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Mathematical analysis of a modified Weikert system for image
enhancement
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Abstract. This paper tackles the problem of proving global existence for an abstract non-
linear Reaction-Diffusion system inspired by the famous Weickert model [16]. We show the

existence of a global weak solution to a truncated version of the proposed system using a fixed

point approach. Then, we establish some crucial estimates under Quasi-positivity and a Tri-
angular Structure condition on the nonlinearities [3]. On passage to the limit, we recover the

original system and prove the existence for only integrable nonlinearities and initial conditions.
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1. Introduction

Nonlinear anisotropic diffusion is a powerful image processing technique allowing an
efficient noise removal without degrading the quality of sharp features. A substantial
amount of literature tackles specific problems relevant to anisotropic diffusion and ap-
plications to image processing. Numerous papers propose different filters and models
and investigate their specific features while describing interesting novel applications
[9, 10, 11, 2]. Systems of Partial differential equations (PDEs) are very popular in
image processing and have been extensively studied in the literature [3, 6, 5, 7]. They
have proven to be fundamental tools for image diffusion and restoration such as The
Perona-Malik equation [1], which is one of the first attempts to derive a model that
incorporates local information from an image within a PDE framework. Other works
followed [12, 13, 9] to enforce the role of these class of models. It is usually difficult to
find the mathematical foundation to prove the existence of solution to general models
in image processing. Researcher cater their proofs to a specific feature or model.

The goal of the present paper is to lay the mathematical foundation to prove
the existence of solution to a class of reaction diffusion systems based on the famous
Weickert model for image restoration and enhancement using techniques established in
[3, 4] while keeping a certain degree of abstraction. To this end, we propose an abstract
system coupling Weickert’s structure tensor [16] for image restoration and nonlinear
sources for image enhancement that in theory would improve the identification of
features such as corners or to measure the local coherence of structures. We would
like to remain as general as possible in this exposition so we leave the application of
this system for a future work where a comparison of different specific nonlinearties
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will be considered. Our considered model is the following coupled reaction diffusion
system : 

∂tu− div (D (Jρ (∇uσ))∇u) = f(t, x, u, v) in QT ,

∂tv − dv∆v = g(t, x, u, v) in QT ,

∂νv = 0, 〈D (Jρ (∇uσ))∇u, ν〉 = 0 on ΣT ,

u(0, ·) = u0(·), v(0, ·) = v0(·) in Ω,

(1)

which is based on Weickert’s notion of the structure tensor D (Jρ (∇uσ)) [16]. The
domain Ω is smooth and bounded in Rn and T ∈ (0,∞[, QT =]0, T [×Ω and ΣT =
]0, T [×∂Ω where ∂Ω denotes the boundary of Ω. ν is the outward normal to the
domain and ∂ν is the normal derivative. Let σ > 0, ∇uσ represents the standard
regularization through convolution of ∇u by the Gaussian function.

The nonlinear functions f, g : QT ×R2 → R are measurable and f(t, x, .), g(t, x, .) :
R2 → R are continuous. Moreover the source terms satisfy the quasi-positivity prop-
erty

f(t, x, 0, s) ≥ 0 ∀s ≥ 0 and g(t, x, r, 0) ≥ 0 ∀r ≥ 0, (2)

and a triangular structure

(f + g)(t, x, r, s) ≤ L1(r + s+ 1) and g(t, x, r, s) ≤ L2(r + s+ 1), (3)

where L1 and L2 are positive constant. Furthermore,

sup
|r|+|s|≤R

(|f(t, x, r, s)|+ |g(t, x, r, s)|) ∈ L1 (QT ) , (4)

for R > 0. The challenge here is to prove the existence of the solution for positive
integrable initial conditions u0, v0 while taking into consideration the structure tensor
which is defined by

Jρ (∇uσ) = Gρ ∗
(
∇uσ.∇uTσ

)
.

The tensor D is taken so that the following conditions are met:

(C1) Smoothness: D ∈ C∞
(
R2×2;R2×2

)
.

(C2) Symmetry: d12(J) = d21(J) for all symmetric matrices J ∈ R2×2.
(C3) Uniform positive definiteness: For all w ∈ L∞

(
Ω,R2

)
with |w(x)| ≤ K on Ω,

there exists a positive lower bound ν(K) for the eigenvalues of D (Jρ(w)).

Before diving into further analysis, let us first clearly enunciate the definition of a
weak solution to the reaction diffusion system:

Definition 1.1. We call (u, v) a weak solution of the system (1) if
• u, v ∈ L1(0, T ;W 1,1(Ω)) ∩ C([0, T ];L1(Ω)), u(0, ·) = u0 and v(0, ·) = v0

• ∀φ, ψ ∈ C1(QT ) such that φ(·, T ) = 0 and ψ(·, T ) = 0 we have∫
QT

−u ∂tφ+ 〈D (Jρ (∇uσ))∇u,∇φ〉 =

∫
QT

f(t, x, u, v)φ+

∫
Ω

u0 φ(·, 0)∫
QT

−v ∂tψ + dv∇v∇ψ =

∫
QT

g(t, x, u, v)ψ +

∫
Ω

v0 ψ(·, 0), (5)

where f(t, x, u, v), g(t, x, u, v) ∈ L1(QT ).
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2. Existence result for a truncated non-linearity

First, we truncate f and g using the truncation function Ψn ∈ C∞c (R), such that
0 ≤ Ψn ≤ 1 and

Ψn(r) =

{
1 if |r| ≤ n,
0 if |r| ≥ n+ 1.

(6)

Then, we formulate the approximate problem as follows:
∂tun − div (D (Jρ (∇unσ ))∇un) = fn(t, x, un, vn) in QT ,

∂tvn − dv ∆vn = gn(t, x, un, vn) in QT ,

u(0, ·) = u0,n(·), v(0, ·) = v0,n(·) in Ω,

(7)

where fn(t, x, un, vn) = Ψn(|un|+ |vn|) f(t, x, un, vn) and gn(t, x, un, vn) = Ψn(|un|+
|vn|) g(t, x, un, vn). We also note that the un,0 and vn,0 are sufficiently regular se-
quences approximating the initial conditions such that un,0,vn,0 are positive, square
integrable and converge to u0,v0 in L1(Ω).

Theorem 2.1. Under the previously stated assumptions, there exists a weak solution
(u, v) to the considered system (7).
Moreover there exists C(n, ρ, σ, T, ||u0,n||L2(Ω), ||v0,n||L2(Ω)) such that

||(u, v)||L∞(0,T ;L2(Ω))2 + ||(u, v)||L2(0,T ;H1(Ω))2 ≤ C. (8)

Furthermore, un(t, x) ≥ 0 and vn(t, x) ≥ 0 a.e. in QT .

We will show the existence of a weak solution by the classical Schauder fixed point
theorem. The following sketch of the proof assumes that un and vn are positive which
directly comes from the quasi-positivity of the source terms see [2].

Proof. Let n be fixed and w = (w1, w2) ∈ L∞(0, T ;L2(Ω))2 bounded ‖w‖ ≤ K. In
this paragraph, we denote (u, v) the solution of the linear problem:
∀φ, ψ ∈ C1(QT ) such that φ(·, T ) = 0 and ψ(·, T ) = 0, we have∫

QT

−u ∂tφ+ 〈D (Jρ (∇w1σ ))∇u,∇φ〉 =

∫
QT

fn(t, x, w1, w2)φ+

∫
Ω

u0,n φ(·, 0)∫
QT

−v ∂tψ + dv∇v∇ψ =

∫
QT

gn(t, x, w1, w2)ψ +

∫
Ω

v0,n ψ(·, 0). (9)

Thanks to the conditions (2-4) on D (Jρ(·)) the structure tensor is bounded and
satisfies

µ(K) |∇u|2 ≤ 〈D (Jρ (∇w1σ ))∇u,∇u〉 .
This implies that the differential operators in (9) are continuous and coercive. The
standard parabolic theory of PDEs insures that the problem has a unique weak solu-
tion. Therefore we can define the application

F : W (0, T )→W (0, T )

w 7→ (u, v)

where

W(0, T ) = {u, v ∈L2(0, T ;H1) ∩ L∞(0, T ;L2) /

∂tu, ∂tv ∈ L2(0, T ; (H1)′), |w|L∞(0,T ;L2) ≤ K}. (10)
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Now we extract some suitable estimates to construct the functional setting where
Schauder fixed point theory is applicable. The following result holds for 0 ≤ t ≤ T

1

2

∫
Ω

u2(t) +

∫
QT

〈D (Jρ (∇w1σ ))∇u,∇u〉 =
1

2

∫
Ω

u0,n
2 +

∫
QT

u fn(t, x, w1, w2)

1

2

∫
Ω

v2(t) + dv

∫
QT

|∇v|2 =
1

2

∫
Ω

v0,n
2 +

∫
QT

v gn(t, x, w1, w2) .

(11)

Consequently, ∫
Ω

u2(t) ≤Mf +

∫
QT

u2 +

∫
Ω

u0,n
2∫

Ω

v2(t) ≤Mg +

∫
QT

v2 +

∫
Ω

v0,n
2 . (12)

Using Gronwall’s inequality we obtain∫
QT

u2 ≤ (exp(T )− 1)

(
Mf +

∫
Ω

u0,n
2

)
∫
QT

v2 ≤ (exp(T )− 1)

(
Mg +

∫
Ω

v0,n
2

)
. (13)

Substituting the expression above in (12), we obtain the desired result,

sup
0≤t≤T

∫
Ω

u2(t) ≤Mf + (exp(T )− 1)

(
Mf +

∫
Ω

u0,n
2

)
+

∫
Ω

u0,n
2 := Cu

sup
0≤t≤T

∫
Ω

v2(t) ≤Mg + (exp(T )− 1)

(
Mg +

∫
Ω

v0,n
2

)
+

∫
Ω

v0,n
2 := Cv . (14)

Therefore by setting C1 = max(Cu, Cv) we get

||(u, v)||L∞(0,T ;L2)2 ≤ C1. (15)

The last inequalities ensure that the norm ||(u, v)| |L∞(0,T ;L2) is bounded indepen-
dently of w. Using the estimation (12) and (4) we deduce∫

QT

u2 + |∇u|2 ≤
Mf +

∫
QT

u2 +
∫

Ω
u0,n

2

min( 1
2 , µ(C1))

≤ C ′u∫
QT

v2 + |∇v|2 ≤
Mg +

∫
QT

v2 +
∫

Ω
v0,n

2

min( 1
2 , dv)

≤ C ′v . (16)

Setting C2 = max(C ′u, C
′
v), we conclude that

||(u, v)||L2(0,T ;(H1)′)2 ≤ C2. (17)

Next we estimate the ∂tu and ∂tv in L2(0, T ; (H1)′). We know that

∂tu = div (D (Jρ (∇w1σ ))∇u) + fn(t, x, w1, w2)

∂tv = dv ∆v + gn(t, x, w1, w2). (18)

It follows that

||∂tu||L2(0,T ;(H1)′) ≤ C ||∇u||L2(QT ) +Mf T

||∂tv||L2(0,T ;(H1)′) ≤ dv||∇v||L2(QT ) +Mg T . (19)
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Thereafter

||∂tu||L2(0,T ;(H1)′) ≤ C C1 +Mf T

||∂tv||L2(0,T ;(H1)′) ≤ dvC1 +Mg T . (20)

Eventually,

||(∂tu, ∂tv)||L2(0,T ;(H1)′)2 ≤ max(C C1 +Mf T, dv C1 +Mg T ) := C3. (21)

Now we are in position to apply Schauder fixed point in the functional space:

W0(0, T ) = {u, v ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) / ||(u, v)||L∞(0,T ;L2 ≤ C1

||(u, v)||L2(0,T ;H1(Ω))2 ≤ C2 ||(∂tu, ∂tv)||L2(0,T ;H1(Ω)′)2 ≤ C3

u(·, 0) = u0,n v(·, 0) = v0,n}. (22)

We can easily verify that W0(0, T ) is a nonempty closed convex in W(0, T ). In order
to use Schauder’s theorem we will show that the application

F : w ∈ W0(0, T )→ F (w) = (u, v) ∈ W0(0, T )

is weakly continuous.
Let us consider a sequence wk ∈ W0(0, T ) such that wk converges weakly in

W0(0, T ) toward w, and let F (wk) = (uk, vk). Thus,

∂tuk = div
(
D
(
Jρ
(
∇w1kσ

))
∇uk

)
+ fn(t, x, w1k , w2k)

∂tvk = dv ∆vk + gn(t, x, w1k , w2k). (23)

Based on the previous estimations, (uk, vk) is bounded in
(
L2(0, T ;H1(Ω))

)2
and

(∂tuk, ∂tvk) is bounded in
(
L2(0, T ; (H1(Ω))′)

)2
then by Aubin-Simon compactness

[8] (uk, vk) is relatively compact on
(
L2(QT )

)2
; which means we can extract a sub-

sequence denoted wk = (uk, vk) such that
• uk ⇀ u in L2(0, T ;H1(Ω)),
• vk ⇀ v in L2(0, T ;H1(Ω)),
• f(t, x, wk) −→ f(t, x, w) in L2(QT ),
• g(t, x, wk) −→ g(t, x, w) in L2(QT ),
• uk −→ u in L2(0, T ;L2(Ω)) and a.e in QT ,
• vk −→ v in L2(0, T ;L2(Ω)) and a.e in QT ,
• ∇uk ⇀ ∇u in L2(0, T ;L2(Ω)),
• ∇vk ⇀ ∇v in L2(0, T ;L2(Ω)),
• wk −→ w in L2(0, T ;H) and a.e in QT ,
• Jρ

(
∇w1kσ

)
→ Jρ (∇w1σ) in L2(QT ),

• ∂tuk ⇀ ∂tu in L2(0, T ;H1(Ω)′),
• ∂tvk ⇀ ∂tv in L2(0, T ;H1(Ω)′).

Using these convergence, we can pass to the limit in (23) and show that the limit u
and v are solutions of the following problem (18). We conclude that F (w) = (u, v)
therefore F is weakly continuous which proves the desired results. �

3. Existence result for integrable nonlinearities

In this section, we focus on proving the existence of solution to the original problem
(1). To achieve our goal we will need the following properties of the approximate
problem (7).
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Lemma 3.1. [15] Let (un, vn) be the solution of the approximate problem (7). Then,
(1) There exists a constant M depending only on

∫
Ω
u0,
∫

Ω
v0, L1, T and |Ω| such that∫

QT

(un + vn) ≤M ∀t ∈ [0, T ] (24)

(2) There exists C2 > 0 such that∫
QT

|fn|+ |gn| ≤ C2 (25)

Proof. (1) The triangular structure of problem (1) implies that

(un + vn)t − div (D (Jρ (∇unσ))∇un)− dv ∆vn ≤ L1(un + vn + 1), (26)

integrating over Qt, 0 < t ≤ T leads to∫
Ω

(un + vn)(t) ≤
∫

Ω

(u0 + v0) + L1

∫
Qt

(un + vn + 1), (27)

using a standard Gronwall argument we get∫
QT

(un + vn)(t) ≤
[∫

Ω

(u0 + v0) + L1|QT |
]

exp (L1 T ) , (28)

and therefore the desired result is proven.
(2) For vn solution of

∂tvn − dv ∆vn = gn ≤ L2(1 + un + vn), (29)

we can write

∂tvn − d∆vn + L2(1 + un + vn)− gn = L2(1 + un + vn), (30)

which implies∫
QT

∂tvn +

∫
QT

(L2(1 + un + vn)− gn) ≤
∫
QT

L2(1 + un + vn), (31)

then∫
Ω

vn(T )−
∫

Ω

vn(0) +

∫
QT

(L2(1 + un + vn)− gn) ≤
∫
QT

L2(1 + un + vn), (32)

we know that
∫
QT

L2(1 + un + vn) is bounded, which follows that

‖ L2(1 + un + vn)− gn ‖L1(QT )≤ C, (33)

therefore

‖ gn ‖L1(QT )≤ Cg. (34)

Since L1(1 + un + vn)− fn − gn ≥ 0, we obtain the same for fn + gn, hence

‖ fn ‖L1(QT )≤ Cf . (35)

�

Now we deduce the following compactness result.

Theorem 3.2. The sequence (un, vn) given by the solution of the approximate prob-
lem (7) is relatively compact in L1(QT ).
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Proof. We will employ a duality argument in order to prove that the sequence un is
bounded in L1

(
0, T ;W 1,1(Ω)

)
and ∂tun is bounded in L1

(
0, T ; (W 1,1(Ω))′ + L1(Ω)

)
.

Let h ∈ C∞0 (QT ) and φ ∈ L2(0, T ;W 1,2
0 (Ω))∩W 2,1(QT ) a solution of the dual problem:

−∂tφ− div (D (Jρ (∇unσ))∇φ) = div(h)

φ(T ) = 0. (36)

It is well known according to [14] that for all s̄, q̄ > 1 satisfying 2
s̄ + N

q̄ < 1:

||φ||L∞(QT ) ≤ C||h||Ls̄(0,T ;Lq̄(Ω)). (37)

C is independent of n since the term D (Jρ (∇unσ)) is uniformly bounded in L∞

(thanks to the convolution with Gσ). The previous estimate implies that

|
∫
QT

un div(h)| ≤ C(||u0,n||L1(Ω), ||fn||L1(Ω)) ||φ||L∞(QT )

≤ C(||u0,n||L1(Ω), ||fn||L1(Ω)) ||h||Ls̄(0,T ;Lq̄(Ω)),

and by integration by parts and the definition of the dual norm we get :

||∇un||Ls(0,T ;Lq(Ω)) ≤ C(||u0,n||L1(Ω), ||fn||L1(Ω)), (38)

such that 2
s + N

q > N + 1.

Since ||u0,n||L1(Ω) ≤ M0 and fn is uniformly bounded in L1(QT ) from lemma 3.1,

we finally reach the conclusion that un is bounded in L1
(
0, T ;W 1,1(Ω)

)
:

||un||L1(0,T ;W 1,1(Ω)) ≤ C(M0, C2). (39)

It is also clear that D (Jρ (∇unσ))∇un is bounded in L1(QT ) coupled with the fact
that D (Jρ (∇unσ)) is uniformly bounded in L∞(QT ) leads to the estimate:

||∂tun||L1(0,T ;(W 1,1(Ω))′+L1(Ω)) ≤ C.

We deduce the desired result from Aubin-Simon compactness theorem which con-
cludes the proof. �

Using the compactness result in Theorem (3.2) and the well known compactness
of the standard heat equation operator, we can extract a sub-sequence also denoted
(un, vn) such that
• un ⇀ u in L1(0, T ;W 1,1(Ω)),
• vn ⇀ v in L1(0, T ;W 1,1(Ω)),
• f(t, x, un, vn) −→ f(t, x, u, v) a.e. in QT ,
• g(t, x, un, vn) −→ g(t, x, u, v) a.e. in QT ,
• un −→ u in L1(QT ) and a.e in QT ,
• vn −→ v in L1(QT ) and a.e in QT ,
• ∇un ⇀ ∇u in L1(0, T ;L1(Ω)),
• ∇vn ⇀ ∇v in L1(0, T ;L1(Ω)),
• D(Jρ (∇u1nσ))∇un → D(Jρ (∇u1σ))∇u in L1(QT ),
• ∂tun ⇀ ∂tu in L1(0, T ;W 1,1(Ω)′),
• ∂tvn ⇀ ∂tv in L2(0, T ;W 1,1(Ω)′).

The above convergence are enough to pass to the limit in the left hand side of the
equation (7). The problem lies in the right hand side. For this almost everywhere
convergence is not sufficient. We actually need to prove that fn(t, x, un, vn) converges
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strongly toward f(t, x, u, v) in L1(QT ) and this convergence is given by the following
Lemma as established in [15].

Lemma 3.3. Let xn be a sequence in L1(QT ) . Then the following statements are
equivalent:
(1) xn is equi-integrable in L1(QT )
(2) There exists J : (0,∞) −→ (0,∞) such that J (0+) = 0 and

(a) J is convex, J ′ is concave, J ′ ≥ 0

(b) limr→+∞
J(r)

r
= +∞

(c) supn
∫
QT

J (|xn|) <∞

We choose a convex function as in Lemma (3.3) such that

sup
n

∫
QT

J (L1(1 + un + vn)) <∞, sup
n

∫
QT

J (L1(1 + u0,n + v0,n)) <∞, (40)

and we set

j(r) =

∫ r

0

min
(
J ′(s), (J∗)

−1
(s)
)
ds,

where J∗ is the conjugate of J , which satisfies:

∀r ≥ 0, j(r) ≤ J(r), J∗ (j′(r)) ≤ r.
Let Rn = L1(1 + un + vn)− fn − gn ≥ 0 and Sn = L2(un + vn + 1)− gn ≥ 0.
We have

∂t(un + vn)−Bn +Rn + Sn = L1(un + vn + 1) + L2(un + vn + 1), (41)

where Bn = d∆vn + div(D((Jρ(∇(un)σ))∇un).
Let Mn = un + vn multiplying (41) to j′(Mn) and integrating over QT , we obtain∫

Ω

j(Mn) +

∫
QT

j′(Mn) (Rn + Sn) =

∫
Ω

j(M0,n) +

∫
QT

j′(Mn)Bn+∫
QT

j′(Mn) ((L1 + L2)(Mn + 1)) , (42)

using the Fenchel inequality j′(r) · s ≤ J(s) + J∗(j′(r)) ≤ J(s) + r and the properties
(40), we can prove that∫

QT

j′(Mn) ((L1 + L2)(Mn + 1)) ≤
∫
QT

J((L1 + L2)(Mn + 1)) +Mn ≤ C∫
Ω

j(M0,n) ≤
∫
QT

J(M0,n) ≤ C,

also from (39) we can deduce that∫
QT

j′(Mn)Bn ≤ C.

This enables us to obtain the∫
QT

j′(Mn) (Rn + Sn) ≤ C. (43)

Theorem 3.4. The sequences fn and gn are equi-integrable in L1(QT ).
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Proof. We know that fn, gn converge almost everywhere toward f, g. We will show
that fn and gn are equi-integrable in L1(QT ). The proof will be given for fn, however
the same result holds for gn. For this, we let ε > 0 and prove that there exists δ > 0
such that |E| < δ implies that

∫
E
fn < ε. We have,∫

E

|fn| =
∫
E∩[Mn≤k]

|fn|+
∫
E∩[Mn>k]

|fn|

≤ 1

j′(k)

∫
E

j′(Mn)|fn|+ |E| sup
|un|+|vn|≤k

|fn(t, x, un, vn)|.

Since equation (43) insures that
∫
E
j′(Mn)|fn| is bounded. We can choose δ small

enough and a larger k such that
∫
E
|fn| ≤ ε. The same thing holds for gn as well. �
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