma \leqslant \epsilon^{\prime}$ which implies meas $\left(\Gamma_{4}\right) \leqslant 4 \epsilon$.
Now η is fixed and from (12) we obtain the existence of N_{0} such that meas $\left(\Gamma_{4}\right) \leqslant \epsilon$, furthermore, we conclude that for all $m, n \geqslant N_{0}$, one has

$$
\operatorname{meas}\left\{(t, x),\left|\left(\nabla u_{n}-\nabla u_{m}\right)(t, x)\right| \geqslant \delta\right\} \leqslant 4 \epsilon
$$

so the sequence $\left(\nabla u_{n}\right)$ converge in measure to ∇u, which gives the existence of a subsequence of $\left(\nabla u_{n}\right)$ still denoted by $\left(\nabla u_{n}\right)$ for simplicity, such that $\left(\nabla u_{n}\right)$ converge to ∇u a.e. in Q_{T}.
Lemma 4.4. The nonlinearities $G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)$ converges strongly to $G(t, x, u, \nabla u)$ in $L^{1}\left(Q_{T}\right)$.

Proof. Since $\left(\nabla u_{n}\right)$ converges almost everywhere to ∇u, then

$$
G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) \rightarrow G(t, x, u, \nabla u) \text { a.e in } Q_{T}
$$

hence it suffices to show that $G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)$ is equi-integrable in $L^{1}\left(Q_{T}\right)$ namely

$$
\forall \varepsilon>0, \exists \delta>0, \forall E \subset Q_{T}, \text { if }|E|<\delta \text { then } \int_{E}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t \leq \varepsilon
$$

Let E be a measurable subset of $Q_{T}, \varepsilon>0$, and $k>0$. We have

$$
\int_{E}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t=I_{1}+I_{2}
$$

Where

$$
I_{1}=\int_{E \cap\left[\left|u_{n}\right|>k\right]}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t,
$$

and

$$
I_{2}=\int_{E \cap\left[\left|u_{n}\right| \leq k\right]}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t
$$

For I_{1} we use (ii) of Lemma 4.2 to obtain the following inequality

$$
I_{1} \leq \frac{1}{k} \int_{Q_{T}} u_{n} G_{n}\left(t, x, u_{n}, \nabla u_{n}\right) d x d t \leq \frac{C_{2}}{k}
$$

Then, we deduce the existence of $k^{*}>0$, such that, for all $k \geqslant k^{*}$, we have

$$
I_{1} \leq \frac{\epsilon}{3}
$$

To treat the second integral I_{2} we use the assumption $\left(A_{6}\right)$, we obtain for all $k \geq k^{*}$

$$
I_{2} \leq \mu(k)\left(\int_{E}\left(H(t, x)+d\left|\nabla u_{n}\right|^{\alpha}\right) d x d t\right)
$$

Since $H \in L^{1}\left(Q_{T}\right)$, then H is equi-integrable in $L^{1}\left(Q_{T}\right)$, there exists $\delta>0$, such that, if $|E| \leq \delta$, one has

$$
\int_{E} H(t, x) d x d t \leq \frac{\epsilon}{3}
$$

On the other hand, Hölder's inequality yields

$$
d \int_{E}\left|\nabla u_{n}\right|^{\alpha} \leqslant d|E|^{\frac{2-\alpha}{2}}\left(\int_{E}\left|\nabla u_{n}\right|^{2}\right)^{\frac{\alpha}{2}} \leqslant C|E|^{\frac{2-\alpha}{2}}
$$

the last inequality is obtained by using the boundedness of $\left(u_{n}\right)$ in \mathcal{V}, moreover $1 \leqslant \alpha<2$ then $0<2-\alpha \leqslant 1$. Consequently, we can choose $|E| \leqslant\left(\frac{\epsilon}{3 C}\right)^{\frac{2}{2-\alpha}}$ to get $d \int_{E}\left|\nabla u_{n}\right|^{\alpha} \leq \frac{\varepsilon}{3}$. Finally, by choosing $\delta^{*}=\inf \left(\delta,\left(\frac{\epsilon}{3 C}\right)^{\frac{2}{2-\alpha}}\right)$, if $|E| \leq \delta^{*}$, we obtain

$$
\int_{E}\left|G_{n}\left(t, x, u_{n}, \nabla u_{n}\right)\right| d x d t \leq \varepsilon
$$

References

[1] N. Alaa, M. Pierre, Weak solutions for some quasi-linear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35.
[2] N. Alaa, I. Mounir, Global existence for some quasilinear parabolic Reaction-Diffusion systems with mass control and critical growth with respect to the gradient, Journal of Mathematical Analysis and Application 253 (2001), 532-557.
[3] N. Alaa, M. Iguernane, Weak periodic solutions of some quasilinear parabolic equations with data measure, J. of Inequalities in Pure and Applied Mathematics 3 (2002), no. 3, Article 46.
[4] N. Alaa, F. Aqel, Periodic solution for some parabolic degenerate equation withcritical growth with respect to the gradient, Annals of the University of Craiova Mathematics and Computer Science Series 42 (2015), no. 1, 13-26.
[5] H. Amman, Periodic solutions of semilinear parabolic equations, Nonlinear Analysis Academic Press, New York, 1978, 1-29.
[6] M. Badii, Periodic solutions for a nonlinear parabolic equation with nonlinear boundary conditions, Rend. Sem. Mat. Univ. Pol. Torino 67 (2009), no. 3, 341-349.
[7] M. Badii, Periodic solutions for a class of degenerate evolution problems, Nonlinear Anal. 44 (2001), no. 4, 499-508.
[8] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leiden, 1976.
[9] F.E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89-113.
[10] J. Deuel, P. Hesse, Nonlinear parabolic boundary value problems with upper and lower solutions, Israel Journal of Mathematics 29 (1978), 92-104.
[11] Ju.S. Kolesov, Periodic solutions of quasilinear parabolic equations of second order, Trans. Moscow Math. Soc. 21 (1970), 114-146.
[12] G. Kouadri, A. Charkaoui, S. Med Said, N. Alaa, Modeling and mathematical analysis of quenchheat conduction in metallic materials, J. Adv. Math. Stud. 11 (2018), no. 2, 316-330.
[13] M.A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964.
[14] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
[15] C.B. JR. Morrey, Multiple integrals in the calculus of variation, Springer Verlag, New York, 1966.
[16] M. Nakao, Y. Ohara, Gradient estimates of periodic solutions for some quasilinear parabolic equations, J. Math. Anal. Appl. 204 (1996), no. 3, 868-883.
[17] C.V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, J. Math. Anal. Appl. 234 (1999), 695-716.
[18] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Annali di Mathematica Pura ed Applicata 177 (1989), no. 1, 143-172.
[19] A. Prignet, Existence and uniqueness of "entropy" solutions of parabolic problems with L1 data, Nonlin. Anal. TMA 28 (1997), 1943-1954.
[20] J. Simon, Compact sets in $L^{p}(O, T ; B)$, Annali di Mathematica Pura ed Applicata 146 (1987), no. 1, 65-96.
[21] J.B. Sun, J.X. Yin, Y.F. Wang, Asymptotic bounds of solutions for a periodic doubly degenerate parabolic equation, Nonlinear Anal. TMA, 74 (2011), 2415-2424.
[22] Y.F. Wang, J.X. Yin, Z.Q. Wu, Periodic solutions of porous medium equations with weakly nonlinear sources, Communications in Mathematical Research, 16 (2000), no. 4, 475-483.
[23] Y.F.Wang, J.X. Yin, Z.Q. Wu, Periodic solutions of evolution p-Laplacian equations with nonlinear sources, J. Math. Anal. Appl. 219 (1998), no. 1, 76-96.
[24] D. Zhang, J. Sun, B. Wu, Periodic solutions of a porous medium equation, Elect. J. of Qualitative Theory of Diff. Eq. 2011 (2011), no. 42, 1-7.
(Abdelwahab Elaassri, Kaoutar Lamrini Uahabi) Laboratory MASI, Multidisiplinary Faculty of Nador, University Mohammed first, Selouane, Nador - 62702, Morocco
E-mail address: elaassri_abdelwahab@yahoo.fr, lamrinika@yahoo.fr
(Abderrahim Charkaoui,Nour Eddine Alaa) Laboratory LAMAI, Faculty of Science and Technology, University Cadi Ayyad, B.P. 549, Street Abdelkarim Elkhattabi, Marrakech - 40000, Morocco
E-mail address: n.alaa@uca.ac.ma, charkaoui.abderrahim92@gmail.com
(Salim Mesbahi) Department of Mathematics, Faculty of Science, Ferhat Abbas University, Campus El-Bez, Setif, 19000, Algeria
E-mail address: salimbra@gmail.com

