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Subspace iteration method for generalized singular values
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Abstract. It’s well known that the Singular Values Decomposition (SVD) is useful in many
applications such as low rank approximation, data reductions, identification of the best ap-

proximation of the original data points using fewer dimensions. It’s also a useful tool for

computation of eigenvalues of matrix ATA without explicitly forming the matrix product.
The Generalized Singular Values Decomposition (GSVD) of the pair (A,B) is also a useful

tool for computation of the generalized eigenvalues of the symmetric pencil ATA−λBTB. The

generalized singular values of the pair (A,B) are nothing but the square roots of generalized
eigenvalues of the symmetric eigenproblem ATAv − λBTBv = 0. The novelty of this work is

the method that computes the largest generalized singular values and vectors using iterative

subspace-like method. Numerical examples show the effectiveness of the presented method.
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1. Introduction

The generalized singular value decomposition (GSVD) is a powerful and useful
tool in Linear Algebra. It is a further generalization of singular value decomposition
(SVD), it was introduced by Paige and Saunders [12] which is extension of the quotient
singular value decomposition [2]. The main idea of the GSVD is to decompose a
rectangular matrix pair (A,B) into the following two decompositions:

A = UΣAZ
−1 and B = V ΣBZ

−1, (1)

where A and B are (m, p) and (n, p) matrices, respectively, U and V are orthogonal
matrices and Z invertible and ΣA and ΣB are positive diagonal matrices (see Theorem
6.6.1 [6]). If B is square nonsingular the GSVD gives the SVD of AB−1:

AB−1 = UΣAΣ−1B V T .

Even if B is non square matrix, we obtain the SVD of AB+, where B+ is the pseudo-
inverse of a matrix B. Note that the case when the matrix B is the identity matrix
has been studied in [1]. In fact we use the GSVD method to approximate eigenvalues
of generalized symmetric problem

ATAv − λBTBv = 0.

The decomposition (1) is based on the following theorem
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Theorem 1.1. [6] Consider the matrix

Q =

[
Q1

Q2

]
, Q1 ∈ Rm×p, Q2 ∈ R,n×p

where m ≥ p and n ≥ p. If the columns of Q are orthonormal, then there exist
orthogonal matrices U1 ∈ Rm×m, U2 ∈ Rn×n, and V1 ∈ Rp×p such that[

U1 0
0 U2

]T [
Q1

Q2

]
V =

[
C
S

]
,

where

C = diag(cos(θ1), . . . , cos(θp)) ∈ Rm×p, S = diag(sin(θ1), . . . , sin(θp)) ∈ Rn×p,

and
0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤

π

2
.

In this paper we discuss the numerical solution of the generalized symmetric eigen-
value problem ATA−λBTB (matrix pencil), by using the GSVD method. For details
on generalized eigenvalue problem see [1, 3, 4, 5, 6, 7, 9, 10, 15, 16]. And for details
on generalized singular values one can see references [2, 4, 6, 7, 8, 11, 12, 13, 14].
This paper is organized as follows. In section 2, we give QR-like method for GSVD.
The Golub-Kahan method for GSVD is presented in section 3. Section 4 is dedicated
to an Iterative subspace method for computing generalized singular values. The pro-
posed method gives the largest in magnitude generalized singular values. In section
5, we present some numerical results that compare the proposed approach to results
obtained by Matlab function gsvd and at the end we give some concluding remarks.

2. The QR-like method for GSVD

Our main goal in this section is to give an iterative algorithm that compute the
generalized singular value decomposition (GSVD) of the pair (A,B), where A and B
are (m, p) and (n, p) matrices, respectively. The approach is based on a QR-Francis
like method using both QR and RQ factorizations.

Algorithm 1 upper-bidiagonal/upper-triangular reduction

Input: A ∈ Rm×p, B ∈ Rn×p (p ≤ min(m,n))
Output : upper-bidiagonal/upper-triangular matrix pair reduction.
Initialization : A(0) = A and B(0) = B;
For k = 1 : p

(1) Set ua = A(:, k); ub = B(:, k);

(2) Compute appropriate Householder matrices H
(k)
a and H

(k)
b corresponding

to ua and ub ;

(3) A(k) = H
(k)
a A(k−1); B(k) = H

(k)
b B(k−1);

(4) If k < p− 1

Set ua = A(k, :); and compute an appropriate Householder matrix H
(k)
a

correspond of ua ;

A(k) = A(k−1)H
(k)
a ; B(k) = B(k−1)H

(k)
a ;

EndIf
EndFor
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We begin by reducing the matrix pair (A,B) to an upper-bidiagonal/upper-triangular
form (see Algorithm 1 ) or reducing the matrix pair (A,B) to an upper-triangular/lower-
bidiagonal (see Algorithm 2 ).

Algorithm 2 upper triangular/lower-Bidiagonal reduction

Input: A ∈ Rm×p, B ∈ Rn×p and (p ≤ min(m,n))
Output : upper triangular/lower-bidiagonal matrix pair reduction.
Initialization : A(0) = A and B(0) = B;
For k = 1 : p

(1) If k < p

Set ub = B(k−1)(k, :); and compute the Householder matrix H
(k)
b

correspond of ub
A(k) = H

(k)
b A(k−1); B(k) = H

(k)
b B(k−1); V (k) = H

(k)
b V (k−1);

EndIf
(2) Construct the upper triangularity of A

Set ua = A(k−1)(:, k); and compute the Householder matrix H
(k)
a

correspond of ua
A(k) = A(k−1)H

(k)
a ;

Construct the lower bidiagonalization of B
(3) If k < m

Set ub = B(k−1)(k, :) and compute the Householder matrix H
(k)
b

correspond of ub
B(k) = B(k−1)H

(k)
b ; Q(k) = Q(k−1)H

(k)
b ;

EndIf
EndFor

Let us now present the algorithm to compute the GSVD of (A,B). In the following
we give an (m, p) matrix A and a (n, p) matrix B (here n, m ≥ p) and we compute
orthogonal matrices P, Q, V and upper triangular matrix R of suitable sizes such that
A = (PT ΣAV )R and B = (QT ΣBV )R, where ΣA and ΣB are diagonal with positive
diagonal entries. We first begin by computing the QR factorization of the augmented

matrix

(
A
B

)
;

(
A
B

)
=

(
Q1

Q2

)
R. Where, Q1 ∈ Rm×p, Q2 ∈ Rn×p are such

that QT
1Q1 + QT

2Q2 = Ip and R ∈ Rp×p is upper triangular. We set A(0) = Q1 and

B(0) = Q2. Now, A(0) and B(0) are such that A(0)TA(0) +B(0)TB(0) = Ip. We use Al-

gorithm 2 to reduce the matrix pair (A(0), B(0)) to upper triangular/lower-bidiagonal
form. In the second step, we generate a sequence of orthogonally equivalent matrices
pairs (A(0), B(0)) ← (A(1), B(1)), (A(2), B(2)), ... that converge to diagonal equiv-
alent matrix pair (A∞, B∞). To take advantage of the triangular/lower-bidiagonal
structure of the matrix pair (A(0), B(0)), only Givens rotations are used. The upper
triangular/lower-bidiagonal structure is preserved at each step k. The above method
is summarized in the following algorithm:
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Algorithm 3 Generalized SVD QR-Francis like Algorithm

Input : A ∈ Rm×p, B ∈ Rn×p ( n, m ≥ p)
Output : Orthogonal matrices P, Q, , V and upper triangular matrix R of suitable sizes
such that A = (PT ΣAV )R and B = (QT ΣBV )R where ΣA and ΣB are diagonal.
1. Initialization : k = 0; P = In; Q = Im and V = Ip;

2. Compute the QR factorisation of the matrix

(
A
B

)
=

(
Q1

Q2

)
R.

3. Set A(0) = Q1 and B(0) = Q2.
4. Reduce A(0) to an lower bi-diagonal matrix and B(0) to an upper triangular one using
Algorithm 2.
5. Reduce iteratively A(0) and B(0) to diagonal matrices A(∞). and B(∞)

For k = 1, 2, ... until convergence
(a) If n > p

For i = 1 : p
• Compute Vi+1,i the Givens rotations that annihilate component A(k−1)(i+1, i);

A(k−1) ← Vi+1,iA
(k−1);

End
Else

For j = 1 : p− 1
• Compute Vj+1,j the Givens rotations that annihilate component A(k−1)(j+1, j);

A(k−1) ← Vj+1,jA
(k−1);

End
End

(c) Update, A(k−1) ←− A(k−1)T and B(k−1) ←− B(k−1)T .
(d) For i = 1 : p− 1

• Compute Vi,i+1 the Givens rotations that annihilate component A(k−1)(i, i+1);

A(k−1) ← Vi,i+1A
(k−1); B(k−1) ← Vi,i+1B

(k−1);
End

(e) If m > p
For j = 1 : p
• Compute Uj,j+1 the Givens rotations that annihilate component B(k−1)(j, j+1);

B(k−1) ← B(k−1)Uj,j+1;
End

Else
For i = 1 : p− 1
• Compute Ui,i+1 the Givens rotations that annihilate component B(k)(i, i+1);

B(k−1) ← B(k−1)Ui,i+1;
End

EndIf
(f) Update, A(k) ←− A(k−1)T and B(k) ←− B(k−1)T .

EndFor
6. Return ΣA = A(∞) and ΣB = B(∞).

3. Golub-Kahan for GSVD

We describe a generalization of Golub-Kahan bi-diagonalization for computing the
generalized singular values of two matrices A and B. The approach consists in two
steps: first, reducing matrices A and B to an upper triangular and upper bi-diagonal
form, respectively, and thereafter, applying Givens rotations from both right and left
sides to iteratively obtain the diagonal matrices A(∞) and B(∞). At each step k,
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the upper bidiagonal form of B(k−1) is transformed to lower bidiagonal form. The
triangularity of A(k−1) is destroyed. We restore the upper bidiagonal form of B(k−1)

and the triangularity of A(k−1), and we repeat the process until convergence.

The above method is summarized in the following algorithm:

Algorithm 4 GK-GSVD

Input: A ∈ Rm×p, B ∈ Rn×p ( n, m ≥ p)
Output : Orthogonal matrices P, Q, , V and upper triangular matrix R of suitable sizes
such that A = (PΣAV

T )R and B = (QΣBV
T )R where ΣA and ΣB are diagonal.

1. Initialization : k := 0;

2. Compute the QR factorisation of the matrix

(
A
B

)
=

(
Q1

Q2

)
R.

3. Set A(0) = Q1 and B(0) = Q2.
4. Reduce A(0) to upper bidiagonal matrices and B(0) to upper triangular one using
Algorithm 1.
5. For k = 1, 2, ... until convergence
(a) transforming B(k−1) to lower bi-diagonal matrix. A(k−1) became tri-diagonal ;

For i = 1 : p− 1

• Compute V
(k−1)
i,i+1 the Givens rotations that annihilate component B(k−1)(i, i+ 1);

B(k−1) ← B(k−1)V
(k−1)
i,i+1 ; A(k−1) ← A(k−1)V

(k−1)
i,i+1 ; V (k−1) ← V (k−1)V

(k−1)
i,i+1

EndFor
(b) Restore A(k−1) and B(k−1) to upper bi-diagonal form

For j = 1 : p− 1

• Compute V
(k−1)
i+1,j the Givens rotations that annihilate component A(k−1)(j, j + 1);

A(k−1) ← P
(k−1)
j,j+1 A; P (k−1) ← P

(k−1)
j,j+1 P (k−1);

• Compute G
(k−1)
j+1,j the Givens rotations that annihilate component B(k−1)(j, j + 1);

B(k−1) ← G
(k−1)
j+1,jB

(k−1); Q(k−1) ← Q
(k−1)
j,j+1Q

(k−1);
EndFor

Update A(k) ← A(k−1), B(k) ← B(k−1)

6. Return ΣA = A(∞) and ΣB = B(∞).

4. Iterative subspace method for computing generalized singular values

Our main goal in this section is to give an iterative algorithm that computes the
s largest generalized singular values and the left and right corresponding generalized
singular vectors using an iterative subspace iteration. The approach is based on
the technique of the power method. We compute the following incomplete GSVD
decompositions: AZ = UΣA and BZ = WΣB where ΣA and ΣB are (s, s) diagonal
matrices, P, Q, and V orthogonal matrices and Z = R−1V T . The triangular matrix

R is obtained from the QR factorization

(
A
B

)
=

(
Q1

Q2

)
R. The advantage of

this approach is that we use only s vectors. This method can be used to solve the
generalized eigenvalue problem of the following form

ATA− λBTB = 0.

From a block-vector X(0) ∈ Rp×s, we construct the block-orthonormal vector se-
quences U (k) ∈ Rm×s, V (k) ∈ Rn×s and Z(k) ∈ Rs×p that converges respectively to
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the s associated first left-A and left-B generalized singular vectors, and the right gen-
eralized singular vectors. The algorithm below presents pseudocode for the method.

Algorithm 5 BGP-GSVD

Input: A ∈ Rm×p, B ∈ Rn×p

Output : Orthogonal matrices U, W, V and upper triangular matrix R of suitable sizes
such that AZ = UΣA and BZ = WΣB where ΣA and ΣB are diagonal and Z = R−1V .
1. Initialization : k := 0; and V (0) ∈ Rp×s

2. Compute the QR factorization of the matrix

(
A
B

)
=

(
Q1

Q2

)
R;

3. Set A(0) = Q1 and B(0) = Q2 ;
4. For k = 1, 2, ... until convergence

(a) AV (k−1) = QS ( QR factorization), set U (k) = Q(:, 1 : s);

(b) ATU (k) = Y Σ
(k)
A (QR factorization), set Y ← Y (:, 1 : s);

(c) Y TBT = TP (RQ factorization), P ← PT ;W (k) = P (m− s + 1 : m, :);

(d) PBT = Σ
(k)
B H (RQ factorization),

(e) V (k) = H(:, p− s + 1 : p);

5. Return U = U (∞), W = W (∞), ΣA = Σ
(∞)
A , ΣB = Σ

(∞)
B and Z = R−1V (∞).

We set diag(ΣA) = [σ1, σ2, ..., σs]
T and diag(ΣB) = [σ′1, σ

′
2, ..., σ

′
s]

T . The s largest

generalized singular values of matrix AB+ are
σi
σ′i

, i = 1, ..., s.

4.1. Convergence. We begin by theQR factorization of matrix

(
A
B

)
=

(
Q1

Q2

)
R0

and we set A = Q1 and B = Q2. Now ATA + BTB = I. Let q be an integer such
that r = qs where r = min(rank(A), rank(B)), for simplicity we give the proof when
and rank(A) ≥ rank(B)) suppose that σ1 ≥ . . . ≥ σs > σs+1 ≥ . . . ≥ σqs> 0 and 0 <

σ′1 ≤ . . . ≤ σ′s < σ
′
s+1 ≤ . . . ≤ σ′qs are the generalized singular values of the matrix

pair (A,B). We set

ΣA =


ΣA,1

ΣA,2

. . .

ΣA,q

 and ΣB =


ΣB,1

ΣB,2

. . .

ΣB,q


where ΣA,i and ΣB,i are the diagonal matrices with nonzero, monotonically decreas-
ing, creasing diagonal σ(i−1)s+1 ≥ σ(i−1)s+2 ≥ . . . ≥ σis > 0 and 0 < σ′(i−1)s+1 ≤
σ′(i−1)s+2 ≤ . . . ≤ σ′is respectively. We can write A, B, B+ and (BT )+ as

A =

q∑
i=1

UiΣA,iV
T
i ;B =

q∑
i=1

WiΣB,iV
T
i ,

B+ =

q∑
i=1

ViΣ
+
B,iW

T
i and (BT )+ =

q∑
i=1

WiΣ
+
B,iV

T
i

where Ui, Wi and Vi are the orthogonal matrices whose columns are respectively the

corresponding left and right singular vectors. Let V (0) ∈ Rm×s, V (0) =

q∑
i=1

ViXi +
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V (0)∗, where span
(
V (0)∗) ⊆ span {vr+1, vr+2, · · · , vm} = ker {A}. We have

W (0) = AV (0) = U1ΣA,1X1 +

q∑
i=2

UiΣA,iXi.

Suppose that the component X1 = Is, then

AV (0) = U (1)R1 (QR factorization) = U1ΣA,1 +

q∑
i=2

UiΣA,iXi

UT
1 U

(1)R1 = ΣA,1 that prove R1 is non singular and then

U (1) = U1ΣA,1R
−1
1 +

q∑
i=2

UiΣA,iXiR
−1
1

and

ATU (1) = S(1)R2(QR factorization) = V1Σ2
A,1R

−1
1 +

q∑
i=2

ViΣ
2
A,iXiR

−1
1

V T
1 S

(1)R2 = Σ2
A,1R

−1
1 , R2 is non singular

S(1) = V1Σ2
A,1R

−1
1 R−12 +

q∑
i=2

ViΣ
2
A,iXiR

−1
1 R−12

then,

(BT )+S(1) = W (1)R3(QR factorization)

= W1Σ2
A,1Σ−1B,1R

−1
1 R−12 +

q∑
i=2

WiΣ
2
A,iΣ

−1
B,iXiR

−1
3

WT
1 W

(1)R3 = Σ2
A,1Σ−1B,iR

−1
1 R−12 , R3 is non singular

W (1) = W1Σ2
A,1Σ−1B,1R

−1
1 R−12 R−13 +

q∑
i=2

WiΣ
2
A,iΣ

−1
B,iXiR

−1
1 R−12 R−13 .

We have,

B+W (1) = V (1)R4(QR factorization)

= V1Σ2
A,1Σ−2B,1R

−1
1 R−12 R−13 +

q∑
i=2

WiΣ
2
A,iΣ

−2
B,iXiR

−1
3

V T
1 V

(1)R4 = Σ2
A,1Σ−2B,1R

−1
1 R−13 R−12 , R4 is non singular

V (1) = V1Σ2
A,1Σ−2B,1R

−1
1 R−12 R−13 R−14 +

q∑
i=2

ViΣ
2
A,iΣ

−2
B,iXiR

−1
1 R−12 R−13 R−14

and so on, if we note Nt = R−11 R−12 · · ·R
−1
t , at step k we have

AV (k−1) = U (k)R2k−1(QR factorization)

= U1Σ2k−1
A,1 Σ−2k+2

B,1 N2(k−1) +

q∑
i=2

UiΣ
2k−1
A,i Σ−2k+2

B,i XiN2(k−1)
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U (k) = U1Σ2k−1
A,1 Σ−2k+2

B,1 N2k−1 +

q∑
i=2

UiΣ
2k−1
A,i Σ−2k+2

B,i XiN2k−1

and

ATU (k) = S(k)R2k(QR factorization)

= V1Σ2k
A,1Σ−2k+2

B,1 N2k−1 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k+2
B,i XiN2k−1

V T
1 S

(k)R2k = Σ2k
A,1Σ−2k+2

B,1 N2k−1, R2k is non singular

S(k) = V1Σ2k
A,1Σ−2k+2

B,1 N2k +

q∑
i=2

ViΣ
2k
A,iΣ

−2k+2
B,i XiN2k

then,

(BT )+S(k) = W (k)R2k+1(QR factorization)

= W1Σ2k
A,1Σ−2k+1

B,1 N2k +

q∑
i=2

WiΣ
2
A,iΣ

−2k+1
B,i XiN2k

WT
1 W

(k)R2k+1 = Σ2k
A,1Σ−2k+1

B,1 N2k, is non singular

W (k) = W1Σ2k
A,1Σ−2k+1

B,1 N2k+1 +

q∑
i=2

WiΣ
2k
A,iΣ

−2k+1
B,i XiN2k+1

We have,

(B)+W (k) = V (k)R2k+2(QR factorization)

= V1Σ2k
A,1Σ−2kB,1 N2k+1 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k
B,i XiN2k+1

V T
1 V

(k)R2k+2 = Σ2k
A,1Σ−2kB,1 N2k+1, is non singular

V (k) = V1Σ2k
A,1Σ−2kB,1 N2k+2 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k
B,i XiN2k+2

U (k), V (k) and W (k) are orthogonal matrices, then

Is =
(
U (k)

)T
U (k) = NT

2k−1Σ−4k+4
B,1 Σ4k−2

A,1 N2k−1 +

q∑
i=2

NT
2k−1X

T
i Σ−4k+4

B,i Σ4k−2
A,i XiN2k−1

Is =
(
W (k)

)T
W (k) = NT

2k+1Σ−4k+2
B,1 Σ4k

A,1N2k+1 +

q∑
i=2

NT
2k+1X

T
i Σ−4k+2

B,i Σ4k
A,iXiN2k+1

and

Is =
(
V (k)

)T
V (k) = NT

2k+2Σ−4kB,1 Σ4k
A,1N2k+2 +

q∑
i=2

NT
2k+2X

T
i Σ−4kB,i Σ4k

A,iXiN2k+2

by left and right-factoring, we obtain
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Is = NT
2k−1Σ−2k+2

B,1 Σ2k−1
A,1 (Is+

+

q∑
i=2

Σ2k−2
B,1 Σ−2k+1

A,1 XT
i Σ−4k+4

B,i Σ4k−2
A,i XiΣ

2k−2
B,1 Σ−2k+1

A,1

)
Σ2k−1

A,1 Σ−2k+2
B,1 N2k−1

Is = NT
2k+1Σ−2k+1

B,1 Σ2k
A,1 (Is+

+

q∑
i=2

Σ2k+1
B,1 Σ−2kA,1 X

T
i Σ−4k+2

B,i Σ4k
A,iXiΣ

2k−1
B,1 Σ−2kA,1

)
Σ2k−1

A,1 Σ−2k+1
B,1 N2k+1

Is = NT
2k+2Σ−2kB,1 Σ2k

A,1

(
Is +

q∑
i=2

Σ2k
B,1Σ−2kA,1 X

T
i Σ−4kB,i Σ4k

A,iXiΣ
2k
B,1Σ−2kA,1

)
Σ2k

A,1Σ−2kB,1 N2k+2

Since ‖ΣA,1‖ = σ1,
∥∥∥Σ−1A,1

∥∥∥ =
1

σs
,
∥∥∥Σ−1B,1

∥∥∥ =
1

σ′(i−1)s+1

and ‖ΣA,i‖ = σ(i−1)s+1,

‖ΣB,i‖ = σ′is then,∥∥∥Σ−pA,1Σp
B,1X

T
i Σ2p

A,iΣ
−2p
B,1XiΣ

p
B,1Σ−pA,1

∥∥∥ ≤ ‖ΣA,i‖2p
∥∥∥Σ−1A,1

∥∥∥2p ‖ΣB,i‖2p
∥∥∥Σ−1B,1

∥∥∥2p ‖Xi‖2

≤
(
σ(i−1)s+1

σs

)2p
(

σ′s
σ′(i−1)s+1

)2p

‖Xi‖2 −→
p→+∞

0

Thus

lim
p→∞

(
NT

p Σ−pB,1Σp
A,1

)(
Σp

A,1Σ−pB,1Np

)
= lim

p→∞

(
Σp

A,1Σ−pB,1Np

)T (
Σp

A,1Σ−pB,1Np

)
= Is.

Moreover, the matrix Σp
A,1Σ−pB,1Np is triangular with positive diagonal entries, then

lim
p→∞

Σp
A,1Σ−pB,1Np = lim

p→∞
N−1p Σp

B,1Σ−pA,1 = Is. Otherwise

ATU (k)
(
N−12k−1Σ2k−2

B,1 Σ−2k+1
A,1

)
Σ−1A,1

= V1 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k+2
B,i XiN

−1
2k−1N2k−1Σ2k−2

B,1 Σ−2kA,1 −→
k→+∞

V1

and

AV (k)
(
N−12k+2Σ2k

B,1Σ
−(2k+1)
A,1

)
= U1 +

q∑
i=2

UiΣ
2k+1
A,i Σ−2kB,i XiN2k−1N

−1
2k+1Σ2k

B,1Σ
(−2k−1)
A,1 −→

k→+∞
U1

(BT )+S(k)
(
N−12k Σ2k−1

B,1 Σ
−(2k)
A,1

)
= W1 +

q∑
i=2

WiΣ
2k
A,iΣ

−2k+1
B,i XiN

−1
2k )

(
N−12k Σ2k−1

B,1 Σ−2kA,1

)
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(BT )+S(k)R−12k+1R2k+1

(
N−12k Σ2k−1

B,1 Σ
−(2k)
A,1

)
= W1 +

q∑
i=2

WiΣ
2k
A,iΣ

−2k+1
B,i XiN

−1
2k )

(
N−12k Σ2k−1

B,1 Σ−2kA,1

)
(BT )+S(k)R−12k+1

(
N−12k+1Σ2k−1

B,1 Σ
−(2k)
A,1

)
= W1 +

q∑
i=2

WiΣ
2k
A,iΣ

−2k+1
B,i XiN

−1
2k )

(
N−12k Σ2k−1

B,1 Σ−2kA,1

)
−→

p→+∞
W1

And we have,

R2k+1

(
N−12k Σ2k−1

B,1 Σ
−(2k)
A,1

)
= R2k+1

(
N−12k Σ2k

B,1Σ
−(2k)
A,1

)
Σ−1B,1−→Σ−1B,1

(B)+W (k)
(
N−12k+1Σ2k

B,1Σ−2kA,1

)
= V1 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k
B,i XiN2k+1N

−1
2k+1Σ2k

B,1Σ−2kA,1

(B)+W (k)R−12k+2

(
N−12k+2Σ2k

B,1Σ−2kA,1

)
= V1 +

q∑
i=2

ViΣ
2k
A,iΣ

−2k
B,i XiN2k+1N

−1
2k+1Σ2k

B,1Σ−2kA,1

−→
k→+∞

V1

and (
N−12k+2Σ2k

B,1Σ−2kA,1

)
= R2k+2N

−1
2k+2Σ2k−1

B,1 Σ−2kA,1 Σ−1B,1−→Σ−1B,1

That implies that lim
k→+∞

ATU (k) = V1ΣA,1, lim
k→+∞

AV (k) = U1ΣA,1, lim
k→+∞

(BT )+S(k)

= W1Σ−1B,1 and lim
k→+∞

(B)+W (k) = V1Σ−1B,1

5. Numerical examples

In this section we compared the numerical results obtained by Algorithm 3, Algo-
rithm 4 and Algorithm 5 with gsvd Matlab function in terms of the relative error.
All of the reported numerical experiments were performed on Matlab version R2016a.
A ∈ Rm×p and B ∈ Rn×p are rectangular matrices defined as A = UΣAZ

−1 and
B = WΣBZ

−1, where Uand W are random orthogonal matrices, Z non singular and
r = rank(B). We give below relative errors occurred when computing the generalized
eigenvalues of the pair (ATA,BTB). We compare the numerical results obtained for
different sizes. For the first test we take m = 1500, n = 500 and r = p = 100, the
figure 1 gives the corresponding relative errors of eigenvalues of the pair (ATA,BTB)
computed by Algorithm 3 and the one computed by gsvd Matlab function. For the
second test we take m = 1000, n = 100 , p = 50 and r = 10, we plot the relative
errors of eigenvalues of the pair (ATA,BTB) computed by Algorithm 4 and the one
computed by gsvd Matlab function in the figure 2 . Finally we take m = 1000,
n = 800 , p = 80, r = q = 6 and we plot the relative errors of eigenvalues of the
pair (ATA,BTB) computed by Algorithm 5 and the one computed by gsvd Matlab
function in the figure 3.
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Figure 1. Relative error of gsvd matlab function and Algorithm 3.

Figure 2. Relative error of gsvd matlab function and Algorithm 4.

6. Conclusion

We have presented a generalization of the subspace iteration method (BPG-GSVD)
to compute the s-largest in magnitude generalized eigenvalues of the matrix pencil
ATA−λBTB. Two others generalization are presented, the first one is a generalization
of the well-known Francis-QR method and the second one is a generalization of the
Golub-Kahan method to compute the GSVD decomposition.
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