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Geometric shape optimization of membrane in the presence of
a diffusion field
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Abstract. In this work we study the geometric shape optimization of membrane in the
presence of a diffusion field of molecules, such as proteins which have the ability to adsorb

on, and to desorb from the membrane. The main idea of this study is to vary the position of

the boundaries of a given initial shape of the membrane, without changing its topology which
remains the same as the initial shape. We develop a model that includes, molecular diffusion

along the membrane as well as the attachment and detachment of molecules to and from the

membrane. The numerical simulations based on Level-Set method show that the coupling
between the membrane and the molecules makes the membrane suffer from morphological

instability.
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1. Introduction

Geometric shape optimization theory based on the boundary variation method,
dates back to J. Hadamard in 1907 [1]. It has been very classic since then. The first
results of existence of an optimal shape under constraint of geometric regularity are
due to D. Chenais [4], F. Murat and J. Simon [2], [3]. More recently, some results
of existence under topological constraint for flat shapes have been obtained by V.
Sverak [5] for a membrane model, then by A. Chambolle [9] for the elasticity model.
There are other types of additional constraints for the existence of optimal shaps. For
example, the work of L. Ambrosio and G. Buttazzo [7] where an upper bound on the
perimeter is imposed, which prevents the creation of too many holes.

In this work we follow the method of F. Murat and J. Simon [3] based on the study
of optimal control problems where the control is the shape of a domain in which the
state of the system is defined by a partial differential equation. Compared to other
optimization problems, many new difficulties arise. In particular, the mathematical
representation of the shape. For example, a shape can be represented by the char-
acteristic function of its domain (which is 1 inside and 0 outside), but in this case,
we don’t know how we can represent shape variations. Indeed, a linear combination
of characteristic functions is not, in general, a characteristic function. Therefore we
can not do ”variations computation” in the space of the characteristic functions, and
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compute the gradient. This is a typical difficulty in geometric shape optimization
that is important to focus on for both theoretical and numerical reasons.

A new numerical implementation of geometric shape optimization problem has
been used in this work. It is based on the level set method of S. Osher and J. Sethian
[8]. The main idea is to represent the membrane as the set of zero level of a discretized
function on a fixed mesh. This method is based on capturing shapes in an Eulerian
fixed mesh. The main advantage of this method is that it allows us to considerably
reduce the cost of the computations and gives a simple expresssion of the normal
vector and the curvature.

We present in this study a model of membrane (Γ0) in the presence of a diffusion
field of molecules cΩ0

. The aim of this work is to understand the effect of molecules
on the membrane shape. First we proved the existence of an optimal shape then we
computed the first derivative with respect to the domain of the free energy of the
membrane in presence of diffusion and finally we did numerical simulation to see the
morphological instability of the membrane induced by interaction with molecules.

1.1. Mathematical model. At equilibrium, the membrane (Γ0) represent the vari-
able part of the border of a reference domain Ω0 whose border is divided into tow
disjointed parts (see figure1)

∂Ω0 = Γ0 ∪ ΓD

where Γ0(the membrane) is the variable part of the boundary (Neumann boundary
condition), ΓD is the fixed part of the boundary (Dirichlet boundary condition). The
two parts of the boundary are assumed to be non-empty. We assumed that the
variable part Γ0 of the border is free of any effort, which means that the membrane
is supposed to be impermeable and the molecules can just adsorb on, or desorb from
the membrane(homogeneous Neumann boundary condition).

Figure 1. The red part is the cell with membrane Γ0 and the blue
part represent the surrounding fluid containing the molecules

The concentration of the molecules in the surrounding fluid (see Figure1: the blue
part) verifies the following system

ηcΩ0
− d∆cΩ0

= f in Ω0

∂cΩ0

∂n
= 0 on Γ0

cΩ0
= 0 on ΓD

(1)
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where
• d is diffusion coefficient
• f is the reaction term
• η is a positive parameter

The total free energy of the membrane is given by [10]

E(Ω0) =
k

2

∫
∂Ω0

(KΩ0
−K0)2ds−

∫
∂Ω0

kΛKΩ0
cΩ0

ds+

∫
∂Ω0

α

2
(cΩ0

− c0)2ds. (2)

The first term represents the curvature energy of the membrane, the second one
represents the coupling term between curvature and surface concentration and the last
term represent the concentration deviation of adsorbed molecules from its equilibrium
value c0. Where
• K is the mean local curvature,
• K0 is the spontaneous curvature ,
• k is the bending rigidity.
• Λ is the molecule size.
• α is supposed to be positive constant.

The geometric shape optimization problem is written as follows

inf
Ω∈Dad

E(Ω) (3)

where it remains to define the set of admissible shapes Dad.
We organised this work as follows. In the next section (section 2) we will consider

the existence of the optimal shape under some regularity constraints. The section 2
will also introduce a framework for mathematical shape representation that will be
useful to define a notion of derivation with respect to the domain. In Section 3 we will
develop this derivation theory which will allow us to write the optimality conditions,
and construct numerical simulation that will be presented in Section 4 and finally
conclusion in section 5.

2. Existence of optimal solution

The problem is rather the absence of an optimal shape than its existence. However,
if additional constraints of a regularity nature are added, then there exist an optimal
shape in a restricted class of admissible shapes.

2.1. Existence under a condition of regularity. We give here some notions of
topology on a domain of regular boundary, using the perturbations of the identity.
Taking inspiration from the approach developed in [2] and [3] to demonstrate the ex-
istence result. We will take this framework further to establish a concept of derivation
with respect to the domain.

Let Ω0 be a reference domain, which we assumed to be a connected bounded open
set of Rn, of the classe W 2,∞. As in the introduction, we suppose that the border of
Ω0 is divided into tow disjointed parts (not empty)

∂Ω0 = Γ0 ∪ ΓD

where ΓD is fixed and only Γ0 is variable.
The main idea is to define a set of admissible shapes Dad from which any element Ω

is obtained by applying a regular diffeomorphism to the reference domain Ω0. Thus
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the space of admissible shapes is very significantly restricted, but we gain a very
simple representation of the shape in terms of diffeomorphisms.

Let us first remind that, W 2,∞(Rn,Rn) is the space of Lipschitz functions φ from
Rn to Rn such that φ, ∇φ, and ∆φ are uniformly bounded in Rn to which we associate
the following norm wich makes it a Banach space

‖ ϕ ‖W 2,∞(Rn,Rn)= sup
x∈Rn

ess
(
Σ0<|α|≤2 | Dαϕ(x) |2Rn

) 1
2 . (4)

We define a space of diffeomorphisms as follows

τ2,∞ =

{
T such that (T − Id) ∈W 2,∞(Rn,Rn),

(
T−1 − Id

)
∈W 2,∞(Rn,Rn)

}
.

(5)
Somehow we can see diffeomorphisms of τ2,∞ as perturbations of the identity. Now
we can then introduce a space of admissible shapes obtained by deformation of Ω0

D2,∞
Ω0

=

{
Ω such that ∃T ∈ τ2,∞,Ω = T (Ω0)

}
. (6)

Each admissible shape Ω ∈ D2,∞
Ω0

, is represented by a diffeomorphism T ∈ τ2,∞. This
representation is not unique because it is possible that two diffeomorphisms T 6= T2

in τ2,∞ lead to the same open set Ω = T (Ω0) = T2(Ω0). Since the functions of
W 2,∞(Rn,Rn) are continuous, the applications T of τ2,∞ are also homomorphisms,
which implies that they preserve the topology of the domains to which they are
applied. Thus, all admissible shapes of W 2,∞(Rn,Rn) have the same topology as Ω0.
Therefore this approach is not helpful to optimize the topology (number of holes or
connected components of the boundary). We can then introduce a pseudo-distance

on D2,∞
Ω0

(it verifies only a weak version of the triangular inequality)

d2,∞(Ω,Ω2) = inf
T∈τ |T (Ω)=Ω2

(
‖ T − Id ‖W 2,∞(Rn,Rn) + ‖ T−1 − Id ‖W 2,∞(Rn,Rn)

)
.

(7)
We can now define a condition of uniform regularity of the admissible shapes by being
limited to open sets Ω close to Ω0 in the sense of this pseudo-distance d2,∞. More
precisely, for R > 0 we define

Dad =
{

Ω ∈ D2,∞
Ω0

/ d2,+∞(Ω,Ω0) ≤ R, Γ0 ∪ ΓD ⊂ ∂Ω0, | Ω |= V0

}
, (8)

The choice of the regularity constant R is arbitrary as well as the choice of the reference
domain Ω0.

Theorem 2.1. If we assume that{
Ω0 is a connected bounded open set of Rn of the class W 2,∞,
f ∈ L2(Rn), K0 ∈ H1(Rn) and c0 ∈ H1(Rn).

(9)

There exists an optimal shape Ω∗, such that

Ω∗ ∈ Dad, E(Ω∗) 6 E(Ω), ∀Ω ∈ Dad. (10)

Remark 2.1. The proof of this theorem rests on a compactness argument. The
essential idea is that the admissible shapes of Dad can not change their topology, and
the uniform regularity bound R prevents the boundaries of the Ω shape from being
too oscillating.
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Proof. Let Ω0 be a fixed connected bounded open set of Rn of the class W 2,∞ such
that | Ω0 |= V0, every domain Ω ∈ D2,∞ is a connected bounded open set of the class
W 2,∞ [3]. We will proove that:
• Dad is a compact of D2,∞,
• E(Ω) is a continuous functional of D2,∞.

For the compacity of Dad, let Ω ∈ Dad and R ≥ 0 fixed. For all sequence {Ωn}n∈N
of Dad such that d2,+∞(Ωn,Ω) ≤ R and | Ωn |= V0, we can extract a subsequence
that we can also call Ωn that converges to Ω∗ ∈ D2,∞ such that d2,+∞(Ω∗,Ω) ≤ R
[3](theorem 2,4), it remains to show that | Ω∗ |= V0. Let K1 and K2 be closed subsets
of Rn such that K1 ⊂ Ω∗ and K2 ⊂ Rn −Ω∗.Then, according to the definition of the
Hausdorff distance, K1 ⊂ Ωn and K2 ⊂ Rn − Ωn for n large enough.

We consider closed subsets reduced to a single point, since mes(∂Ω∗) = 0 it results
that

χ(Ωn) −→ χ(Ω∗) a.e in Rn.
Using Lebesgue’s theorem, Ω∗ is bounded and the sequence Ωn is bounded in L∞(Rn)
it comes that

χ(Ωn) −→ χ(Ω∗) in L∞(Rn) star weak and strongly in Lp(Rn) 1 ≤ p <∞

wich means that | Ω∗ |= V0 and so Ω∗ ∈ Dad. Hence the compacity of Dad.
For the continuity of the functional E we will use the variable change Ω = T (Ω0),

T ∈ τ2,∞, where Ω ∈ D2,∞ is a connected bounded open set of the class W 2,∞, such
that | Ω |= V0.

Let Ωn be a sequence of D2,∞
Ω0

that converges to Ω ∈ D2,∞
Ω0

, as a result of [3] (theorem
2.4) we can extract a subsequence Ωm, then we have

Ωm = Tm(Ω0), Ω = T (Ω0), where Tm, T ∈ τ2,∞. (11)

Now we need the continuity of the state transport cΩm
to the fixed domain Ω0. The

function cΩm
is a unique solution of the following equation in the domain Ωm =

Tm(Ω0)  cΩm
∈ H1(Ωm),∫

Ωm

d∇cΩm
∇ϕ+ ηcΩm

ϕ =

∫
Ωm

fϕ, ∀ϕ ∈ H1(Ωm).
(12)

Applying the change of variable Tm to equation (12) in order to return back to the
fixed domain Ω0, we deduce that [3] (lemma 4.1).

c(Ωm) ◦ Tm ∈ H1(Ω0),∫
Ω0

d < t[T ′m]−1∇(c(Ωm) ◦ Tm),t [T ′m]−1∇ϕ

>| det[T ′m] | +η < c(Ωm) ◦ Tm, ϕ >| det[T ′m] |

=

∫
Ω0

< f ◦ Tm, ϕ >| det[T ′m] |, ∀ϕ ∈ H1(Ω0).

(13)

As a result [3] (lemma 4.2, 4.3 and 4.4)
t[T ′m]−1 −→t [T ′]−1 in L∞(Rn,R2n),
| det[T ′m] |−→| det[T ′] | in L∞(Rn,R2n),
f ◦ Tm −→ f ◦ T in L2(Ω0).

(14)
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The continuity of the solution of equation (13) with respect to its coefficients coupled
with (14) and the fact that Ωm −→ Ω implies that

cΩm
◦ Tm −→ cΩ ◦ T in H1(Ω0).

The uniform ellipticity of the equation (13) in m gives ‖
t [T ′m]−1 ‖W 1,∞(Rn,R2n)≤ C, ∀ m,
| det[T ′m] |W 1,∞(Rn)≤ C, ∀ m,
‖ f ◦ Tm ‖L2(Ω0)≤ C, ∀ m.

(15)

Since Ω0 is a bounded open set of the class W 2,∞, the sequence cΩm
◦ Tm is bounded

in H2(Ω0). We have then

cΩm
◦ Tm −→ cΩ ◦ T in H2(Ω0) weak. (16)

Let us now verify the continuity of the functional E. We denote by nΩ the exterior
normal vector to ∂Ω, we have

E(Ωm) =

∫
∂Ωm

k

2
(KΩm

−K0)2 − kΛKΩm
cΩm

+
α

2
(cΩm

− c0)2ds, (17)

where KΩm = div(nΩm). We apply the variable change Ωm = Tm(Ω0)

E(Ωm) =

∫
∂Ω0

[
k

2
(KΩm

◦ Tm −K0 ◦ Tm)2 − kΛKΩm
◦ TmcΩm

◦ Tm

+
α

2
(cΩm ◦ Tm − c0 ◦ Tm)2

]
× | det[T ′m] ||t [T ′m]−1n(Ω0) |Rn ds.

(18)

The convergence results of (14) also holds in L∞(∂Ω0), since Tm and T are C1(Rn,Rn).
Furthermore, we have

|t [T ′m]−1n(Ω0) |Rn≥ 1

‖ [T ′m] ‖L∞(Rn,R2n)

a.e. on ∂Ω0.

Finally by the results obtained in (15) and the continuity Lemma 4.4 i)[3] we have

K(Ωm) ◦ Tm −→ K(Ω) ◦ T in L2(∂Ω0) strongly

K0 ◦ Tm −→ K0 ◦ T in L2(∂Ω0) strongly

c(Ωm) ◦ Tm −→ c(Ω) ◦ T in L2(∂Ω0) strongly

which implies that

E(Ωm) −→ E(Ω).

This convergence lies for all sequences {Ωn}n∈N which ends the proof. �

3. Differentiability with respect to domain

In this section we take again the shape representation introduced in section 2, which
will allow us to naturally define a notion of derivation with respect to the domain.
Once we are able to differentiate, we can write the optimality conditions that we
will use to characterize the optimal shape and compute the gradient to implement a
numerical optimization method. It is therefore a fundamental concept both from the
theoretical and practical point of view.
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Figure 2. Definition of a domain transported by a vector field θ.

Let Ω0 (reference doamin) be a regular bounded open set of Rn . We consider

the class of admissible shapes D2,∞
Ω0

as defined before. It is natural to consider the
variable θ defined by

T = Id+ θ where θ ∈W 2,∞(Rn,Rn) small enough.

With this notation Ω is defined by

Ω = (Id+ θ)(Ω0).

We can see θ(x) as a vector field which transports or displaces the reference domain

Ω0(see figure5). In other words, each admissible shape Ω ∈ D2,∞
Ω0

is represented by a
vector field θ(x) of Rn in Rn. We can then define a notion of differentiability in Ω0

by using the derivation with respect to θ(x).

Remark 3.1. - If θ(x) is small enough then T = Id + θ belongs to the set τ2,∞ of
diffeomomorphisms on Rn.
- A function E defined in D2,∞ is differentiable at Ω0 if the function θ −→ E((I +
θ)(Ω0) = E(Ω) is Frechet differentiable (in the usual sense) from W 2,∞ to R in 0, and
its derivative is defined by

∂E

∂Ω
(Ω0) =

∂E((I + θ)(Ω0))

∂θ
(0) ∈ Lc(W 2.∞(Rn,Rn),R).

We consider the equation defined by (1) in Ω which admits a unique solution
cΩ ∈ H1(Ω). The variational formulation of (1) in Ω is to find c ∈ H1(Ω) such that c ∈ H1(Ω),∫

Ω

d∇c∇ϕ+ ηcϕ =

∫
Ω

fϕ, ∀ϕ ∈ H1(Ω).
(19)

Theorem 3.1. Let Ω0 be a regular open set. The total free energy of the membrane
E(Ω0), defined by (2), is differentiable from D2,∞ to R, and it’s derivative with respect
to the domain is defined by:

E′(Ω0)(θ) =

∫
∂Ω0

(θ.n) {ηcp+ d∇c∇p− fp+ k(K −K0 − Λc)
∂K

∂n

+
k

2
K(K −K0)2 − kΛK2c+

α

2
K(c− c0)2 + k(∆∂Ω0

K − Λ∆∂Ω0
c)},

where n is the normal vector, ∆∂Ω0 is the Laplace Beltrami operator defined by

∆∂Ω0
cΩ0

= ∆cΩ0
− K

∂cΩ0

∂n
− ∂2cΩ0

∂n2
on Γ0, and pΩ0

is the solution of the adjoint
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state 
ηpΩ0

− d∆pΩ0
= 0 in Ω0

d
dpΩ0

dn
= kΛK − α(cΩ0

− c0) on Γ0

pΩ0
= 0 on ΓD

(20)

where ∂Ω0 = Γ0 ∪ ΓD.

Remark 3.2. The rigorous computation of the derivative of an objective function
requires the ability to derive the solution of the equation of state (c) even though this

derivative (C̃(Eulerian derivative of c) or C̄(Lagrangian derivative of c) ) does not
appear in the final result [3]. There is a certain waste, especially since the computation

of C̃ or C̄ is quite delicate and tedious. Fortunately, there is a method faster to derive
(at least formally) an objective function called the Lagrangian method, developed by
J. Cea in [11].

Proof. The proof of this theorem is based on the Lagrangian method.

E(Ω) =

∫
∂Ω

k

2
(K −K0)2 − kΛKu+

α

2
(u− u0)2. (21)

We suppose first that u is a solution of (1) in Ω wich means that u verifies (18)
∀q ∈ H1(Ω). We introduce the Lagrangian which is the sum of the objective function
and the variational formulation of the equation of state

L(Ω, u, q) = E(Ω) +

∫
Ω

ηuq + d∇u∇q − fqdx, (22)

with u and q in H1(Rn). It is important to note that the space H1(Rn) does not
depend on Ω then the three variables of the Lagrangian L are independent. The
partial derivative of L with respect to q in the direction φ ∈ H1(Rn) is

<
∂L
∂q

(Ω, u, q), φ >=

∫
Ω

ηuq + d∇u∇q − fqdx, (23)

which, when it vanishes, gives (by construction) the variational formulation of the
equation of state (1). The partial derivative of L with respect to u in the direction
φ ∈ H1(Rn) is

<
∂L
∂u

(Ω, u, q), φ >=

∫
Ω

ηφq − dφ∆qdx+

∫
∂Ω

d
dq

dn
φds+

∫
∂Ω

α(u− u0)φ− kΛKφds.

(24)
which, when it vanishes, gives nothing else than the variational formulation of the
adjoint state equation (20). Finally, the derivative of L with respect to the domain,
evaluated by assuming that u and q are fixed (i.e. as a partial derivative), in the
direction θ is

∂L
∂Ω

(Ω0, u, q)(θ) =

∫
∂Ω0

(θ.n)

{
ηuq + d∇u∇q − fq +K(

k

2
(K −K0)2 − kΛKu

+
α

2
(u− u0)2) +

∂

∂n
(
k

2
(K −K0)2 − kΛKu+

α

2
(u− u0)2)

}
ds

+

∫
∂Ω0

k((K −K0)− Λu)
∂K

∂Ω
(Ω0)(θ)ds,
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where (see for exemple[12])

∂K

∂Ω
(Ω0)(θ) =

∂(div(n))

∂Ω
(Ω0)(θ) = div(

∂n

∂Ω
(Ω0)(θ)) = −∇.(∇∂Ω0(θ.n))

and
∂

∂n
(
k

2
(K −K0)2 − kΛKu+

α

2
(u− u0)2) = k(K −K0 − Λu)

∂K

∂n
.

When it comes to evaluate this derivative at the state cΩ0
and the adjoint state pΩ0

,
we find exactly the value of the derivative of the objective function

∂L
∂Ω

(Ω0, c, p)(θ) = E′(Ω0). (25)

This equation is not a coincidence. Indeed, for all q ∈ H1(Rn)

L(Ω, cΩ, q)(θ) = E(Ω). (26)

Since cΩ verifies the variational formulation of the state system (1) witch depends on
Ω, but not q, by deriving this expression and using the composite derivative theorem,
it comes

E′(Ω0) =
∂L
∂Ω

(Ω0, c(Ω0), q)(θ)+ <
∂L
∂u

(Ω0, c(Ω0), q), c′(Ω0)(θ) > . (27)

Taking q = pΩ0 solution of the adjoint state (20), the last term vanishes and we obtain

E′(Ω0) =
∂L
∂Ω

(Ω0, cΩ0
, pΩ0

)(θ)

=

∫
∂Ω0

(θ.n)

{
ηcΩ0

pΩ0
+ d∇cΩ0

∇pΩ0
− fpΩ0

+
k

2
K(K −K0)2 − kΛK2cΩ0

+
α

2
K(cΩ0 − c0)2 + k(K −K0 − ΛcΩ0)

∂K

∂n

}
ds

+

∫
∂Ω0

k((K −K0)− ΛcΩ0)(−∇.(∇∂Ω0(θ.n)))ds

=

∫
∂Ω0

(θ.n)

{
ηcΩ0

pΩ0
+ d∇cΩ0

∇pΩ0
− fpΩ0

+
k

2
K(K −K0)2 − kΛK2cΩ0

+
α

2
K(cΩ0 − c0)2 + k(K −K0 − ΛcΩ0)

∂K

∂n
+ k(∆∂Ω0K − Λ∆∂Ω0cΩ0)

}
ds.

(28)

Thanks to this simple computation, we obtain a ”good” result for E′(Ω0) without
going through the Eulerian derivative or material derivative which are rather compli-
cated to establish. However, this quick calculation of the derivative E′(Ω0) is only
formal. In fact, it assumes that we already know the differentiability of c with respect
to the domain, and that we can apply the rule of composed derivation. �

4. Numerical analysis

4.1. Level-set method. In order to evoluates the shape we will consider the variable
part of the border Γ and look for a function φ such that Γ =

{
x ∈ R2/φ(x) = 0

}
. So,

instead of deforming the shape by studying the evolution of Γ, we will transform

the function φ into φ̃ then take as a new border the set
{
x ∈ R2/φ̃(x) = 0

}
. The
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advantage is that many geometric properties of Γ are expressed more easily using φ.

For example, the vector normal to Γ is defined by n =
∇φ
‖ ∇φ ‖

and the mean curvature

defined by K = ∇.
(
∇φ
‖ ∇φ ‖

)
. We ask φ to be negative inside Γ and positive outside.

In practice, we choose a function whose gradient does not vanishes on Γ. In fact, we
try to work with a function close to the signed distance function at Γ.

We want to evaluate a shape Ω0 with border Γ0 =
{
x ∈ R2/φ0(x) = 0

}
allong the

vector field
−→
V = V.

∇φ0

‖ ∇φ0 ‖
,

where V is obtained by theorem(3.1)(equation (28)) as follows

V = ηcp+ d∇c∇p− fp+ k(K −K0 − Λc)
∂K

∂n
+
k

2
K(K −K0)2

−kΛK2c+
α

2
K(c− c0)2 + k(∆∂Ω0

K − Λ∆∂Ω0
c).

(29)

For that we will solve the system:{
∂tΦ +

−→
V .∇Φ = 0 ,

Φ(t0, 0) = φ0 .
(30)

As a new border we will take Γ =
{
x ∈ R2/φ(x) = 0

}
, where φ = Φ(t0 + ∆t, .).

4.2. Numerical algorithm.

Remark 4.1. To know the evolution of φ in time. In practice, the problem lies from

the fact that if x is a mesh node, x +
−→
V (t, x) is not necessarily one. However, we

prefer to work with a fixed mesh. That’s why we will use the operator Convect.
If the solution is φ0at time t0, then we get φ = Φ(t0 + ∆t, .) by:

φ = convect
([
−
−→
V .ex,−

−→
V .ey

]
,∆t, φ0

)
. (31)

This technique will also be used in the program to reset the function delimiting the
domain Ω.

Remark 4.2. When we modify a function that serves only to delimit the curve{
x ∈ R2 : φ(x) = 0

}
. φ can become less suitable than other functions delimiting the

same curve. We denote φold the function that we want to improve and we solve the
equation whose stationary solution is the signed distance at Γ:{

∂tΦ + sign(φold)(‖ ∇Φ ‖ −1) = 0 ,

Φ(t0, 0) = φold .
(32)

Then we replace φold by φ = Φ(t0 + ∆t, .). So on the set
{
x ∈ R2 : φold(x) = 0

}
as

sign(φold) = 0, the equation reduces to ∂tΦ = 0 and the curve
{
x ∈ R2 : φ(x) = 0

}
is then equal to

{
x ∈ R2 : φold(x) = 0

}
, the border of the shape remains unchanged

by this modification. Moreover, in a neighborhood of this curve, ∂tΦ is weak so the
gradient is almost unit. To solve this system, we start by linearizing the equation by
the following approximation:

∂tΦ + sign(φold)

(
∇φold
‖ ∇φold ‖

.∇Φ− 1

)
= 0.
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Then we proceed in two steps, we solve the equation without the source term then
we add dt × sign(φold) to the solution found. By repeating this process, we get a
function closer to the signed distance at Γ.

Algorithm 1 Representation of the shape of the membrane by Level Set method

1.Initialization of the level set function φ0 by solving (32)
2.Iteration until convergence for k ≥ 1 :

(a) Compute the direct stat cΩ0
solution of (1) and the ajoint stat pΩ0

solution
of (20) for the shape φk.
Deduce the shape gradient = normal velocity =Vk (29)

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation (31)) to
obtain a new shape φk+1.

4.3. Numerical results. In this section we give numerical results obtained in graph-
ical form. The figure 3 represents the intial shape of the membrane at rest that we
choose to be an ellipse. The evolution in time of the deformation of the membrane
shape under the effect of molecular diffusion and adsorption phenomenon is given in
figure 4 using numerical algorithm based on level set method (Algorithm1). In figure
5 we can see the final state of the membrane shape at equilibrum where the sim-
ple coupling between the membrane and adsorbed molecules lead to a morphological
instability.

5. Conclusion

Using geometrical shape optimisation we have analyzed the coupling of the mem-
brane to a diffusion field, we prove the existence of the optimal shape of a membrane
in a presence of the diffusion field and we compute its first derivative with respect
to the domain. We have focused on the situation where the system is in global equi-
librium. When the membrane is stable we have analyzed the effect of the various
processes on the membrane fluctuations by using level-set method.

Figure 3. Initial shape.
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Figure 4. Shape evolution in time.

Figure 5. Final shape.
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