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Mathematical modelling of nitrogen removal in horizontal
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Abstract. The research work presented herein makes a contribution to HSSF CW grey-
water treatment by developing a conceptual and numerical model to simulate the spatial

and temporal variations of nitrogen concentration. This paper presents the simulation of

flow and nitrogen removal processes by using the advection-dispersion- reaction modeling ap-
proach. The flow equation is solved by using the mixed finite ele- ment method. The system

of advection-dispersion-reaction is solved by using the technique of separation of the opera-

tors. The equation of advection is approximed by the Characteristics-Galerkin Method. The
dispersion-reaction equation was carried by using the finite element method. The softwares

freefem++ and matlab were used. This phenomenon was materialized by a horizontal subsur-

face Flow Constructed Wetland treating greywater in a Moroccan primary school. The decay
coefficient are been identified by solving an inverse problem using observed data. The Particle

Swarm Optimization and Gravitational Search Algorithm (PSOGSA) proposed by Mirjalili et

al. [24] is used to solve the inverse problem. Numerical simulation was validated after calibra-
tion on the basis of obtained experimental data by controlling water quality parameters over

a period of 100 days. Comparative analysis shows that the total predicted effluent of nitrogen
concentration obtained by the numerical simulation agrees fully with the one obtained by

experimental data.
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1. Introduction

The processes that govern the transformation of nitrogen compounds in artificial
marshes are multiple and refer to the nitrogen cycle in porous media. For the sake
of synthesis, the complex processes related to the fixation of atmospheric nitrogen
by plants and free bacteria of the filter substrate will not be developed. Only the
phenomena of degradation of the nitrogen compounds contained in the wastewater
will be exposed.

Nitrogen supplied to artificial wetlands by wastewater is usually in organic form.
It undergoes ammonification, then nitrification and finally denitrification according
to the biochemical conditions of the environment ([30], [5], [20]).

This paper has been presented at the Conference MOCASIM, Marrakesh, 26-27 November 2018.
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Ammonization consists of the mineralization of organic nitrogen into ammonia
(NH3) under the action of a living heterotrophic bacterial flora in the filtration sub-
strate. It occurs in both aerobic and anaerobic environments. In turn, the ammonia
undergoes various transformations to give ammonium (NH4 +).

In recent years, constructed wetland (CW) has become a major way of groundwa-
ter treatment. In [23], Mouaouia et al. studied mathematical modeling and numerical
simulation of the evolution of phosphorus concentration in a Wetland treating Grey-
water Constructed at a primary school of Marrakesh.

The aim of this work is to increase the understanding of the nitrogen removal in
the same system.
The model focuses on water flow and reactive solute transport. Nitrogen is present in
wastewater as ammonium, NO−2 and NO−3 . The mathematical model that governs
the evolution of the concentrations is a system of hierarchical equations of convection-
dispersion-reaction. This system of equations is coupled with the hydraulic head
equation.
The structure of our paper is outlined as follows. In Section 2 the mathematical mod-
eling is introduced, Existence and uniqueness of the solution of hierarchical equations
of convection-dispersion-reaction used is presented. In Section 3 is devoted to the
numerical resolution of the equations. The section 4 present the inverse problem. Ex-
istence and uniqueness of this problem have been established. In Section 5 we present
Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA) used
to solve inverse problem. The results and discussion of numerical experiments are
presented in Section 6.

2. Mathematical modeling

2.1. Experimental data. To meet the objectives of this research, a HSSF CW was
built at a Primary school in Marrakesh (Morocco) (31o42024 ”N, 7o58050 ”W, 451m),
with an average annual temperature of 19.6oC and annual precipitation of 282 mm.
At the upstream of the HSSF, all the school grey water was collected from hand wash
sinks and directed to a pre-treatment unit.
In order to evaluate the performance of simulation approaches and mathematical
models, experimental data were taken. We took measures at the inlet and the outlet
every five days.

Figure 1. Site.
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2.2. Mathematical modeling of flow. In order to obtain the experimental data
for this study, we used a HSF CW similar to those find in the paper of Akratos and
Tsihrintzis [1]. Our facility is a rectangular tank (with dimensions 5 m long, 0.75
m wide and 0.6 m deep). Three different porous media layers were used, namely
medium gravel (MG),fine gravel (FG) and cobbles (CO). Each one represents a full
compartement of 0.2m tickness and 5m long. The tank is planted using the cattails (C,
Typha latifolia). Regarding other data for the CW layers, we have the following values
respectively for MG, FG and CO: porosity(ω) 0.39, 0.33 and 0.29, permeability(K) :
10−7m2,6.25 10−7m2, and 2.25 10−5m2.

2.2.1. Condition of flow. Wastewater enters the domain through boundary 3 (a
length of 0.2 m in the xth direction representing the mixing zone) where a constant
hydraulic head of 0.6 m is defined and the effluent leaves through boundary 5 (a length
of 0.1 m in the yth direction), where a constant hydraulic head of 0.4 m is defined.
Boundaries 1, 2,4 and 6 represent a null flux.

Figure 2. Conditions of flow.

2.2.2. Mathematical model. Under the above mentioned flow conditions and applying
the mass conservation law and the Darcy’s law ([18, 21]), the flow in transitory mode
in the domain is governed by the following system of equations:

S(x, y)∂h(x,y,t)
∂t − div(K(x, y).∇h(x, y, t)) = f(x, y, t) in Ω×]0, T [

h(x, y, 0) = h0(x, y) in Ω
h(x, y, t) = hD(x, y, t) on ΓD×]0, T [

−K(x, y)∂h(x,y,t)
∂n = hN (x, y, t) on ΓN×]0, T [

(1)

where
• T is the date of measure.
• Ω, representing the domain
• h is the hydraulic potential
• f is the source term
• h0 the initial condition corresponding to the date t = 0
• hD is the Dirichlet boundary condition, representing the imposed potential
• ΓN represent boundaries 1,2,4 and 6
• ΓD = represent boundaries 3 and 5
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• K and S represent respectively the permeability function and the coefficient of
storage.

Once the equation (1) is resolved, let h denote this solution, we deduce respectively
the Darcy’s velocity u and the velocity by the following relations:

u(x, y, t) = −K(x, y).∇h(x, y, t) in Ω× [0, T ]

v(x, y, t) = u(x,y,t)
ω in Ω× [0, T ]

(2)

where ω is the effective porosity.

2.3. Transport modeling.

2.3.1. Mathematical model. The evolution of the contaminant concentrationt is gov-
erned by the reaction-adsorption-diffusion following equation ([18, 21]):

∂C
∂t = ∇.(D.∇C)−∇.(vC)− λC in Ω×]0, T [

C(x, y, 0) = C0(x, y) in Ω
−D ∂C

∂n + (v.n)C = 0 on Γ0×]0, T [
(3)

where:
• C the concentration (ML−3),
• C0 the initial concentration (ML−3),
• D the dispersion tensor (L2T−1),

D =

(
Dxx Dxy

Dyx Dyy

)
• λ, the decay coefficient constant (T−1)
• v the velocity
• Γ0 represent boundaries 1,2,3,4,5 and 6.

A general dispersion tensor D is given by

Dxx =
αLv

2
x + αT v

2
y√

v2
x + v2

y

+Dm,

Dyy =
αLv

2
y + αT v

2
x√

v2
x + v2

y

+Dm,

Dxy = Dyx = (αL − αT )
vxvy√
v2
x + v2

y

,

where αL and αT is the longitudinal and transverse dispersivities (L), Dm is the
molecular diffusion (L2T−1). The last term to the right is the sink-source term R
used for the simulation of chemical reactions. He takest’s acount plant uptake, sub-
strate adsorption and desorption. This term usually depends on the concentrations of
the reagents involved in the chemical reaction, in this case is expressed by the simple
relation: R = −λC, where λ is a coefficient of decomposition.
Nitrogen is present in wastewater as ammonium, NO−2 and NO−3 with concentra-
tions respectively denoted as c1, c2 and c3. We assume that the kinetics of nitrogen
simulated by the following reaction chain (nitrification denitrification):

NH+
4 → NO−2 → NO−3 → N2
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where N2 represents nitrogen in gaseous form, which is removed from the system.
Under these conditions, the concentrations of the substances in the bio-reactor are
governed by the following system of equations:

l ∂c1∂t = ∇.(D.∇c1)−∇.(vc1)− λ1c1 in Ω×]0, T [,
∂c2
∂t = ∇.(D.∇c2)−∇.(vc2) + λ1c1 − λ2c2 in Ω×]0, T [,
∂c3
∂t = ∇.(D.∇c3)−∇.(vc3) + λ2c2 − λ3c3 in Ω×]0, T [,

ci(x, y, 0) = c0i (x, y) in Ω, i ∈ {1, 2, 3},
−D ∂ci

∂n + (v.n)ci = 0 on Γ0×]0, T [, i ∈ {1, 2, 3}.

(4)

This mathematical model (4) was originally proposed by Cho (1971). In a particular
case, van Genuchten (1985) gave an analytical solution. The application of this model
to simulate processes in constructed wetlands was first used by Akratos and Tsihrintzis
[1], using experimental data. They validated the performance of these approaches by
comparing the results of the simulation with existing experimental data from five
pilot-scale CW facilities containing different vegetation and porous material types.
The characteristic values of the disintegration coefficients λi are estimated, which
incorporate the influence of vegetation and temperature and are useful in the design
of constructed wetlands or the simulation of nitrogen fate in geological formations.

3. Numerical modeling

3.1. Equation of flow solving. In this part, we propose to solve numerically the
equation (1) by using the finite element method for the space discretization. A implicit
scheme of Euler will be used for the temporal discretization.

By using a implicit scheme of Euler on the equation (1), we obtain S h
n+1−hn

∆t − div(K∇hn+1) = fn+1 in Ω
hn+1 = hD on ΓD

−K ∂hn+1

∂ν = hN on ΓN
, n = 0, . . . ,M − 1. (5)

Deduce the Darcy’s velocity

un+1(x, y) = −K(x, y).∇hn+1(x, y),

where ∆t is the step of time giving by ∆t = T
M , tn = n T

∆t and fn = f(x, y, tn), (M
a integer strictly positive).
Let’s suppose:

V =
{
ψ ∈ H1(Ω);ψ = 0 on ΓD

}
.

Since mes(ΓD) > 0, according to [8], we can choose

‖ψ‖V =

(∫
Ω

|∇ψ|2
)1/2

as norm on V.

Let ψ ∈ V be a test function. Multiplying (5) by v and integrating by parts, the
variational formulation associated to the problem (5) is given by find hn+1 ∈ H1(Ω) with hn+1 = hD on ΓD such that ∀ψ ∈ V∫

Ω

βhn+1ψ +

∫
Ω

K∇hn+1.∇ψ =

∫
Ω

βhnψ +

∫
Ω

βfn+1ψ +

∫
ΓN

hNψ
(6)
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where β = S
∆t . Thus the theorem of Lax-Milgram ensures the existence and unique-

ness of a solution to the variational problem (6) and consequently the existence and
uniqueness of a solution of (5).

We denote by γd the trace operator. Let rd ∈ H1(Ω) such as γd(rd) = hD and we
denote hn+1

d = hn+1 − rd.
Let Th be a triangulation of Ω and we denote P1 the space of continuous piewise

affine function in Ω i.e the space of continuous functions which are affine in x, y on
each triangle of Th. We pose Vh = P1 ∩ V . Vh is a linear vector space of finite
dimension. We denote N its dimension and φ1, . . . , φN a basis. The approximated
problem is:

find h̃n+1 ∈ Vh, such that h̃n+1(x, y) =

N∑
i=1

hiφi(x, y), (7)

and take h̃n+1 = hn+1 and v = φi for i = 1, . . . , N , we remark that (7) is equivalent
to the resolution of the linear system

AX = B (8)

where X = (hi)i=1,...,N ,

Aij =

∫
Ω

βφiφj +

∫
Ω

K∇φj .∇φj =
∑
T∈Th

∫
T

βφiφj +

∫
T

K∇φj .∇φj

and

Bi =

∫
Ω

βhnφi +

∫
Ω

βfn+1φi +

∫
Ω

K∇rd.∇φi +

∫
Ω

βrdφi +

∫
ΓN

hNφi

=
∑
T∈Th

∫
T

βhnφi +

∫
T

βfn+1φi +

∫
T

K∇rd.∇φi +

∫
T

βrdφi +

∫
T∩ΓN

hNφi.

3.2. Equation of transport solving. We used operator spliting, [14, 10]. The
transport equation (3) is divided into two distinct equations.
At each step of time, we solve firstly by using Characteristics-Galerkin Method the
equation of advection.{

∂Ck
i,a

∂t + div(vCki,a) = 0 in Ω×]0, T [,
Cki,a(x, y, 0) = Ck−1 in Ω.

(9)

We obtain a solution that we note Cki,a.
And secondly, We used implicit finite difference method for the discretization of the
time variable and a discretization in finite element P1 for the space to appriximate
dispersion-reaction equation

∂Cn
i

∂t − div(D∇Cni ) + λiC
n
i = fi in Ω×]0, T [,

Cni (x, y, 0) = Cki,a in Ω,

−D ∂Cn

∂η + (vCni ).n = Cni,a on ΓN×]0, T [.

(10)

The parameters λi, i ∈ {1, 2, 3} are been identified by solving an inverse problem
using data observed.
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4. Idenfication of parameters

In this section, we focus on the identification of parameters, so we formulate our
problem to a minimization problem, after we present the derivative in order to make
some numerical example. Let’s start by the minimisation problem.

4.1. Minimization problem. Throughout this section we are interesting in the
following minimization problem

min
Λ∈D⊂R3

J(Λ), (11)

the cost functionnal J is given by a least square criterion

J(Λ) =
1

2

3∑
i=1

∫ T

0

∫
Ω

(ci − cobsi )2dσdt

where C = (c1, c2, c3) solution of (4), cobsi is the data observed and Λ = (λ1, λ2, λ3)
the vector of parameters.

Theorem 4.1. Suppose that 0 < a ≤ λi ≤ b, i ∈ {1, 2, 3}. The function J defined by

J : [a, b]3 −→ R

Λ = (λ1, λ2, λ3) 7−→ 1
2

∑3
i=1

∫ T

0

∫
Ω

(ci − cobsi )2dxdt

is differentiable with respect to Λ and for all ξ = (ξ1, ξ2, ξ3) ∈ [a, b]3, we have

∇J(Λ).ξ =

∫ Tj

Tj−1

∫
Ω

(
ξ1c1(p1 − p2) + ξ2c2(p2 − p3) + ξ3c3p3

)
with (c1, c2, c3) is solution of (4) and (p1, p2, p3) is solution of the following problem

−∂p1∂t = ∇.(D.∇p1)−∇p1∇v + λ1p2 − λ1p1 + cobs1 − c1 in Ω×]0, T [,

−∂p2∂t = ∇.(D.∇p2)−∇p2∇v + λ2p3 − λ2p2 + cobs2 − c2 in Ω×]0, T [,

−∂p3∂t = ∇.(D.∇p3)−∇p3∇v − λ3p3 + cobs3 − c3 in Ω×]0, T [,
pi(x, y, T ) = 0 in Ω, i ∈ {1, 2, 3},
D ∂pi

∂n = 0 on Γ0×]0, T [.

Proof. We follow the Lagrangian method to prove the differentiability of J , this
method gives a rapid derivation of J by introducing a Lagrangian function L to
separate the dependance of the state variables (c1, c2, c3) and Λ = (λ1, λ2, λ3). We
put by convention λ0 = 0 and we consider

L(C,P,Λ, σ) =
1

2

3∑
i=1

∫ T

0

∫
Ω

(ci − cobsi )2dσdt+

3∑
i=1

∫ T

0

∫
Ω

(
∂ci
∂t
pi +D∇ci∇pi

)

+

3∑
i=1

∫ T

0

∫
Ω

(
∇v∇pici + (λici − λi−1ci−1)pi

)
+

3∑
i=1

∫
Ω

σi(ci(0)− c0i ).

For all (C,P,Λ, σ) ∈ L2(0, T ;H1(RN ))3 × L2(0, T ;H1(RN ))3 × [a, b]3 × L2(Ω)3.
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To obtain the initial boundary condition of the steady state, we derive the La-
grangian L with respect to σ = (σ1, σ2, σ3), for all ψ ∈ L2(Ω), it follows that

<
∂L
∂σi

, ψ >=

∫
Ω

ψ(ci(0)− c0i )

for all ψ ∈ L2(Ω) the last integral vanishes if and only if ci(0) = c0i in Ω.
To get the adjoint equation we derive the Lagrangian with respect to the state

variable (c1, c2, c3), for all ϕ ∈ L2(0, T ;H1(RN )), one has

<
∂L
∂c1

, ϕ >=

∫ T

0

∫
Ω

ϕ(c1 − cobs1 )dσdt+

∫ T

0

∫
Ω

(
∂ϕ

∂t
p1 +D∇ϕ∇p1

)
+

∫ T

0

∫
Ω

(
∇v∇p1 + λ1p1 − λ1p2

)
ϕ+

∫
Ω

σ1ϕ(0),

<
∂L
∂c2

, ϕ >=

∫ T

0

∫
Ω

ϕ(c2 − cobs2 )dσdt+

∫ T

0

∫
Ω

(
∂ϕ

∂t
p2 +D∇ϕ∇p2

)
+

∫ T

0

∫
Ω

(
∇v∇p2 + λ2p2 − λ2p3

)
ϕ+

∫
Ω

σ2ϕ(0),

<
∂L
∂c3

, ϕ >=

∫ T

0

∫
Ω

ϕ(c3 − cobs3 )dσdt+

∫ T

0

∫
Ω

(
∂ϕ

∂t
p3 +D∇ϕ∇p3

)
+

∫ T

0

∫
Ω

(
∇v∇p3 + λ3p3

)
ϕ+

∫
Ω

σ3ϕ(0).

We choose σi(x, y) = pi(x, y, 0), consequently the adjoint state is given as a solution
P = (p1, p2, p3) of the following problem

−∂p1∂t = ∇.(D.∇p1)−∇p1∇v + λ1p2 − λ1p1 + cobs1 − c1 in Ω×]0, T [,

−∂p2∂t = ∇.(D.∇p2)−∇p2∇v + λ2p3 − λ2p2 + cobs2 − c2 in Ω×]0, T [,

−∂p3∂t = ∇.(D.∇p3)−∇p3∇v − λ3p3 + cobs3 − c3 in Ω×]0, T [,
pi(x, y, T ) = 0 in Ω, i ∈ {1, 2, 3},
D ∂pi

∂n = 0 on Γ0×]0, T [.
(12)

To conclude the differentiability of J , we pass to derive the Lagrangian L with respect
to Λ = (λ1, λ2, λ3), we have

∂L
∂λ1

=

∫ T

0

∫
Ω

c1(p1 − p2),

∂L
∂λ2

=

∫ T

0

∫
Ω

c2(p2 − p3),

∂L
∂λ3

=

∫ T

0

∫
Ω

c3p3.

Finally, we deduce the differentiability of J with respect to λ, moreover we have

∇J(Λ) =

(
∂J(Λ)

∂λ1
,
∂J(Λ)

∂λ2
,
∂J(Λ)

∂λ3

)
with (c1, c2, c3) is solution of (4) and (p1, p2, p3) is solution of the adjoint equation
(12). �
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5. PSOGSA algorithm

In this section we present the PSOGSA algorithm proposed by M. This algorithm
is a hybridization of two meta heuristics. PSO proposed by Kennedy and Eberhart
([15][29]), and GSA proposed by E. Rashedi et al. [25].
We consider the following problem:

min
x∈D

f(x) (13)

where f is a function of Rp with value in R and D a bounded subset of Rp.

5.1. PSO algorithm. Particle Swarm Optimization (PSO) is an evolutionary algo-
rithm inspired from social behavior of bird flocking. The principle is to generate a
number of particles (possible solutions) which fly around in the search space to find
best solution.
At each iteration, each particle in the population represents the current position in
D with the current velocity, it changes its velocity and position by considering the
distance to pbest (personnal best position) and the distance to gbest (global best)
that can be modeled mathematically by:

vn+1
i = wvni + c1 × rand× (pbestni − xni ) + c2 × rand× (gbest− xni ), (14)

xn+1
i = xni + vn+1

i , (15)

with
(1) vni the velocity of the particle i at the nth the iteration,
(2) w the inertia weight,
(3) c1 and c2 are the acceleration coefficients,
(4) rand a random number between 0 and 1,
(5) xni the position of the particle i at the nth iteration,
(6) pbestni the pbest of agent i at nth iteration.

5.2. GSA algorithm. GSA is a heuristic optimization method proposed by E.
Rashedi et al. [25]. This algorithm is inspired from the Newton’s theory accord-
ing to which ”each particle particle in the universe attracts every other particle with
a force that is directly proportional to the product of their masses and inversely pro-
portional to the square of the distance between them”. All masses attract each other
by the gravitational forces between them.
In GSA, each mass has four characteristics: its position (Xi), inertial mass (Mii),
active gravitational mass (Mai), passive gravitational mass (Mip). The position of
the mass in the search space represents a solution of the problem and its gravitational
and inertial masses are determined using a fitness function of the problem.

Suppose a system with N agents in D. The position of each agent is defined by:

Xi = (x1
i , · · · , xdi , · · · , x

p
i ), i = 1, 2, · · · , N. (16)

According to Newton gravitation theory, the gravitational forces from agent j on
agent i at the time t is defined as follow

F dij = G(t)
Mpi(t)×Maj(t)

Rij(t) + ε

(
xdj (t)− xdi (t)

)
, (17)
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where G(t) is gravitational constant at time t, ε is a small constant, and Rij(t) is the
Euclidian distance between two agents i and j. G(t) is given by

G(t) = G0 × exp(−α×
iter

Maxiter
), (18)

where α and G0 are descending coefficient and initial value respectively, iter is the
current iteration, and Maxiter is maximum number of iterations.

The total force acting on agent i is calculated by the following formula

F di (t) =

N∑
j=1,j 6=i

aj × F dij(t), (19)

where aj is a random number in the interval [0,1].
The accelaration γdi of agent i is given by

γdi (t) =
F di (t)

Mii(t)
. (20)

Next velocity and position of agent i are calculated as follow:

vdi (t+ 1) = ri × vdi (t) + γdi (t), (21)

xdi (t+ 1) = xdi (t) + vdi (t+ 1), (22)

where ri is a random number in the interval [0,1].

5.3. PSOGSA algorithm. PSOGSA proposed by Mirjalili et al (2017) [24] combine
the ability of social thinking (gbest) in PSO with the local search capability of GSA.
The velocity of agent i is given by

Vi(t+ 1) = w × Vi(t) + c′1 × r1γi(t) + c′2 × r2 × (gbest−Xi(t)), (23)

where Vi is the velocity of agent i at iteration t, c′1 and c′2 are weighting factors, w
is a weighting function, r1 and r2 are random numbers between 0 and 1, γi(t) is the
acceleration of agent i at iteration t.
The position Xi (i = 1, · · · , N), is given by

Xi(t+ 1) = Xi(t) + Vi(t+ 1). (24)

5.4. Algorithm. In summary the resolution of our problem by PSOGSA algorithm
is given the algorithm below:

6. Results and discussions

The parameters of flow simulation are:

Dm αT αL S K ω
10−7 0.01 0.1 0.02 0.001 0.33

Table 1. Parameters of flow.
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Initialize the input parameters for PSO and GSA
Initialize the random position of search agents.
k ← 0
while k < Maxiter do

for i=1 to N do
Solving equation (1)
Solving equation (4)
Evaluate the score of each search agent using objective function (11)
Update the G and gBest for each agent
Calculate M, forces and accelerations for all agents
Update velocity and position for each agent

end for
k ← k + 1

end while
Return the best solution

6.1. Parameters identified. Using our algorithm on the data above, we obtain the
following results:

Parameters Range Identified values
λ1 [0; 2] 0.06242
λ2 [0; 2] 0.789
λ3 [0; 3] 1.08

The Figure 3 shows a comparison between the level simulated and observed data.
In analyzing this figure, we see that the concentration simulated coincide with the
concentration observed.

Figure 3. Curve of observed and simulated level to measurement dates.

6.2. Spatial distribution of NH−4 concentration. The Figure 4 shows the re-
moval rate of Nitrogen in the system. This rate increases at the beginning of the
process to stabilize around 40% from the 30th day.
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Figure 4. Curve of removal rate.

Figures 5 to 7 show spatial distribution of nitrogen in the system at different days
respectively at 10, 50 and 100 days. As the case of the study on phosphorus in the
[23], we note that concentrations vary considerably at the right and left borders of
the system. They remain almost constant within the system.

Figure 5. Day 10.
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Figure 6. Day 50.

Figure 7. Day 100.

7. Conclusion

In this work, mathematical modeling and numerical simulation of hydrodynam-
ics and nitrogen transformation processes in HSF constructed wetlands and porous
media have been studied. The nitrogen kinetics has been modeled by hierarchical
system of three advection dispersion-reaction equation. This system is solved by us-
ing the technique of operators splitting. The equation of advection is approximed by
the Characteristics-Galerkin Method. The dispersion-reaction equation was carried
by using the finite element method. The data used were measured in a bioreactor
built in a primary school in Marrakech. Decay coefficient values, useful for design
purposes, were determined by using Particle Swarm Optimization and Gravitational
Search Algorithm (PSOGSA). The results of simulation show that the concentration
of nitrogen simulated agrees fully with the one obtained by experimental data. The
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removal rate of nitrogen in the system range between 37.5% and 40%.
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