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Abstract. Biological systems inspire many machine learning systems. Two of these systems

are genetic algorithms (GAs) and neural networks (NNs). A special type of NN is Extreme

Learning Machine (ELM). ELM is a single hidden layer feedforward NN, in which the training
step is done in just one step. Even if the hidden-output weights are analytically computed,

studies have shown that the ELM still maintains the universal approximation capability. In

the classical ELM the input-hidden weights are randomly generated. This paper deals with
the evolutionary training of an ELM, by using a GA routine to set the input weights. The new

hybrid has been applied on two real-world datasets concerning breast cancer detection. The

results obtained show that the new technique is competitive to other state-of-the-art methods.
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1. Introduction

Since 1975, when Holland presented in his book a formal framework of genetic pro-
cesses that can be used in different disciplines, there have been many efforts to combine
evolutionary computation and neural networks (NNs). Mathematically speaking, the
idea behind this merge is that we can use GAs to evolve NNs by setting up the weights,
since finding the weights in a NN represent an optimization problem. There are sev-
eral studies that have addressed this issue. For example, in [28] the authors trained
a multi-layered feedforward NN using mutation and crossover operators in order to
process passive sonar data from arrays of underwater acoustic receivers. The study,
[36], emphasized mutation and trained a NN using GAs to resolve classic problems
such as XOR, 424-encoder and the two-bit adder. In the case of binary classification
problems, Pendharkar et al. compared the GA/NN with the log maximum-likelihood
gradient ascent and the root-mean-square error [30]. For further references please see
also [31], [35] and [27].

Classical and novel NNs have been used in medical diagnosis for the last three
decades: in breast cancer detection and recurrence [4], [13], [5], [16], [25], cardiovascu-
lar diseases [29], colon cancer [32], Alzheimer’s disease [8], liver fibrosis stadialization
[14], [15], [3], [1], ovarian and lung cancer, [2], [6].
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Using medical imaging like magnetic resonance imaging, conventional imaging, and
positron emission tomography one establishes breast cancer diagnosis. An accuracy
that ranges between 80% and 90% has been reported in literature, [33], [12], [26]). NNs
have been massively employed in cancer detection: Multi-layer perceptrons (MLP),
radial-basis function (RBF), recurrent neural network, and support vector machine
have been considered to statistically evaluate their potential contribution to predict
recurrent events in breast cancer [23], [24]; a hybrid NN/ rough sets has been used in
[17]; evolutionary programming and NNs detected breast cancer using radiographic
features together with patient age, [11]. In [7] has been shown that NNs can predict
the recurrence probability of breast cancer and also to determine which patients have
good prognosis versus bad prognosis.

ELM represents a new NN algorithm that caused some discussions. Nevertheless,
variants of the original algorithm have been proposed in literature and used in numer-
ous medical applications, [37], [38], [34]. The paper is organized as follows: section
2 describes the design and implementation of the GA/ELM algorithm and section 3
presents the two databases on which the new hybrid has been applied on. In Section
4 we discuss the experimental results obtained and also the statistical comparison
analysis to other three NNs models (classical ELM, MLP and RBF). The conclusions
are presented in Section 5.

2. The GA/MLP model

2.1. ELM. Huang et al. introduced a new type of single hidden layer neural net-
work, the ELM, [20], [21], [22]. The weights between the input and hidden layer
are randomly initialized, whereas the weights between the hidden and output layer
are computed analytically using the Moore-Penrose generalized inverse. The classical
ELM algorithm is presented below:

ELM algorithm
Step 1: Randomly assign the input weights wi.
Step 2: Compute the hidden layer output matrix M.
Step 3: Compute the output weight vector h = M+o, where M is the hidden output
matrix computed at step 2, M+ is the Moore-Penrose generalized inverse of M, and
o is the output vector.

2.2. The GA model. GAs mimic the biological process of life, with all its stages
from reproduction till death. A GA consists of: populations of chromosome, selection
operator based on each chromosome’s fitness, crossover operator in order to produce
new offspring, and a mutation operator for the newly created offspring. In the initial
run of the GA, we create a large population of random chromosomes. The chromo-
some’s genes contain crucial information related to the potential candidates of the
maximization or minimization problem. At each iteration the whole population of
chromosomes is evaluated by a cost function in order to determine which are best
chromosomes that need to be kept. After this step the crossover operator is used
for mating of the chromosomes so that the population is replenished. Randomly the
offspring resulted from the mating are mutated in order to get the search out of the
local minima or maxima. The cost function evaluates again the new population, and
so on the process is repeated until a given convergence criterion is met. The GA
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algorithm can be summarized as it follows:

GA algorithm
Step 1. Encode the data in a vector form and set the crossover and mutation proba-
bilities.
Step 2. Chose the chromosome population.
Step 3. Compute the fitness function for each chromosome.
Step 4. Apply the selection, crossover and mutation operators.
Step 5. Replace the current population by the new one.
Step 6. Use the stopping criterion to stop the evolutionary process, [9], [18].

2.3. GA/ELM algorithm. In this subsection we shall present the GA/MLP hy-
brid model that we have designed and implemented for breast cancer detection. The
model has two decision classes: A and B, A being malignant tumor and B being a
benign tumor. Medical professionals made the initial classification. The new model
contains two components:
a) a GA model that computes the best initial weights for the ELM,
b) an ELM.

The ELM consist of a number n of input units (the predictive attributes in each
dataset), a hidden layer with 9 hidden units and an output layer with two units, one
for each decision class A and B. Taking into account that the model works only a
two-class decision problem we have transformed the corresponding class label yj using
the ”one− hot− encoding” rule for categorical data: y1
/ (0, 1) and y2 (1, 0). The output was computrd using the winner-takes-all rule,
which implies that the highest activation unit gives the class. The hyperbolic tan-
gent, f(u) = 1.7159 · tanh(2u/3), was chosen as non-linear activation function for
each hidden neuron, instead of the sigmoid function, due to the fact the hyperbolic
tangent’s output is not zero-centered. The weight vector is represented through a
chromosome that has a number of genes that equals the number of neurons from the
input layer multiplied by the number of neurons from the hidden layer. We chose
an initial random population of 100 weight vectors - chromosomes, each weight being
between -1 and 1. The cost function was computed as the classification accuracy ob-
tained after the run of the algorithm on the training dataset. High accuracy implies
high fitness. At each iteration we evaluate all the 100 existing chromosomes, and only
the best 40 of them are kept for reproduction and mutation. By using the crossover
operator we obtain 40 new offspring. As crossover operators we have used:
• Total (whole) arithmetic recombination operator (AX): two offspring are pro-

duced using the following formulas:

offspring1i = α · chromosome1i + (1− α) · chromosome2i
offspring2i = α · chromosome2i + (1− α) · chromosome1i

• Blend crossover (BLX − α): two offspring are (uniformly) randomly generated
from the interval [chromosomemin − I, chromosomemax + I], where:

chromosomemin = min{chromosome1i , chromosome2i },
chromosomemax = max{chromosome1i , chromosome2i },

Iα = chromosomemax − chromosomemin.
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• Wrights heuristic crossover (WHX): assuming that chromosome1i s fitness is bet-
ter than chromosome2i s fitness, two offspring are produced using the following
formula:
offspringki = u · (chromosome1i − chromosome2i ) + chromosome1i , where k = 1,
2.

• Linear BGA crossover (BGAX): assuming that chromosome1i s fitness is better
than chromosome2i s fitness, then two offspring are produced using the following
formula:

offspringki = chromosome1i ± ri · γ · Λ,

where all the chromosomes are generated between the interval
[ai, bi], γ =

∑no genes
k=0 αk · 2−k, and

Λ =
(chromosome2i−chromosome

1
i )

||chromosome2i−chromosome1i ||
• Uniform crossover (UX), working as follows. Two offsprings are created following

this scheme: the value of each gene in the offspring is determined by the random
choice of the values of this gene in the parents:

hki =

{
chromosome1i , u = 0
chromosome2i , u = 1

.

For further details regarding these crossover operators please see [19]. The mutation
probability was considered 0.3. Practically, for each chromosome’s gene we have
generated a random number between 0 and 1. If the number was smaller than the
mutation probability then the gene was mutated. The mutation process consists of
two steps: 1) generate a number between 0 and 1, if the number is smaller than 0.5
then we make a subtraction, otherwise we make an addition. Using the chromosome
error, which is problem dependent [5] we compute the new value of the gene. The
formula for the chromosome’s error is presented below:

chromosome error = (100−chromosome accuracy)
100

3. Materials. The data.

The GA/ELM algorithm has been applied on two publicly available breast cancer
datasets. In what follows we shall briefly present the data.
The Wisconsin Prognostic Breast Cancer -BC1 dataset contains of 683 cases with two
decision classes: benign 444 (65%) instances and malign 239 (35%) instances. The
database has nine ordinal (categorical) attributes (UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/)).
The Wisconsin Prognostic Breast Cancer -BC2, contains of 569 cases, with two decision
classes: benign 357 (62.74%) instances and malign 212 (37.25%) instances. The database
has thirty numerical attributes.

We have chosen these two datasets to see how the novel algorithm performs on different
types of data: categorical and numerical. Since both ELM and GA have a stochastic nature,
we used as testing method the 10-fold cross-validation. Thus, both the training and testing
accuracies have been computed 10 times, each time leaving out one of the sub-samples to be
used as the test samples for the cross-validation process. Both the new model as well as the
standard NN models have been run 100 times, and then averaged to give the 10-fold estimate
of the classification accuracy, since we need to be sure that the algorithm cross-validates well.
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Table 1. Comparison of classification performances depending on
crossover operator.

Crossover BC1 BC2

Average/SD training performance (%) AX 92.21 / 3.07 95.47 / 3.02

BLX 91.38 / 7.42 91/05 / 4.58

WHX 89.72 / 1.14 91.76 / 2.10

BGAX 79.48 / 2.18 90.77 / 1.01

UX 92.11 / 1.20 93.78 / 2.30

Average/SD testing performance (%) AX 91.63 / 3.13 92.92 / 3.49

BLX 91.18/ 7.91 92.92 / 3.49

WHX 87.66 / 4.17 91.16 / 3.74

BGAX 70.87 / 2.60 91.23 / 1.92

UX 90.09 / 2.53 82.80 / 2.66

Table 2. Confusion matrix BC1 database.

Predicted classes

Observed classes Malign (+) Benign (-)
Malign (+) 213 21

Benign (-) 35 414

Table 3. Confusion matrix BC2 database.

Predicted classes

Observed classes Malign (+) Benign (-)
Malign (+) 84 15

Benign (-) 84 273

4. Results

Considering the fact that we have used multiple crossover operators, the first natural step
was to compare the performances of the hybrid algorithm when using each type of operator.
Accordingly, we have run the model 106 times with each operator on each of the two datasets.
The results of this comparison in terms of mean and standard deviation (SD) averaged over
the 106 computer runs are presented in table 1. Due to the fact that we have a large number
of runs, we can assume that the distribution of data is nearly Gaussian.

From table 1 we can depict that:
• On BC1 dataset, the AX, BLX and UX operators have the same training performance

approximately 92%, while on the BC2 dataset, AX performs better.
• There is no significant difference between the training and testing performances, thus

we can draw the conclusion that the hybrid cross-validates well.
• The standard deviation values are small, thus the hybrid also has a balanced behavior.
After this brief statistical analysis we have chosen for this study the AX crossover operator.

Please keep in mind that the classification accuracy of the GA/ELM hybrid is in accordance
with classical medical imaging techniques. Using the AX crossover we have further deepened
the analysis and computed four important classification parameters: sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). The confusion matrices
results are displayed in Table 2 and 3.
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Table 4. Sensitivity/specificity and PPV/NPV parameters.

WPBC1 WPBC2

Sensitivity 85.89 70.11

Specificity 95.17 94.79

PPV 92.20 92.92

NPV 91.80 76.47

Table 5. Models classification performances (averaged over 106
computer runs).

Average testing performance (%)

Classifiers BC1 BC2

GA/ELM 91.63 92.92

MLP 95.52 81.39

RBF 89.36 87.42

ELM 90.21 91.80

The corresponding sensitivity/specificity, PPV and NPV, obtained in a complete cross-
validation cycle, are displayed in Table 4. Recall that the sensitivity measures the proportion
of true positives that are identified as such, whereas specificity measures the proportion of
false negatives that are identified as such. PPV is the proportion of cases with positive test
results that are labeled correctly, whereas NPV is the proportion of cases with negative test
results that labeled correctly.

We can see from table 4 that the sensitivity ranges from 70% to 85% and the specificity
form 94% to 95%, in contrast with the corresponding sensitivity. All the values are in
accordance with the medical imagining sensitivity and specificity reported in literature [12],
[10], [26].

We have continued our statistical analysis with the comparison of the model’s performance
to the performances of three classic NNs. The benchmarking rule was the same for all
the comparisons, 106 different computer runs in a complete cross-validation cycle for each
algorithm. The results are presented in table 5.

From the above table we can depict that:
• the novel model outperforms the other classifiers on the BC2 dataset, and on the BC1

dataset is surpassed only by the MLP,
• the GA/ELM has a better accuracy than the parent ELM,
• RBF performs the poorest on both datasets.
We have seen how the new model performs compared to other ML algorithms in terms

of accuracy (table 5). Next, we shall statistically assess the testing performances of the
four classifiers used for comparison. We have used the Shapiro-Wilk’s W test to verify the
normality of each data set. Unfortunately, the normality was not met for any data set (the W
statistics ranged form 0.56 to 0.94, having the corresponding p-level = 0.000). The Levene’s
test was used for testing the variances, and the results were once again unsatisfactory, the
F statistics value ranging form 287.40 to 301.56, having the corresponding p-level = 0.000.
Due to the results obtained after these two tests, we decided that we cannot perform the
t-test for independent variables, and applied the Mann-Whitney U test instead. Table 6
presents the results obtained by the Mann-Whitney U test:

As we can see in table 6, there are significant differences in means between all models,
which imply that each one of the algorithms has a unique way in handling the dataset. We
have also tested the differences between two population proportions using the z-test statistic.
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Table 6. Comparing testing performances (Mann-Whitney U test).

Database
GA/ELM vs. MLP
(z-value / p-level)

GA/ELM vs. RBF
(z-value / p-level)

GA/ELM vs. ELM
(z-value / p-level)

BC1 12.31 / 0.000 12.24 / 0.000 12.29 / 0.000

BC2 12.21 / 0.000 12.24 / 0.000 12.32 / 0.000

Table 7. Comparing testing performances (two-sided z-test).

Database GA/ELM vs. MLP GA/ELM vs. RBF GA/ELM vs. ELM

BC1 0.239 0.612 0.006

BC2 0.009 0.129 0.008

From table 7 we see that there is no significant difference between the average proportions
of correctly classified cases for the new model and the all the other ML algorithms, no matter
of which dataset has been used.

As an overall conclusion we can state that the novel algorithm can compete with classical
NN methods, and in some cases even outperformed them. For sure, this assumption does
not imply that the GA/ELM will surpass the other methods in any case, the results being
dependent on the dataset used.

5. Conclusions

In the last years, artificial intelligent methods have become more and more important in
medical diagnosis, due to their high speed and low cost. In this paper we have studied the
effectiveness of a novel model that has a GA component for finding the weights between the
input and hidden layer, and borrows the analytical one step training from the classical ELM.
The model had been tested on two real world breast cancer datasets. To assess the models
performance we have compared it to other three classical NNs. The model outperformed
in some cases the other algorithms, and in some cases had a similar performance with the
best of them. Future work will include the use of the other crossover operators and other
activation functions. We would also like to extend the study to multiple decision classes.
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