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Numerical resolution of Richards equation by the RBF-MQ
method
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Abstract. In this paper, the flow equation in unsaturated porous media is numerically inte-

grated using the RBF-MQ method which is a meshless method. The conservative form which is
a pressure-content method was considered. The Richards equation being strongly non-linear,

we used Newton-Raphson’s iterative method for linearisation. A implicit Euler scheme was

used for temporal discretization. Comparison with exacts solution and experimental cases
existing in the literature have shown the effectiveness of the approach.
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1. Introduction

The water flow problem in unsaturated porous media has long been of great interest
to the scientific community and remains a hot topic especially for the community of
hydrogeologists ([2],[4],[3],[6]). This problem is often associated with the problem
of polluant transport as well as the problem of evaluating the water balance of the
soil. The equation governing the flow of water in an unsaturated porous medium was
defined by Richards in 1931 [2]. It is the result of the combination of the Darcy’s law
[1] and the conservation equation of the mass. The Richard’s equation exist mainly
in three forms: the pressure head h formulation, the formulation in moisture content
θ and the mixed formulation pressure-content θ − h.

Few analytical solutions of Richard’s equation exist. This is related on the one hand
to the fact that each analytic solution is specific to an given initial condition and on
the other hand to the mathematical complexity of the Richard’s equation itself. On
the other hand, numerically, several solutions have been proposed by several authors
and following various methods: the finite difference method ([3],[8]), the finite volume
method ([7], [34]), the finite element method, the mixed finite element method ([9],
[10]) and the discontinuous finite element [6]. Theses methods are based on the
mesh of the domain in which the problem must be discretized. The mesh must obey
certain rules. For example, the elements should not be overwritten to prevent the
associated Jacobian from degenerating. This makes their implementation difficult
and expensive ins some cases. To overcome these shortcomings, meshless methods
have been developed since the 1970s. The idea is to reconstruct a function defined
on a continuous space from the set of discrete values taken by this function on a not
connected point cloud of the physical domain.
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Radial basis function (RBF) methods are meshless methods that are widely used
today in engineering and the approximation of partial differential equations (PDEs)
approximation. Kansas ([16],[15]) was among the first to successfully use it to solve
parabolic, elliptic and hyperbolic PDEs. Since then, several authors have used them
to solve PDEs ([27],[28],[29]).

Stevens and Power [26] used a implicit RNF method to solve the pressure h for-
mulation of Richards equation. More recently, F. Motaman and al. [23] used the
RBF-DQ method to solve the moisture content θ formulation. These two formula-
tions have limits. Indeed the resolution of the pressure formulation, in many cases
leads to a significant error on the mass balance. The resolution of the formulation
in water content, involves problems of discontinuity. In addition this latter form is
only restricted to unsaturated media [3]. On the other hand, the numerical solutions,
obtained with the mixed formulation are more precise. Moreover, it can be adapted
to the saturation case ([3], [24], [25]).

In this work, we present the numerical resolution by the RBF-MQ method of the
mixed formulation of Richards equation. The solutions obtained were compared with
analytical solutions and experimental solutions.

The remaining work will be as follows: The second part is devoted to the pre-
sentation of the RBF-MQ method. The third part is devoted to solving the mixed
formulation of the Richards equation by the RBF-MQ method. In a fourth part, we
present the results obtained and finally we will make a conclusion which constitutes
the fifth part of our work.

2. The RBF methods

The basic radial functions (RBF) appeared in the early 1970s in the approxima-
tion of scattered and multivariate data and interpolations of functions [12]. For the
mathematical community, it is in 1982 that RBFs were introduced for the first time
thanks to the works of Franke [14]. The use of RBFs in the resolution of PDEs began
in 1990 with the works of Kansa ([16], [15]).

Since these works, several techniques of approximation of the PDEs based on
the RBFs have been developed by researchers and more particularly during the last
decade.

2.1. Definition. Let Φ be a function defined from Rd to R, and let cj , j = 1, 2, . . . , N
be a set of point in Rd. Φ is said to be a radial basis function if Φ is symmetric with
respect to cj , j = 1, 2, . . . , N , for the Euclidean norm, i.e.

∀(x, y) ∈ Rd × Rd, ‖x− cj‖ = ‖y − cj‖ ⇒ Φ(x) = Φ(y).

The table 1 gives some examples of very common infinite derivable RBF functions.
RBF Multiquadratique (MQ) was first used by Hardy [17] in 1971 who implemented
the first RBF scheme in dimension 2 to approach geographic areas and the Thin-Plat
Spline (TPS) some time after in 1977 by Duchon [18].

In this work, we opt for the spatial numerical approximation of functions, the
RBF-MQ. This function provide spectral approximation [19] and can be performed
easily.
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The multiquadratic of Hardy (MQ) φ(r, c) =
√
r2 + c2

The inverse multiquadratic (IMQ) φ(r, c) = 1/
√
r2 + c2

The inverse quadratic (IQ) φ(r, c) = 1/(r2 + c2)

The gaussian splines φ(r, c) = e−(r2/c2)

The thin plate splines (TPS) φ(r) = r2 ln r

Table 1. Example of infinitely differentiable RBFs

2.2. Principle. We consider a real valued function u(x), x ∈ Rd where d is the space
dimension. The RBF collocation method consists of approximating u with a function
û of the form

û(x) =

N∑
j=1

λjφ(‖x− xj‖ , c), x ∈ Rd (1)

where the points xj , j = 1, . . . ,M are the centers of the RBF approximation, φ is a
basic radial function and c the precision parameter. Expansion coefficients λj , j =
1, . . . ,M are determined by setting:

M∑
j=1

λjφ(‖xi − xj‖ , c) = u(xi), i = 1, . . . ,M.

Which is expressed in the following matrix form:

Aλ = U (2)

where

λ = (λ1, λ2, . . . , λM )>, U = (u(x1), u(x2), . . . , u(xM ))>

and

A =



φ(‖x1 − x1‖ , c) φ(‖x1 − x2‖ , c) . . . . . . φ(‖x1 − xM‖ , c)
φ(‖x2 − x1‖ , c) φ(‖x2 − x2‖ , c) . . . . . . φ(‖x2 − xM‖ , c)

...
...

. . .
...

...
...

. . .
...

φ(‖xM − x1‖ , c) φ(‖xM − x2‖ , c) . . . . . . φ(‖xM − xM‖ , c)


In [19], it is shown that if the RBF φ is the multiquadratic, then the interpolation

matrix A is always nonsingular. Thus we have the expression of λ as following

λ = A−1U. (3)

The k order derivative of û at the center xi is:

∂kû(xi)

∂xk
=

M∑
j=1

λj
∂k

∂xk
φ(‖xi − xj‖ , c), i = 1, 2, . . . ,M. (4)

In matrix form , the derivative (4) is written as :

U (k) = A(k)λ (5)

with

U (k) =

(
∂kû(x1)

∂xk
,
∂kû(x2)

∂xk
, . . . ,

∂kû(xM )

∂xk

)
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and

A(k) =



∂k

∂xk φ(‖x1 − x1‖ , c) ∂k

∂xk φ(‖x1 − x2‖ , c) . . . . . . ∂k

∂xk φ(‖x1 − xM‖ , c)
∂k

∂xk φ(‖x2 − x1‖ , c) ∂k

∂xk φ(‖x2 − x2‖ , c) . . . . . . ∂k

∂xk φ(‖x2 − xM‖ , c)
...

...
. . .

...
...

...
. . .

...
∂k

∂xk φ(‖xM − x1‖ , c) ∂k

∂xk φ(‖xM − x2‖ , c) . . . . . . ∂k

∂xk φ(‖xM − xM‖ , c)

 (6)

If we replace λ by its expression in the equation (5), we get:

U (k) = D(k)U (7)

where
D(k) = A(k)A−1. (8)

3. Resolution of the Richards equation in space dimension 1 by the RBF-
MQ method

In this section, we present the numerical resolution of the mixed form of the
Richards equation using Hardy’s multi-quadratic basic radial function (RBF-MQ) for
spatial discretization. The implicit Euler method was used for temporal discretiza-
tion. Since the Richards equation is nonlinear, Newton’s iterative method is used to
solve the nonlinearity problem.

3.1. Problem to solve. Let Ω = [a, b],⊂ R be a spatial domain of study. Ω rep-
resents a column of water infiltration. ∂Ω = {a, b} is the edge of Ω and ∂ΩD, ∂ΩN
are the subsets of ∂Ω where Dirichlet and Neumann type boundary conditions are
respectively applied. [0, T ] is the time interval for observing water flow..
The mixed form of Richards equation is given by:

∂θ(h)

∂t
+

∂

∂z
q(h) = f in Ω× [0, T ] (9)

q(h) = −K(h)
∂h

∂z
−K(h) in Ω× [0, T ] (10)

h = hinit in Ω (11)

h = gD on ∂ΩD × [0, T ] (12)

q(h) = gN on ∂ΩN × [0, T ] (13)

h[L] is the unknown function and represent the pressure head. θ is the moisture
content. K(h) is the unsaturated hydraulic conductivity q(h) is the flow velocity, gD
and gN are respectively imposed pressure and flow on the boundaries ∂ΩD and ∂ΩN .
hinit is the initial pressure head. f is a source function.

3.2. Space approximation of the Richards equation by the RBF-MQ method.
Let {zi}16i6M a set of points of Ω considered as centers. At each center zi the ap-

proximation value ĥ of the pressure head h by the RBF-MQ method is written as
following:

ĥ(zi, t) =

M∑
j=1

λj(t)φ(‖zi − zj‖ , c), t ∈]0, T ] (14)



NUMERICAL RESOLUTION OF RICHARDS EQUATION BY THE RBF-MQ METHOD 113

where φ is the Multiquadratic function given in the table 1.
As in the expression (2), the expression (14) can be rewritten in matrix form

h = A λ(t), t ∈]0, T ] (15)

where h = (h(z1, t), h(z2, t), . . . , h(zM , t))
> and λ(t) = (λ1(t), λ2(t), . . . , λM (t))>.

To obtain the first order derivative h(1) of h, we use the formula (7) in which the
value of k is taken equal to one.

h(1) = D(1)h, (16)

It is also possible to directly approximate the flow velocity q(h) by RBF as follow-
ing:

q ◦ ĥ(zi, t) =

M∑
j=1

γj(t)φ(‖zi − zj‖ , c), t ∈]0, T ], zi, i = 1, 2, . . . ,M

Where γj(t), j = 1, 2, . . . ,M the expansion coefficients of q(h).
This gives the matrix form

q(h) = A Γ(t), t ∈]0, T ] (17)

where Γ(t) = (γ1(t), γ2(t), . . . , γM (t))>.
The derivative of q(h, t) is also obtained by using the formula (7) in which the value
of k taken to be equal to one:

q(1)(h) = D(1)q(h). (18)

Now we will focus on the expression of q(h) in the equation (10).

Based on the approximation ĥ of h in the formula (14), we have the approximation
of q(h) at any center zi, i = 1, 2, . . . ,M as following:

q ◦ ĥ(zi, t) = −K ◦ ĥ(zi, t)
∂ĥ(zi, t)

∂z
−K ◦ ĥ(zi, t), t ∈]0, T ].

This can be rewritten in the matrix form

q(h, t) = −KD(h, t)D(1)h(t)−K(h, t), t ∈]0, T ] (19)

where

K(h) = (K ◦ h1,K ◦ h2, , . . . ,K ◦ hM , )
>

et

KD(h) =


K ◦ h1

K ◦ h2 0

0
. . .

K ◦ hM


with hi = h(zi, t), i = 1, . . . ,M, t ∈]0, T ] the ith value of the vector h (15).

Now that we have obtained the matrix expression of the approximation of the
flow velocity q(h) we replace it in the expression (18) to get the approximate matrix
expression of the variation ∂

∂z q(h) in space.

q(1)(h) = −D(1)KD(h)D(1)h−D(1)K(h) (20)

Let Θ(h) = (θ◦h1, θ◦h2, , . . . , θ◦hM )> and f = (f(z1, t), f(z2, t), . . . , f(zM , t) be
the values respectively of the moisture content θ(h) and the source function f at the
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centers zi, i = 1, 2, . . . ,M . The numerical resolution of Richards’ equation (9)-(13)
can then resume to the resolution of the following problem in time:

dΘ(h)

dt
= F(h), t ∈]0, T ] (21)

h(0) = h0 (22)

with
F(h) = q(1)(h) + f (23)

and
h0 = (hinit(z1), hinit(z2), . . . , hinit(zM ))>.

3.3. Time discretization. In this section, we want to approximate the problem in
time (21)-(23). To do this we will use the implicit Euler method.

Let tn = nδt, n = 0, 1, . . . , N a discretization of the time interval [0, T ], δt =
T/(N − 1) the time-step size and Θn, Fn the approximations of Θ(hn, tn) and
F(hn, tn) with hn = h(tn), n = 0, 1, . . . , N .

The approximation of the equation (21) by a implicit Euler scheme gives

Θn+1 −Θn

δt
= Fn+1, n = 0, 1, . . . , N − 1. (24)

The terms Θn+1 and Fn+1 cause equation (24) to be highly nonlinear. To overcome
this nonlinearity problem, it will be necessary to use a linearization process. In our
case we will use the Newton’s iterative method.

3.4. Linearization. Let’s denote Θn+1,m+1,Kn+1,m+1
D and Kn+1,m+1 the approx-

imated values Θ(hn+1,m+1),KD(hn+1,m+1) and K(hn+1,m+1) in which hn+1,m+1 is
the searched value of hn+1 in the stage m + 1 of Newton’s iterative process. Let’s
also denote hn+1,m the value of hn+1 at the previous stage m,

F(hn+1,m,hn+1,m+1) = −D(1)Kn+1,m
D D(1)hn+1,m+1 −D(1)Kn+1,m + fn+1 (25)

and

R(hn+1,m,hn+1,m+1) =
Θn+1,m+1 −Θn

δt
−F(hn+1,m,hn+1,m+1) (26)

If we use a one-order Taylor’s series development of Θn+1,m+1, we obtain the following
approximation

Θn+1,m+1 ' Θn+1,m +
dΘn+1,m

dh
δhn+1 (27)

where
δhn+1 = hn+1,m+1 − hn+1,m (28)

C(h) = dθ
dh is the specific water capacity. Therefore, if we denote Cn+1,m the value of

C in the approximated vector hn+1,m then the approximation (27) can be rewritten
as following:

Θn+1,m+1 ' Θn+1,m + Cn+1,mδhn+1 (29)

We then replace Θn+1,m+1 in equation (27) by its expression given by (29) and there-
fore we obtain the new expression of R(hn+1,m,hn+1,m+1) as following:

R(hn+1,m,hn+1,m+1) =
1

δt
Cn+1,mδhn+1 +

Θn+1,m −Θn

δt
−F(hn+1,m,hn+1,m+1)

(30)
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The resolution of nonlinear problem (24) with the Newton’s iterative method consists
in solving at each time-step n+ 1 and at each stage m+ 1, the equation

J δh = −R(hn+1,m,hn+1,m) (31)

where J is Jacobian matrix of R in hn+1,m expressed as

J =
dR
dh

(hn+1,m,hn+1,m) =
1

δt
Cn+1,m −D(1)KD(hn+1,m)D(1) (32)

until ‖δhn+1‖ is below a certain tolerance tol or that m exceeds a maximum value
maxiter.

Algorithm 1 describes how the Richards equation is solved at each time-step n+ 1
by Newton’s iterative method.

Algorithm 1 Newton’s iterative method to compute hn+1, the value of
h at the next time step n+ 1.

Require: hn,maxiter, tol
hn+1,0 = hn

while m 6 maxiter and
∥∥δhn+1

∥∥ > tol do

Solve the system (31) to obtain δhn+1

hn+1,m+1 = hn+1,m + δhn+1

m = m+ 1
end while
hn+1 = hn+1,m+1

Ensure: hn+1

4. Numerical results

This section is to illustrate some numerical results of the Richards equation that
we obtained using the numerical RBF-MQ method described in the previous sec-
tion. These results are based on tests already performed by some authors such as
Haverkamp, Polman, Van-Genushten Vogel and al. and can be found in
([4],[31],[30],[3],[7], [34])). The first test case concerns numerical results with analyt-
ical solutions. This will aim to show the numerical convergence of our method. The
other following test cases show the conformity of the results we have obtained with
those existing in the literature.

4.1. Tests with analytical solutions. Here we resume tests with analytical solu-
tions that were performed by Sochala [30], to verify the numerical convergence of the
RBF-MQ scheme that we developed for solving the Richards equation.

4.1.1. Unsaturated test case. We consider an unsaturated medium represented by a
domain Ω = [0.20] and a simulation time interval [0, 100]. The analytical solution of
this test is given by:

h(z, t) = 20.4 tanh(0.5(z + t/12− 15))− 41.5 (33)

The hydrodynamic properties of soil θ(h) and K(h) are given by:

θ(h) =
θs − θr

1 + |α̃h|β
+ θr ; K(h) =

Ks

1 + |Ãh|γ
(34)
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where
θs = 0.287, α̃ = 0.0271 cm−1, Ks = 9.44 · 10−3 cm · s−1, γ = 4.74,
θr = 0.075, β = 3.96, Ã = 0.0524 cm−1

and Dirichlet conditions are applied on the boundaries.
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Figure 1. Unsaturated test case: On the left, the curve of pressure
head h with respect to depth z and on the right the curve of the mois-
ture content θ with respect to depth z. The number of discretization
point in time is Nt = 200 and Nz = 150 in space. The shape param-
eter value is c = 0.95. The dashed line represent the approximate
solution and those in continuous lines represent the exact solution.

The figure (2-1) shows that the relative error of the approximation of the pressure
head h by the RBF-MQ method in space and Implicit Euler in time decreases as the
time-step size becomes smaller. Similarly the figure (2-2) shows that approximation
error decrease when the number of spatial discretization points are increased and is
order 10−3. When the number of time discretization is reduced to a certain level, the
approximation of h become less accurate and the error become close to the order 10−2.
Figure(2-3) shows which values of the shape parameter c provide better accuracy. For
small values of Nz, larger values of c are required to obtain good accuracy while for
large Nz accuracy is already good for values of c in the neighbourhood 0.2 and more.

4.1.2. Variably saturated test case. The medium is assumed to be variably saturated
on the same domain and during the same simulation period as in the previous test.
The hydrodynamic properties of soil are the same as in previous test. Dirichlet bound-
ary conditions are also applied to the edges of the domain and the analytical solution
is given by:

h(z, t) = 20.4 tanh(0.5(z + t/12− 15)) + t/4− 41.5. (35)

It should be noted that in this test and in the previous test, the simulations were made
with the source terms f in (9) necessary that the analytical solution h in (33) and
(35) solve the problem (9). The calculation of f can be done simply with a computer
program. In our case we used the software SageMaths.
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Figure 2. Curves of errors in the unsaturated test case: Representa-
tive curves of `2 relative norm errors of the approximation of h, with
respect to the number of temporal discretization points Nt in figure
(2-1), with respect to the number of discretization points in space Nz
in figure (2-2) and with respect to the values of shape parameter c
taken in the interval ]0, 1[ with Nt = 200 in figure (2-3).

Figures (4) have almost the same characteristics as (2), except that to obtain a
better accuracy, the number of points in space and in times must be relatively higher
in the variably saturated case than in the saturated case.

4.2. Haverkamp test case. This test was performed by Haverkamp [4] and then
performed in two space dimension by several authors including Celia and Bouloutas
[3], Manzini and Ferraris [7] and Sochala [30]. This is a water flow in a vertical soil
column of 40 cm deep. An initial condition h(z, 0) = −61.5 cm is applied to this
column. Constant hydraulic pressure are applied at the column top (h(40 cm, t) =
−20.7 cm) and below (h(0, t) = −61.5 cm). The height of the column is positively
oriented upwards. The hydrodynamic parameters are given by (34).

4.3. Polmann test case. This test was also considered by Celia and Bouloutas
[3], Manzini and Ferraris [7] then Pierre Sochala [6]. The soil column is 10 m deep.
Initially a pressure of 10 m is imposed on the whole length of the column, including
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Figure 3. Variably saturated test case: On the left, the curve of
pressure head h with respect to depth z and on the right the curve
of the moisture content θ with respect to depth z. The number of
discretization point in time is Nt = 200 and Nz = 150 in space.
The shape parameter value is c = 0.95. The dashed line represent
the approximate solution and those in continuous lines represent the
exact solution.

Unsaturated case Variably saturated case

c = 0.95 Nt Nz relative error relative error

50 10 6.06 · 10−2 −
70 8.75 · 10−3 6.96 · 10−3

150 8.84 · 10−3 6.98 · 10−3

250 − −

100 10 6.17 · 10−2 −
70 4.42 · 10−3 3.60 · 10−3

150 4.49 · 10−3 3.60 · 10−3

250 − −

400 10 6.26 · 10−3 −
70 1.11 · 10−3 1.86 · 10−3

150 1.13 · 10−3 1.82 · 10−3

250 − −

Table 2. The relative error of the approximate hydraulic pressure
head h for unsaturated case test and variably saturated case test:
shape parameter c = 0.95.

the bottom while at the top, the imposed pressure is −75 cm. Which is equivalent to
an overpressure of 9.25 m.

The hydrodynamic properties of the soil are obtained from the following relations
of Van Genuchten:

θ(h) =
θs − θr

(1 + (ε|h|)n)m
+ θr ; K(h) = Ks

(1− (ε|h|)n−1(1 + (ε|h|)n)−m)2

(1 + (ε|h|)n)
m
2

(36)



NUMERICAL RESOLUTION OF RICHARDS EQUATION BY THE RBF-MQ METHOD 119

0 50 100 150 200
10

-3

10
-2

10
-1

Nz=50

Nz=100

Nz=240

0 20 40 60 80 100 120 140 160
10

-3

10
-2

10
-1

Nt=80

Nt=170

Nt=300

0 0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

Nz=60

Nz=140

Nz=200

Figure 4. Curves of errors in the variably saturated test case: Rep-
resentative curves of `2 relative norm errors of the approximation of
h, with respect to the number of temporal discretization points Nt
in figure (4-1), with respect to the number of discretization points
in space Nz in figure (4-2) and with respect to the values of shape
parameter c taken in the interval ]0, 1[ with Nt = 200 in figure (4-3).

with θs = 0.368, ε = 0.0335 cm−1, n = 2,
θr = 0.102, Ks = 9.22 · 10−3 cm · s−1, m = 0.5.

The numerical results found in ([3],[30]) show parasitic oscillations because of the
stiffness of the infiltration front. The use of a flux limiter by Sochala ([30]) allowed
to reduce its oscillations without being able to eliminate them completely.

As can be seen, the RBF-MQ method in space and the Euler method implicit in
time made it possible to suppress the parasitic oscillations caused by the stiffness of
the infiltration font.

4.4. Vogel, Van-Genuchten and Cislerova cases test. These are three tests
from articles by Vogel, Van Genuchten and Cilerova [31]. The hydrodynamic proper-
ties of the soil are given by modified Van Genuchten relations [32] in which a parameter
hs is considered here as the minimum capillary height. The tests are done on a ver-
tical column height 1 m: Ω = [0, 100]. For these tests, the simulation times T are
respectively 1 day, a half-day and 2 days and the initial condition imposed for each
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Unsaturated case Variably saturated case

c = 0.5 Nt Nz relative error relative error

50 10 7.94 · 10−2 −
70 8.56 · 10−3 7.29 · 10−3

250 8.86 · 10−3 7.00 · 10−3

300 8.87 · 10−3 7.00 · 10−3

200 10 8.16 · 10−2 −
70 2.27 · 10−3 2.79 · 10−3

150 2.25 · 10−3 1.83 · 10−3

250 2.27 · 10−3 1.83 · 10−3

400 10 8.21 · 10−3 −
70 1.44 · 10−3 2.28 · 10−3

250 1.14 · 10−3 9.22 · 10−4

300 1.14 · 10−3 9.22 · 10−4

Table 3. The relative error of the approximate hydraulic pressure
head h for unsaturated case test and variably saturated case test:
shape parameter c = 0.5.
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Figure 5. Haverkamp test case: Representative curves of the pres-
sure head h on the left and those of the volumic water content θ(h)
on the right. Nt = 200, Nz = 140, c = 0.9.

of these tests is:
h0 = −10m− z in Ω

θ(h) = θ̃(θs − θr) + θr ; K(h) = Ksθ̃
1
2

(1− (1− (θ̃/β)1/m)m)2

(1− (1− (1/β)1/m)m)2
(37)

with

θ̃ =


β

(1 + (ε|h|)n)m
, if h < −hs

1 , otherwise.
β = (1 + (εhs)

n)m

θs = 0.38, ε = 0.008 cm−1, n = 1.09,
θr = 0.068, Ks = 5.55 · 10−5 cm · s−1, m = 0.0826.

The boundary conditions are respectively:
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Figure 6. Polmann test case (P. Sochala [30]).
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Figure 7. Polmann test Case: Representative curves of the pressure
head h on the left and those of the volumic water content θ(h) on
the right. Nt = 200, Nz = 150, c = 0.95.

CL1: hD = 0 on 0× [0, T ], qN = 0 on 100× [0, T ]

CL2: qN = 0 on 0× [0, T ], hD = 0 on 100× [0, T ]
CL3: qN = 0 on 0× [0, T ], qN = 0 on 100× [0, T ]

5. Conclusion

In this work, we have solved the mixed formulation of the Richards equation that
models the flows in unsaturated porous media in dimension 1, using the RBF-MQ
method. This is a method without mesh and relatively easier to program than mesh
methods especially if the domain is complex. An implicit Euler scheme was used
for temporal discretization. After comparing our case-by-case approach with exact
solutions in unsaturated medium and in a variably saturated medium, we tested it on
existing experimental examples in the literature: the Polmann test, the Haverkamp
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Figure 8. Test case 1: Simulation time T = 1 day, with CL1
boundary conditions imposed on the edges. On the left, the curve of
the pressure head h for hs = 10−3cm and on the right for hs = 2cm.
Nt = 300, Nz = 150, c = 0.95.

0 20 40 60 80 100

-1200

-1000

-800

-600

-400

-200

0

0.5d 0.3d 0.1d

h
RBF-MQ

0 20 40 60 80 100

-1200

-1000

-800

-600

-400

-200

0

0.5d 0.4d 0.3d 0.2d 0.1d

h
RBF-MQ

Figure 9. Test case 2: Simulation time T = 1 day, with CL2
boundary conditions imposed on the edges. On the left, the curve of
the pressure head h for hs = 10−3cm and on the right for hs = 2cm.
Nt = 200, Nz = 170, c = 0.95.

test, the Vogel test , the Van-Genuchten test and the Cislerova test. For the Polmann
test, the numerical methods used in the literature caused oscillations of the infiltration
front. The method used in this work allowed correcting these oscillations. The other
tests are in accordance with the tests found in the literature. All these results obtained
prove the effectiveness of our approach.
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