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Invariant Submanifolds of (ε)-Sasakian Manifolds
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Abstract. In this paper, we consider invariant submanifolds of an (ε)-Sasakian manifolds.
We show that if the second fundamental form of an invariant submanifold of a (ε)-Sasakian

manifold is recurrent then the submanifold is totally geodesic. We also prove that, invariant

submanifolds of an Einstein (ε)-Sasakian manifolds satisfying the conditions C̃(X,Y ) · σ = 0

and C̃(X,Y ) · ∇̃σ = 0 with εr 6= n(n− 1) are also totally geodesic.
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1. Introduction

It is well known that the properties of a manifold depend on the nature of metric
defined on it. In Riemannian geometry, we study manifolds with metric which is
positive definite. Since manifolds with indefinite metric have significant use in Physics,
and it is interesting to study such manifolds equipped with different structures. In
1969, Takahashi [22] introduced almost contact manifolds equipped with associated
pseudo-Riemannian metric. These indefinite almost contact metric manifolds and
indefinite Sasakian manifolds are also known as (ε)-almost contact metric manifolds
and (ε)-Sasakian manifols, respectively. The concept of (ε)-Sasakian manifolds was
further enriched by Bejancu and Duggal [3], Xufend and Xiaoli [24], Rakesh Kumar
et al [16] and many others.

In modern analysis, the geometry of submanifolds have become a subject of growing
interest for its significant application in applied mathematics and theoretical physics.
For instance, the notion of invariant submanifold is used to discuss properties of non-
linear autonomous system [12]. The study of geometry of invariant submanifolds was
initiated by Bejancu and Papaghuic [4]. In general, the geometry of an invariant
submanifold inherits almost all properties of the ambient manifold. On the other
hand, a number of works on the geometry of submanifolds of various kinds of almost
contact metric manifolds have been carried out in the papers [1, 7, 13, 23] and the
references therein. Based on this background, in this paper we consider to study an
invariant submanifolds of a class of indefinite almost contact manifold, in particular,
(ε)-Sasakian manifold.

The present paper is organized as follows: in section 2, we give necessary in-
formation about submanifolds and conformal curvature tensor. In section 3, some
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definitions and notions about (ε)-Sasakian manifold and their invariant submani-
folds are given. In section 4, we consider invariant submanifolds of an (ε)-Sasakian
manifolds whose second fundamental form is recurrent and show that these type of
submanifolds are totally geodesic. We also prove that invariant submanifolds of an
(ε)-Sasakian manifold with parallel third fundamental form is again a totally geodesic.
In the last section, we prove that for an n-dimensional invariant submanifold M of an

Einstein (ε)-Sasakian manifold M̃ such that εr 6= n(n − 1) satisfying the conditions

C̃(X,Y ) · σ = 0 and C̃(X,Y ) · ∇̃σ = 0 imply that M is totally geodesic, where C is a
conformal curvature tensor.

2. Preliminaries

Let M̃ be an n-dimensional differentiable manifold endowed with an almost contact
structure (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ is a vector field and η is a 1-form

on M̃ satisfying

η(ξ) = 1, φ2X = −X + η(X)ξ. (1)

It follows that

η · φ = 0, φ(ξ) = 0, rank φ = 2n; (2)

then M̃ is called an almost contact manifold. If there exists a psedo-Riemannian
metric g satisfying

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), ∀X,Y ∈ χ(M̃), (3)

where ε = ±1, then the structure (φ, ξ, η, g) is called an (ε)-almost contact metric

structure and M̃ is called an (ε)-almost contact metric manifold. For an (ε)-almost

contact metric manifold M̃ , we have

η(X) = εg(X, ξ) and ε = g(ξ, ξ) ∀X ∈ χ(M̃), (4)

hence, ξ is never a light-like vector field on M̃ and according to the casual character
of ξ we have two classes of (ε)-almost contact metric manifolds. When ε = −1 and

index of g is odd, then M̃ is a time-like almost contact metric manifold and when

ε = −1 and index of g is even, then M̃ is a space-like almost contact metric manifold.

Further, M̃ is usual almost contact metric manifold for ε = 1 and index of g is 0 and

M̃ is a Lorentz-almost contact metric manifold for ε = −1 and index of g is 1.

If dη(X,Y ) = g(φX, Y ), then M̃ is said to have (ε)-contact metric structure
(φ, ξ, η, g). If moreover, this structure is normal, that is, if

[φX, φY ] + φ2[X,Y ]− φ[X,φY ]− φ[φX, Y ] = −2dη(X,Y )ξ, (5)

then the (ε)-contact metric structure is called an (ε)-Sasakian structure and the man-
ifold endowed with this structure is called an (ε)-Sasakian manifold. Generally, an
(ε)-almost contact metric structure (φ, ξ, η, g) is said to be an (ε)-Sasakian manifold

M̃ if and only if

(∇̃Xφ)Y = g(X,Y )ξ − εη(Y )X, ∀X,Y ∈ χ(M̃), (6)
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where ∇̃ is the Levi-Civita connection with respect to g. Also, from (6) we have

∇̃Xξ = −εφX ∀X ∈ χ(M̃). (7)

In an (ε)-Sasakian manifold M̃ , the following relations hold: (see [24])

R̃(ξ,X)Y = εg(X,Y )ξ − η(Y )X,

S̃(X, ξ) = ε(n− 1)η(X), (8)

Q̃ξ = (n− 1)ξ

for all vector fields X,Y on M̃ .

An (ε)-Sasakian manifold M̃ is called Einstein if we have

S̃(X,Y ) =
r̃

n
g(X,Y ) (9)

for all X, Y tangent to M̃ . This gives

S̃(X, ξ) = ε
r̃

n
η(X), S̃(ξ, ξ) = ε

r̃

n
, Q̃X =

r̃

n
X, Q̃ξ =

r̃

n
ξ (10)

for each X tangent to M̃ .
For an n-dimensional (n ≥ 3) Riemannian manifold (M, g), the conformal curvature

tensor C of M is defined by [5]

C(X,Y )Z =R̃(X,Y )Z − 1

n− 2
{g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X

− S(X,Z)Y }+
r

(n− 1)(n− 2)
{g(Y,Z)X − g(X,Z)Y }, (11)

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ) and r is the scalar
curvature. Moreover, in an Einstein (ε)-Sasakian manifold from (11), (8) and (10) we
also have

C(ξ,X)Y =

(
ε− r

n(n− 1)

)
{g(X,Y )ξ − εη(Y )X}

=

(
1− εr

n(n− 1)

)
{εg(X,Y )ξ − η(Y )X} (12)

and

C(ξ,X)ξ = ε

(
ε− r

n(n− 1)

)
{−X + η(X)ξ}

=

(
1− εr

n(n− 1)

)
{−X + η(X)ξ}. (13)

3. Invariant submanifolds of (ε)-Sasakian manifolds

Let M be a submanifold of an (ε)-Sasakian manifold M̃ with induced metric g.
Also let ∇ and ∇⊥ be the induced connection on the tangent bundle TM and the
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normal bundle T⊥M of M respectively. Then the formulas of Gauss and Weingarten
are given by

∇̃XY = ∇XY + σ(X,Y ), (14)

∇̃XN = −ANX +∇⊥
XN (15)

for tangent vectors X,Y and N ∈ χ(T⊥M), where σ and AN are second fundamental

form and the shape operator respectively for the immersion of M into M̃ . If the
second fundamental form σ is identically zero then the submanifold is said to be
totally geodesic. The second fundamental form σ and AN are related by

g̃(σ(X,Y ), N) = g(ANX,Y )

for tangent vector fields X,Y . We note that σ(X,Y ) is bilinear and since ∇fXY =
f∇XY for any smooth function f on a manifold, we have σ(fX, Y ) = fσ(X,Y ).

Definition 3.1. [4] A submanifold M of an (ε)-Sasakian manifold M̃ is called an

invariant submanifold of M̃ if for each x ∈M , φ(TxM) ⊂ TxM . As a consequence, ξ

becomes tangent to M . The submanifold M of the (ε)-Sasakian manifold M̃ is called
totally geodesic if σ(X,Y ) = 0 for any tangent vectors X,Y .

The first and second covariant derivatives of the second fundamental form σ are
given by

(∇̃Xσ)(Y,Z) = ∇⊥
X(σ(Y,Z))− σ(∇XY, Z)− σ(Y,∇XZ) (16)

and

(∇̃2σ)(Z,W,X, Y ) =(∇̃X∇̃Y σ)(Z,W ),

=∇⊥
X((∇̃Y σ)(Z,W ))− (∇̃Y σ)(∇XZ,W )

− (∇̃Xσ)(Z,∇YW )− (∇̃∇XY σ)(Z,W ), (17)

respectively, where ∇̃ is called the van der Waerden-Bortolotti connection of M̃ [6].

If ∇̃σ = 0, then M is said to have parallel second fundamental form [6].
An immersion is said to be semiparallel if

R̃(X,Y ) · σ = (∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ])σ = 0, (18)

holds for all vector fields X,Y tangent to M̃ [8], where R̃ denotes the curvature tensor

of the connection ∇̃. Semiparallel immersions have been studied by various authors,
see for example ([9], [10], [11], [15], [17]). An immersion is said to be 2-semiparallel

if R̃(X,Y ) · ∇̃σ = 0 holds for all vector fields X,Y tangent to M . 2-semiparallel
immersions have been studied in ([2], [18]). From the Gauss and Weingarten formulas
we obtain

(R̃(X,Y )Z)T =R(X,Y )Z −Aσ(Y,Z)X +Aσ(X,Z)Y

+ (∇Xσ)(Y,Z)− (∇Y σ)(X,Z). (19)

By (18), we have

(R̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(R(X,Y )U, V )− σ(U,R(X,Y )V ) (20)
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for all vector fields X,Y, U and V tangent to M , where

R⊥(X,Y ) = [∇⊥
X ,∇⊥

Y ]−∇⊥
[X,Y ]. (21)

Similarly, we have

(R̃(X,Y ) · ∇̃σ)(U, V,W ) =R⊥(X,Y )(∇̃σ)(U, V,W )− (∇̃σ)(R(X,Y )U, V,W )

− (∇̃σ)(U,R(X,Y )V,W )− (∇̃σ)(U, V,R(X,Y )W ) (22)

for all vector fields X,Y, U, V,W tangent to M , where (∇̃σ)(U, V,W ) = (∇̃Uσ)(V,W )
[2]. Again for the conformal curvature tensor C we have

(C̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(C(X,Y )U, V )− σ(U, C(X,Y )V ) (23)

and

(C̃(X,Y ) · ∇̃σ)(U, V,W ) =R⊥(X,Y )(∇̃σ)(U, V,W )− (∇̃σ)(C(X,Y )U, V,W )

− (∇̃σ)(U, C(X,Y )V,W )− (∇̃σ)(U, V, C(X,Y )W ), (24)

respectively.

Now M is an invariant submanifold of an (ε)-Sasakian manifold M̃ . By Gauss
formula, we have

−εφX = ∇̃Xξ = ∇Xξ + σ(X, ξ), (25)

this implies that

(a) ∇Xξ = −εφX and (b) σ(X, ξ) = 0 (26)

for each vector field X tangent to M . Next,

∇̃XφY = ∇XφY + σ(X,φY )

= (∇Xφ)Y + φ∇XY + σ(X,φY ) (27)

and

∇̃XφY = (∇̃Xφ)Y + φ∇̃XY
= g(X,Y )ξ − εη(Y )X + φ∇XY + φσ(X,Y ) (28)

for each vector field X and Y tangent to M . On solving (27) and (28), we get

(∇Xφ)Y = g(X,Y )ξ − εη(Y )X, (29)

σ(X,φY ) = φσ(X,Y ). (30)

From the Gauss formula (14), we have

R̃(X,Y )ξ = R(X,Y )ξ +Aσ(X,ξ)Y −Aσ(Y,ξ)X. (31)

Then using second equation of (26), we find

R̃(X,Y )ξ = R(X,Y )ξ. (32)

Contracting (32), we obtain

S̃(X, ξ) = S(X, ξ). (33)

Hence, we state the following theorem:

Theorem 3.1. An invariant submanifold M of an (ε)-Sasakian manifold M̃ is an
(ε)-Sasakian manifold.
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4. Recurrent invariant submanifolds of (ε)-Sasakian manifolds

In [14], Kon showed that a submanifold M of a Kenmotsu manifold M̃ has parallel
second fundamental form if and only if M is totally geodesic. In [21], Sular and Ozgur

showed that in a submanifold M of a Kenmotsu manifold M̃ tangent to ξ, the second
fundamental form is recurrent if and only if M is totally geodesic. Also, in [20], Sarkar
and Sen studied the geometry of submanifolds of trans-Sasakian manifolds and they
proved that an invariant submanifold of a trans-Sasakian manifold is totally geodesic
if and only if its second fundamental form is recurrent.
The covariant differential of the pth order, p ≥ 1 of a (0, k)-tensor field T , k ≥ 1
denoted by ∇pT , defined on a Riemannian manifold (M, g) with the Levi-Civita
connection ∇. The tensor T is said to be recurrent [19], if the following condition
holds on M :

(∇T )(X1, ..., Xk;X)T (Y1, ..., Yk) = (∇T )(Y1, ..., Yk;X)T (X1, ..., Xk), (34)

where X,X1, Y1, ...., Xk, Yk ∈ TM . From (34) it follows that at a point x ∈M , if the
tensor T is non-zero then there exists a unique 1-form ω or a (0, 2)-tensor ψ, defined
on a neighborhood U of x, such that [20]

∇T = T ⊗ ω, ω = d(log‖T‖) (35)

or

∇2T = T ⊗ ψ, (36)

respectively holds on U , where ‖T‖ denotes the norm of T and ‖T‖2 = g(T, T ).
In this section, we begin with the following:

Theorem 4.1. Let M be an invariant submanifold of an (ε)-Sasakian manifold M̃ .
Then the second fundamental form σ is recurrent if and only if M is totally geodesic.

Proof. Let us suppose that σ is recurrent, from (35) we get

(∇̃Xσ)(Y, Z) = A(X)σ(Y,Z), (37)

where A is a 1-form on M . Then in view of (16), the above equation can be written
as

∇⊥
Xσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ) = A(X)σ(Y, Z). (38)

Setting Z = ξ in (38) we have

∇⊥
Xσ(Y, ξ)− σ(∇XY, ξ)− σ(Y,∇Xξ) = A(X)σ(Y, ξ). (39)

Making use of relation (26(b)) in above equation, we obtain

σ(Y,∇Xξ) = 0,

from which it follows that

σ(Y,−εφX) = −εσ(Y, φX) = 0. (40)

Then by virtue of (30), we have from (40) that

σ(Y,X) = 0.

Therefore, it shows that M is totally geodesic. The converse statement is trivial. This
completes the proof of the theorem. �
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Corollary 4.2. Let M be an invariant submanifold of an (ε)-Sasakian manifold.
Then M has parallel second fundamental form if and only if M is totally geodesic.

Proof. If the 1-form A vanishes, then the relation (37) reduces to

(∇̃Xσ)(Y, Z) = 0, (41)

that is, M has parallel second fundamental form. So the similar calculation as we
did for the Theorem(4.1) shows that M is totally geodesic. The converse statement
is trivial. This completes the proof of the corollary. �

Theorem 4.3. Let M be an invariant submanifold of an (ε)-Sasakian manifold M̃ .
Then M has parallel third fundamental form if and only if M is totally geodesic.

Proof. Suppose that M has parallel third fundamental form. Then we can write

(∇̃X∇̃Y σ)(Z,W ) = 0. (42)

Setting W = ξ in (42) and using (17) we obtain

∇⊥
X((∇̃Y σ)(Z, ξ))− (∇̃Y σ)(∇XZ, ξ)− (∇̃Xσ)(Z,∇Y ξ)− (∇̃∇XY σ)(Z, ξ) = 0. (43)

By (16) and (26(b)) we have the following equalities

∇⊥
X((∇̃Y σ)(Z, ξ)) = −ε∇⊥

Xσ(Z, φY ), (44)

(∇̃Y σ)(∇XZ, ξ) = εσ(∇XZ, φY ), (45)

(∇̃Xσ)(Z,∇Y ξ) = −ε(∇̃Xσ)(Z, φY ), (46)

(∇̃∇XY σ)(Z, ξ) = εσ(Z, φ∇XY ). (47)

Then substituting (44) - (47) into (43) we have

εσ(Z, (∇Xφ)Y ) = 0. (48)

Setting Y by ξ in (48) and using (26(b)) and (29), we get

σ(Z,X) = 0.

It shows that M is totally geodesic. The converse statement is trivial. Hence, the
proof of the theorem is completed. �

5. Invariant submanifolds of Einstein (ε)-Sasakian manifolds satisfying C̃(X,Y )·
σ = 0 and C̃(X,Y ) · ∇̃σ = 0

Recently, the authors Ozgur and Murathan [18] considered invariant submanifolds
of Lorentzian para-Sasakian manifolds satisfying the conditions Z(X,Y ) · σ = 0 and

Z(X,Y ) · ∇̃σ = 0, where Z is the concircular curvature tensor. As a continuation of
this study, in this section we consider invariant submanifold of Einstein (ε)-Sasakian

manifolds satisfying the conditions C̃(X,Y ) · σ = 0 and C̃(X,Y ) · ∇̃σ = 0, where C is
the conformal curvature tensor.

Theorem 5.1. Let M be an invariant submanifold of an Einstein (ε)-Sasakian man-

ifold M̃ . Then the condition C̃(X,Y ) · σ = 0 holds on M if and only if M is totally
geodesic provided εr 6= n(n− 1).
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Proof. Suppose that M satisfies the condition C̃(X,Y ) · σ = 0. Then, from (23), it
follows that

R⊥(X,Y )σ(U, V )− σ(C(X,Y )U, V )− σ(U, C(X,Y )V ) = 0. (49)

By plugging X = V = ξ in (49) we get

R⊥(ξ, Y )σ(U, ξ)− σ(C(ξ, Y )U, ξ)− σ(U, C(ξ, Y )ξ) = 0.

By virtue of (26(b)) the above equation is reduces to

σ(U, C(ξ, Y )ξ) = 0.

Using (13), one can get

(1− εr

n(n− 1)
)σ(U,−Y + η(Y )ξ) = 0.

From the assumption, since εr 6= n(n− 1), by virtue of (26), we obtain σ(Y,U) = 0,
which gives us that M is totally geodesic. The converse statement is trivial. This
completes the proof of the theorem. �

Theorem 5.2. Let M be an invariant submanifold of an Einstein (ε)-Sasakian man-

ifold M̃ . Then the condition C̃(X,Y ) · ∇̃σ = 0 holds on M if and only if M is totally
geodesic provided εr 6= n(n− 1).

Proof. Suppose that M satisfies the condition C̃(X,Y ) · ∇̃σ = 0. Then, from (24), we
obtain

R⊥(X,Y )(∇̃σ)(U, V,W )− (∇̃σ)(C(X,Y )U, V,W )

− (∇̃σ)(U, C(X,Y )V,W )− (∇̃σ)(U, V, C(X,Y )W ) = 0. (50)

By putting X = V = ξ in (50) we have

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(C(ξ, Y )U, ξ,W )

− (∇̃σ)(U, C(ξ, Y )ξ,W )− (∇̃σ)(U, ξ, C(ξ, Y )W ) = 0. (51)

Then, in view of (16), (7) and (26(b)) we have

(∇̃σ)(U, ξ,W ) = εσ(φU,W ). (52)

Also, from (16), (12), (13) and (26), we get the following equalities:

(∇̃σ)(C(ξ, Y )U, ξ,W ) =(∇̃C(ξ,Y )Uσ)(ξ,W ) = ∇⊥
C(ξ,Y )U (σ(ξ,W ))

− σ(∇C(ξ,Y )Uξ,W )− σ(ξ,∇C(ξ,Y )UW )

=− ε
(

1− εr

n(n− 1)

)
η(U)σ(φY,W ), (53)
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(∇̃σ)(U, C(ξ, Y )ξ,W ) =(∇̃Uσ)(C(ξ, Y )ξ,W ) = ∇⊥
U (σ(C(ξ, Y )ξ,W ))

− σ(∇UC(ξ, Y )ξ,W )− σ(C(ξ, Y )ξ,∇UW )

=−∇⊥
U

((
1− εr

n(n− 1)

)
σ(Y,W )

)
− σ

(
∇U

[(
1− εr

n(n− 1)

)
(−Y + η(Y )ξ)

]
,W

)
+

(
1− εr

n(n− 1)

)
σ(Y,∇UW ) (54)

and

(∇̃σ)(U, ξ, C(ξ, Y )W ) = (∇̃Uσ)(ξ, C(ξ, Y )W )

= ∇⊥
Uσ(ξ, C(ξ, Y )W )− σ(∇Uξ, C(ξ, Y )W )− σ(ξ,∇UC(ξ, Y )W )

= −ε
(

1− εr

n(n− 1)

)
σ(φU, Y )η(W ). (55)

From (50), it follows by virtue of equalities (52)-(55) that

εR⊥(ξ, Y )σ(φU,W ) + ε

(
1− εr

n(n− 1)

)
η(U)σ(φY,W )

+∇⊥
U

((
1− εr

n(n− 1)

)
σ(Y,W )

)
+ σ

(
∇U

(
1− εr

n(n− 1)

)
(−Y + η(Y )ξ),W

)
−
(

1− εr

n(n− 1)

)
σ(Y,∇UW ) + ε

(
1− εr

n(n− 1)

)
η(W )σ(φU, Y ) = 0. (56)

Substituting W by ξ in (56) and using (26(b)), we obtain(
1− εr

n(n− 1)

)
{εσ(φU, Y )− σ(Y,∇Uξ)} = 0, (57)

In view of (7), (57) yields

σ(φU, Y ) = 0 with εr 6= n(n− 1). (58)

Replacing U by φU and using (1) and (26(b)), we get from (58)

σ(U, Y ) = 0.

This shows that, M is totally geodesic. The converse statement is trivial. Hence our
theorem is proved. �

In view of Theorems (4.1), (4.3), (5.1) and (5.2) we concluded

Corollary 5.3. For an invariant submanifold M of an (ε)-Sasakian manifold M̃ the
following conditions are equivalent:
(1) the second fundamental form of M is parallel;
(2) the second fundamental form of M is recurrent;
(3) the second fundamental form of M is parallel;

(4) the condition C̃(X,Y ) · σ = 0 with εr 6= n(n− 1) holds on M and M is Einstein;

(5) the condition C̃(X,Y ) ·∇̃σ = 0 with εr 6= n(n−1) holds on M and M is Einstein;
(6) M is totally geodesic.
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