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Subspace iteration method for generalized singular values

ABDESLEM HAFID BENTBIB, AHMED KANBER, AND KAMAL LACHHAB

ABSTRACT. It’s well known that the Singular Values Decomposition (SVD) is useful in many
applications such as low rank approximation, data reductions, identification of the best ap-
proximation of the original data points using fewer dimensions. It’s also a useful tool for
computation of eigenvalues of matrix AT A without explicitly forming the matrix product.
The Generalized Singular Values Decomposition (GSVD) of the pair (A, B) is also a useful
tool for computation of the generalized eigenvalues of the symmetric pencil AT A—ABT B. The
generalized singular values of the pair (A, B) are nothing but the square roots of generalized
eigenvalues of the symmetric eigenproblem AT Av — ABT Bv = 0. The novelty of this work is
the method that computes the largest generalized singular values and vectors using iterative
subspace-like method. Numerical examples show the effectiveness of the presented method.
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1. Introduction

The generalized singular value decomposition (GSVD) is a powerful and useful
tool in Linear Algebra. It is a further generalization of singular value decomposition
(SVD), it was introduced by Paige and Saunders [12] which is extension of the quotient
singular value decomposition [2]. The main idea of the GSVD is to decompose a
rectangular matrix pair (A, B) into the following two decompositions:

A=U%sZ tand B=VYpZ !, (1)

where A and B are (m,p) and (n,p) matrices, respectively, U and V are orthogonal
matrices and Z invertible and X 4 and X p are positive diagonal matrices (see Theorem
6.6.1 [6]). If B is square nonsingular the GSVD gives the SVD of AB™%:

ABT' =UR 25 VT

Even if B is non square matrix, we obtain the SVD of AB™, where BT is the pseudo-
inverse of a matrix B. Note that the case when the matrix B is the identity matrix
has been studied in [1]. In fact we use the GSVD method to approximate eigenvalues
of generalized symmetric problem

AT Av — ABT Bv = 0.

The decomposition (1) is based on the following theorem
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Theorem 1.1. [6] Consider the matriz

Q = |: Ql :| y Ql S Rm,xp?Q? € R7n><p
Q2

where m > p and n > p. If the columns of Q are orthonormal, then there exist
orthogonal matrices Uy € R™*™ Uy € R ™ and Vi € RP*P such that

v 01" @ c
ARG
where

C = diag(cos(01),...,cos(0p)) € R™*P, S = diag(sin(61),...,sin(6,)) € R™*P,
and

0<60, <0, <---<0,<

ol 2

In this paper we discuss the numerical solution of the generalized symmetric eigen-
value problem AT A—AB”T B (matrix pencil), by using the GSVD method. For details
on generalized eigenvalue problem see [1, 3, 4, 5, 6, 7, 9, 10, 15, 16]. And for details
on generalized singular values one can see references [2, 4, 6, 7, 8, 11, 12, 13, 14].
This paper is organized as follows. In section 2, we give QR-like method for GSVD.
The Golub-Kahan method for GSVD is presented in section 3. Section 4 is dedicated
to an Iterative subspace method for computing generalized singular values. The pro-
posed method gives the largest in magnitude generalized singular values. In section
5, we present some numerical results that compare the proposed approach to results
obtained by Matlab function gsvd and at the end we give some concluding remarks.

2. The QR-like method for GSVD

Our main goal in this section is to give an iterative algorithm that compute the
generalized singular value decomposition (GSVD) of the pair (A, B), where A and B
are (m,p) and (n,p) matrices, respectively. The approach is based on a QR-Francis
like method using both QR and RQ factorizations.

Algorithm 1 upper-bidiagonal /upper-triangular reduction

Input: A € R™*?, B € R"*? (p < min(m,n))
Output : upper-bidiagonal/upper-triangular matrix pair reduction.
Initialization : A = A and B© = B;
For k=1:p
(1) Set uq = A(:, k); up = B(:, k);
(2) Compute appropriate Householder matrices H,gk
to u, and uyp ;
(3) AR = H{gk)A(kq); Bk — Hék)B(kq);
4 Ifk<p-1
Set u, = A(k,:); and compute an appropriate Householder matrix Hék)
correspond of u, ;
AR = AG=D ). pk) — gl=1) (P,
EndIf
EndFor

) and Hlsk) corresponding
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We begin by reducing the matrix pair (A, B) to an upper-bidiagonal /upper-triangular
form (see Algorithm 1) or reducing the matrix pair (A, B) to an upper-triangular /lower-
bidiagonal (see Algorithm 2 ).

Algorithm 2 upper triangular/lower-Bidiagonal reduction

Input: A€ R™*?, B R"*? and (p < min(m,n))
Output : upper triangular/lower-bidiagonal matrix pair reduction.
Initialization : A = A and B = B;
For k=1:p
(HIf k<p
Set up = B~V (k,:); and compute the Householder matrix Hék)
correspond of uy
Ak — Hék)A(k—l); Bk — HZE’“)B(k—l); vk — ngk)v(k—l);
EndIf
(2) Construct the upper triangularity of A
Set u, = A®~V(: k); and compute the Householder matrix HP
correspond of u,
AW = AG=1) (R,
Construct the lower bidiagonalization of B
3)If k<m
Set up = B*~1(k,:) and compute the Householder matrix ngk)
correspond of g,
Bk — B(kfl)Hék); QW) = Q(kfl)ng’f);
EndIf
EndFor

Let us now present the algorithm to compute the GSVD of (A, B). In the following
we give an (m,p) matrix A and a (n,p) matrix B (here n, m > p) and we compute
orthogonal matrices P, @), V and upper triangular matrix R of suitable sizes such that
A= (PTSAV)R and B = (QTSpV)R, where ¥4 and ¥ p are diagonal with positive
diagonal entries. We first begin by computing the QR factorization of the augmented

matrix < g ) ; ( é ) = ( g; )R. Where, Q1 € R™*P, Q, € R"*P are such

that QT Q1 + Q1 Q2 = I, and R € RP*P is upper triangular. We set A = @ and
B = @Q,. Now, A and B are such that AT A + BOTBO) = [ We use Al-
gorithm 2 to reduce the matrix pair (A, B() to upper triangular/lower-bidiagonal
form. In the second step, we generate a sequence of orthogonally equivalent matrices
pairs (A BO) « (AW BW), (4@ B®) . that converge to diagonal equiv-
alent matrix pair (A%, B*). To take advantage of the triangular/lower-bidiagonal
structure of the matrix pair (A(O), B(O)), only Givens rotations are used. The upper
triangular /lower-bidiagonal structure is preserved at each step k. The above method
is summarized in the following algorithm:
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Algorithm 3 Generalized SVD QR-Francis like Algorithm

Input : A€ R™*?, Be R"*? (n, m > p)

Output : Orthogonal matrices P, @), , V and upper triangular matrix R of suitable sizes
such that A = (PTEAV)R and B = (QTEBV)R where ¥ 4 and X p are diagonal.

1. Initialization : k =0; P =I,; Q = I, and V = I;

2. Compute the QR factorisation of the matrix ( g ) = < gl ) R.
2
3. Set A = Q; and B = Q,.
4. Reduce A® to an lower bi-diagonal matrix and B© to0 an upper triangular one using

Algorithm 2.
5. Reduce iteratively A(® and B to diagonal matrices A°®). and B>

For £ =1,2,... until convergence
(a)Ifn>p
For i=1:p

e Compute Viy1; the Givens rotations that annihilate component A%~ (i 41, );
A*=D v ARD,
End
Else
For j=1:p—-1
e Compute Vj1,; the Givens rotations that annihilate component A® =V (541, 5);
Ak=1) Vj.,.l,jA(k_l);
End
End
(c) Update, A®=D «— AG==DT g4 pt-  gk-1T
(d)For i=1:p—1
e Compute V; ;41 the Givens rotations that annihilate component Ak=D (4,i+1);
A=) Vz‘,z‘+1A(k_l); B=1) ‘/i,i+1B(k_l);
End
(e)If m>p
For j=1:p
e Compute U; ;11 the Givens rotations that annihilate component B*~1 (5, j41);
BEY  BEIU,
End
Else
For 1=1:p—1
e Compute U; ;11 the Givens rotations that annihilate component B(k)(i, i+1);
BH=D B(k_l)Ui,H_l;
End
EndIf
(f) Update, A®) «— A®-DT ang p®)  g-»T,
EndFor
6. Return ¥4 = A and S = B(™),

3. Golub-Kahan for GSVD

We describe a generalization of Golub-Kahan bi-diagonalization for computing the
generalized singular values of two matrices A and B. The approach consists in two
steps: first, reducing matrices A and B to an upper triangular and upper bi-diagonal
form, respectively, and thereafter, applying Givens rotations from both right and left
sides to iteratively obtain the diagonal matrices A(>) and B(>). At each step k,
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the upper bidiagonal form of B*~1 is transformed to lower bidiagonal form. The
triangularity of A%~1) is destroyed. We restore the upper bidiagonal form of B®*~1)

and the triangularity of A®~1) and we repeat the process until convergence.

The above method is summarized in the following algorithm:

Algorithm 4 GK-GSVD

Input: A€ R™*?, Be R"*? (n, m > p)

Output : Orthogonal matrices P, @, , V and upper triangular matrix R of suitable sizes
such that A = (PZAVT)R and B = (QEBVT)R where ¥ 4 and X p are diagonal.

1. Initialization : k := 0;

2. Compute the QR factorisation of the matrix ( g ) = ( Q1 )R.

Q2
3. Set A = Q; and B = Q,.
4. Reduce A® to upper bidiagonal matrices and B© o upper triangular one using
Algorithm 1.
5. For Kk =1,2,... until convergence
(a) transforming B®*=D t0 lower bi-diagonal matrix. A%®~Y became tri-diagonal ;
For i=1:p—1
e Compute ViEZ:) the Givens rotations that annihilate component B(kfl)(i7 i+1);
B-1 B(kfl)Vi(i?Ill); A% A(’“*UVif,’f;ll); V=1 V(kil)‘/;‘(?;ll)
EndFor ’ ' ’
(b) Restore A®~Y and B*~ to upper bi-diagonal form
For j=1:p—1
e Compute VZS]:;;) the Givens rotations that annihilate component A(kfl)(j,j +1);
AG=D o p DAy PR o pt ) ple),
e Compute G;’i_llj) the Givens rotations that annihilate component B*~1 (G, 7+ 1);
Bk-1) G§~]€+71,1]~)B(k71); Q(kﬂ) - Q;Z:Lll)Q(k—l);
EndFor
Update A®  A*-D K . k-1
6. Return ¥4 = A(®) and X5 = B,

4. Iterative subspace method for computing generalized singular values

Our main goal in this section is to give an iterative algorithm that computes the

s largest generalized singular values and the left and right corresponding generalized

singular vectors using an iterative subspace iteration. The approach is based on

the technique of the power method. We compute the following incomplete GSVD

decompositions: AZ = UY.4 and BZ = WX where X4 and Xp are (s, s) diagonal

matrices, P, @, and V orthogonal matrices and Z = R~'VT. The triangular matrix

_ [ @

B )\ Q@

this approach is that we use only s vectors. This method can be used to solve the
generalized eigenvalue problem of the following form

ATA-ABTB =0.

From a block-vector X(® e RP*5, we construct the block-orthonormal vector se-
quences UF) ¢ Rm*s V (k) ¢ R"*s and Z(*) € R**? that converges respectively to

R is obtained from the QR factorization R. The advantage of
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the s associated first left-A and left- B generalized singular vectors, and the right gen-
eralized singular vectors. The algorithm below presents pseudocode for the method.

Algorithm 5 BGP-GSVD

Input: A€ R™*?, B R"*?

Output : Orthogonal matrices U, W, V and upper triangular matrix R of suitable sizes
such that AZ = UX 4 and BZ = WX g where £4 and ¥ 5 are diagonal and Z = R™'V.
1. Initialization : k := 0; and V(® ¢ RP*®

. Compute the QR factorization of the matrix < g ) = ( Q1 )R;

2 0o
3. Set A = Q1 and BO — Q2 ;
4. For £ =1,2,... until convergence
(a) A V('C HZ = QS ( QR factorization), set U = Q(:,1: s);
(b) A YE(k) (QR factorization), set Y < Y (:,1: s);

(c) YTBT TP (RQ factorization), P < PT;w®) = P( —s+1:m,:);
(d) PBT = E(k)H (RQ factorization),
(&) VO = H(p—s+1: p);

5. Return U = U<°°>, W=w 5, =5 vp=x6) and Z = RV,

We set diag($4) = [01,02,...,05]T and diag(Xp) = [0}, 0%, ...,0.]T. The s largest

. . . i .
generalized singular values of matrix ABT are —i, i=1,..,s
i

4.1. Convergence. We begin by the QR factorization of matrix ( g ) ( 81 )
2

and we set A = @ and B = Qo. Now ATA+ BTB = I. Let ¢ be an integer such
that r = ¢gs where r = min(rank(A), rank(B)), for simplicity we give the proof when
and rank(A) > T(M’Lk?(B)) suppose that o1 > ... > 0g > 0541 > ... > 045> 0and 0 <

op <...<ol< O’S 1 <. < U;S are the generalized singular values of the matrix
pair (A,B). We set
EAJ EB,l
YA XB2
4= ) and Xg =
YA YBgq

where ¥4 ; and X ; are the diagonal matrices with nonzero, monotonically decreas-
ing, creasing diagonal o(;_1)s41 > O(i—1)s42 = ... = 0is > 0 and 0 < o' (;_1)s41 <
0’ (i—1)s42 < ... < 0'is respectively. We can write A, B, B* and (BT)*

q q
A=>"USa VB =Y WSV,

i=1 i=1

q q
Bt =3 Vs W and (BT =3 Wisp Vi
i= i=1
where U;, W; and V; are the orthogonal matrices whose columns are respectively the
q

corresponding left and right singular vectors. Let V(0 ¢ R™mxs V() = ZV}Xi +
i=1
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V(©* where span (V(O)*) C span {vr41,Vr42,  + ,0m} = ker {A}. We have

q
WO = AVO = 1541 X 4> Uil aiXi.
i=2

Suppose that the component X = I, then

q
AV©® = UWR, (QR factorization) = U1S41 + > UiSa:X;
i=2

UlTU(l)Rl = Y 4,1 that prove R; is non singular and then

q
U(l) — Ule,lRII + Z UizA,iXiRII

i=2
and
ATUW = SR, (QR factorization) = V1354 | Ry + zq: VX4 XiRy!
i=2
VISWR, = Ei’lRfl, R3 is non singular
SW =Visi RI'Ry ! + i ViZh XiR{ 'Ry
i=2
then,
(BT)* s = W R3(QR factorization)
=Wi¥% 55, RTRY + i Wi¥h Sp, XiRy !
i=2
WlTW(l)R3 = 2124712;3711-1:{171R271, R is non singular
W =ws4 SRR 'Ry + Zq: WS4, S5 X R Ry 'Ry
i=2
We have,

B*W® = y(WR,(QR factorization)

q
=ViSA SRR Ry Y WisS B GRS
i=2
VIVOR, =53 554 R R 'R, Ry s non singular

q
VO = VYR SRR RIRY 4 ) ViYE YR XR Ry Ry TR,
i=2
and so on, if we note N; = R; 'R, " ---R; !, at step k we have
AV — MR, (QR factorization)
q
= UERT SR PNy + 3 USR5 P XiN e

i=2
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U®*) = U1E?4’ff12§?f+2N2k 1+ Z U; E% 'S5 2k+2XiN2k—1

i=2
and
ATU® = SMR,. (QR factorization)
q
= ViSSP Ny + Z Vs S X Ny,
i=2
VlTS(k)ng = E 12 2k+ Nai_1, Rog is non singular
q
S(k) — Vl EQkIZ 2k+2N2k + Z ‘/7,2?4]?7( 2k+2X N2k:
i=2
then,
(BT)*s®) = wR,., 1 (QR factorization)
= W% S5 Ny, + Z Wixd S5 X Ny,
i=2
WlTW(k)RQkH = E 12 2k+ Ny, is non singular
W = W2 S Ny + Z Wiy S X Noj
i=2
We have,

(B)*W® = VMR, 5 (QR factorization)
= ViE S5 Nk + ij VSR S5 XNk
i=2
VlTV(k)RQk»J,_Q = ZifflEg?lkNng, is non singular
vk = V@i"j@;?szkH + Zq: %ZiﬁEgi’“XiNng
i=2

U® V(&) and W) are orthogonal matrices, then

T
I = (U(k)) U®) = NL,_ S5 2Ny, + ZN%_1szgfik+4zj€;2XiN2k_1

i=2
T
I, = (WW) W® = NE S84 Nogys —&-ZN%HXTZ 25 X N
i=2
and
I = (V(k)) vk = 2k+22341kEA 1Nog42 + ZN%HXTEB?CE iXiNagt2
i=2

by left and right-factoring, we obtain



86 A.H. BENTBIB, A. KANBER, AND K. LACHHAB

Iy = Ng, 12321k+222k NI+
+222k 22_2k+1XT2 4k+424k 2X E2Bk1 22A2k+1 ZQk‘ 1 2k+2N2k 1
I, = N% LI (L+

4 Z 22k+1 2kXTE 4k‘+22 X EQBkl IEA EQk 12 2k+1N2k+1

q
—2k 2k 2k —2k v T \—4ky4k —2k 2k —2k
I = N5 0% [ L+ 0¥ m 2 xTsphedh xim 3 20% | 2% 952 Nog o

. — _ 1
Since [[Saall = o1, [B34]| = = |24 = Z—— and IZaill = oG-y,
g (i—1)s+1
[Xp.ll = oi then,
— 2p "—2 - 2 - 2
[y s sarxe o < Iaal? [Sah | s |25k 1x0e
2 2p
<U(i1)s+1) b U; ||X||2 — 50
— K3
Ts T(i—1)s+1 ptoo

Thus
T — _
pll,m (N YpaYi 1) (22,123?11\117) = hm (ZA 1250 Np ) (227123?11\117) = I.

Moreover, the matrix 3% | %5” Ny, is triangular with positive diagonal entries, then
: P SYPN — I —1yP P _ ‘o
plggo YuaXp N, = plgrolo N, " Y5 3,5 = L. Otherwise

— k— k —
ATU® (N1 SHT2ea) ug)
k — k—
_v1+§2:vz DIFSARED € \ Pruli\ PYSIED Yrieud Yyw Rt

and

2k+1

7U1+ZU22’“+1 2 XNy Ny L 58,270 oy

k—+oo
i=2

k k— (2k)
(BT)+S<>( O )

— W, + Z sk lek+1X Ny <N2k122k 12,4 )

i=2
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Tv+ o(k)p—1 —1y2k—15—(2Kk)
(B ) S R2k+1R2k+1 N2k Z13,1 ZA,1

q
= Wi+ Y W SR ONG)) (NG ST Y
i=2

— — c—1v—(2k
(BT)+S(k)R2k1+1 (N2k1+1223k,1 1EA,(l )>

q
=W+ Y WEE IR NG (NG SET ) — w

p—+o00
i=2
And we have,

Rokt+1 (N;;Esz’;lz;’(l%)) = Ropt+1 (NEIJEQB]TIEZ,(?C)) 25,11—@5,11

q
(BY W® (NGl S8 23%) = Vi + > Vs St XiNok NG B3 257
i=2

q
(B WORGL, (NS, T3% ) = Vi D Vi3 wp XiNow N B3, 537
i=2

— ‘/1
k—-+4oco

and
-1 2k —2k —1 2k—1vyv—2ky—1 —1
(N2k+223,1EA71 ) = R27€+2N2k+22B,1 2A,1 EB,1—>ZB71
That implies that lim ATU® = V¥4, lim AV®) = U344, lim (BT)TS®
k T k=400 k—+oo

—+00

= WSz} and lim (B)*W® =55,

k—+o00

5. Numerical examples

In this section we compared the numerical results obtained by Algorithm 3, Algo-
rithm 4 and Algorithm 5 with gsvd Matlab function in terms of the relative error.
All of the reported numerical experiments were performed on Matlab version R2016a.
A € R™*P and B € R™ P are rectangular matrices defined as A = UX4Z~! and
B =WXpZ~!, where Uand W are random orthogonal matrices, Z non singular and
r = rank(B). We give below relative errors occurred when computing the generalized
eigenvalues of the pair (A7 A, BT B). We compare the numerical results obtained for
different sizes. For the first test we take m = 1500, n = 500 and r = p = 100, the
figure 1 gives the corresponding relative errors of eigenvalues of the pair (A7 A, BT B)
computed by Algorithm 3 and the one computed by gsvd Matlab function. For the
second test we take m = 1000, n = 100 , p = 50 and r = 10, we plot the relative
errors of eigenvalues of the pair (AT A, BT B) computed by Algorithm 4 and the one
computed by gsvd Matlab function in the figure 2 . Finally we take m = 1000,
n =800, p =280, r =qg =6 and we plot the relative errors of eigenvalues of the
pair (AT A, BT B) computed by Algorithm 5 and the one computed by gsvd Matlab
function in the figure 3.
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T T T
—#%— Algorthm 3
—&— GSVD Matisb

relative aror of approximation eigenvalues

Q 10 20 30 40 50 €0 70 80
the eigenvalues in increasing order

FIGURE 1. Relative error of gsvd matlab function and Algorithm 3.

—#— Algorithm 4
—6— gavd MATLAB
22t g

relative emor of approximation eigenvalues

4 5 & 7 8
the eigenvalues in increasing order

FIGURE 2. Relative error of gsvd matlab function and Algorithm 4.

6. Conclusion

We have presented a generalization of the subspace iteration method (BPG-GSVD)
to compute the s-largest in magnitude generalized eigenvalues of the matrix pencil
AT A—XBT B. Two others generalization are presented, the first one is a generalization
of the well-known Francis-QQ R method and the second one is a generalization of the
Golub-Kahan method to compute the GSVD decomposition.
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