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On certain applications of the two-point Padé approximants
by using extended epsilon algorithm
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Abstract. The epsilon algorithm is closely related to the table of Padé approximants. In this
paper, we extend this algorithm to compute the two-point Padé approximants recursively and

generate the table of these approximants. The connection between this extended algorithm

and two-point Padé approximants is established. Some examples in numerical analysis are
treated.
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1. Introduction

The so-called two-point Padé approximants studied by several authors [5, 7, 10] arise
as a natural generalization of the classical (one-point) Padé approximants. These
approximants are rational functions whose expansions in ascending and descending
powers coincide with Taylor and Laurent series as far as possible. The epsilon al-
gorithm discovered by Wynn [11] has been studied extensively by himself and many
other authors as Brezinski [2, 3, 4]. The epsilon algorithm was also studied in the
vector case in [9]. This algorithm can be used to compute the half table of the clas-
sical Padé approximants. To generate the table of two-point Padé approximants, an
algorithm as epsilon algorithm in two-point case, is needed. This paper is organized
as follows. In section 2, two-point Padé approximants have been defined by means of
orthogonal polynomials. Two-point Padé approximants have been written as a report
of ratio of determinant. In section 3, the extended epsilon algorithm has been defined
and has been established the link between two-point Padé approximants and this al-
gorithm. In section 4, this algorithm has been applied to some examples, treated in
[1, 6, 8], in order to illustrate the results.
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2. Two-point Padé approximants

Let f(z) be a function which admits the following Taylor and Laurent expansions

f0(z) =

+∞∑
i=0

ciz
i, (1)

f∞(z) = −
+∞∑
i=1

c−iz
−i. (2)

Let l ∈ Z, the linear functional c(l) is defined as follows, with c(0) will be denoted by
c

c(l)(ti) = cl+i, i ∈ Z. (3)

f(z) can formally be rewritten as

f(z) = c

(
1

1− tz

)
. (4)

Let m be an integer and 0 ≤ k ≤ m, and let Vk,m be a polynomial of the form

Vk,m(z) =

m∑
i=0

b
(k,m)
m−i z

i. (5)

The associated polynomial of degree m− 1 is defined by

Wk,m(z) = c(k−m)
(zm−kVk,m(t)− tm−kVk,m(z)

t− z

)
. (6)

It is defined as,

Ṽk,m(z) = zmVk,m(z−1) =

m∑
i=0

b
(k,m)
i zi, (7)

and

W̃k,m(z) = zm−1Wk,m(z−1). (8)

Theorem 2.1.

f(z)Ṽk,m(z)− W̃k,m(z) = zkc(k−m)

(
Vk,m(t)

1− tz

)
. (9)

Proof. For Ṽk,m(z) and W̃k,m(z) defined as above, we have

f(z)Ṽk,m(z) = c(k−m)

(
tm−k

1− tz

)
Ṽk,m(z)

= zmc(k−m)

(
tm−kVk,m(z−1)

1− tz

)
= zm−1c(k−m)

(
tm−kVk,m(z−1)− z−(m−k)Vk,m(t)

z−1 − t

)
+ zkc(k−m)

(
Vk,m(t)

1− tz

)
= W̃k,m(z) + zkc(k−m)

(
Vk,m(t)

1− tz

)
.

�
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The rational approximant
W̃k,m(z)

Ṽk,m(z)
, called two-point Padé-type approximant and

denoted by (k/m)f . When k = m, then the standard Padé-type approximants [3] has
been dealt with.
If we do not choose Vk,m randomly, but impose the conditions

c(k−2m)
(
tiVk,m(t)

)
= 0, 0 ≤ i ≤ m− 1. (10)

then Vk,m(t) is called the orthogonal polynomial of degree m with respect to the

functional c(k−2m).
For Vk,m(t) satisfying (10) the two-point Padé approximation condition

f0(z)− W̃k,m(z)

Ṽk,m(z)
=

zk

Ṽk,m(z)
c(k−2m)

(
tm
Vk,m(t)

1− tz

)
,

and

f∞(z)− W̃k,m(z)

Ṽk,m(z)
=

zk

Ṽk,m(z)
c(k−m)

(
Vk,m(t)

1− tz

)
=

zk−m

Ṽk,m(z)
c(k−2m)

(
Vk,m(t)

1− tz

)
,

hold. The rational approximant called two-point Padé approximants
W̃k,m(z)

Ṽk,m(z)
called

two-point Padé approximant and denoted [k/m]f . The case k = 2m correspond to
Padé approximants [3]. These two-point Padé approximants can be ordered in a table
as

...

[0/2]f · · ·

[0/1]f [1/2]f · · ·

[0/0]f = 0 [1/1]f [2/2]f · · ·

[2/1]f [3/2]f · · ·

[4/2]f · · ·

. . .

(11)

As it is well known there is a close relationship between orthogonal polynomials and
Hankel determinants. The Hankel determinants of order n ∈ N of the sequence (ci)i∈Z
are

H(l)
n =

∣∣∣∣∣∣∣∣∣
cl cl+1 . . . cl+n−1

cl+1 cl+2 . . . cl+n

...
...

...
...

cl+n−1 cl+n . . . cl+2n−2

∣∣∣∣∣∣∣∣∣ , with H
(l)
0 = 1. (12)
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We also call the functional c(l) definite if

H(l)
n 6= 0, n ≥ 0.

In the sequel of the text we shall assume that c(l) is definite ∀l ∈ Z .

Also we shall assume that Vk,m(z) satisfies (10), Ṽk,m(z) is given by

Ṽk,m(z) =

∣∣∣∣∣∣∣∣∣∣∣

ck−2m ck−2m+1 · · · ck−m
ck−2m+1 ck−2m+2 · · · ck−m+1

...
...

ck−m−1 ck−m · · · ck−1

zm zm−1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
. (13)

It denotes

Sl(z) =



l−1∑
i=0

ciz
i if l ≥ 1

0 if l = 0

−
−l∑
i=1

c−iz
−i if l ≤ −1.

(14)

The polynomial W̃k,m(z) can be expressed explicitly by

W̃k,m(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ck−2m · · · ck−m−1 ck−m
ck−2m+1 · · · ck−m ck−m+1

...
...

ck−m−1 · · · ck−2 ck−1

zmSk−2m(z) · · · zSk−m−1(z) Sk−m(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (15)

So, for l with −2n ≤ l ≤ 0 and n ∈ N, the two-point Padé approximant [l+ 2n/n]f (z)
can be written as

[l + 2n/n]f (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

cl · · · cl+n−1 cl+n

cl+1 · · · cl+n cl+n+1

...
...

cl+n−1 · · · cl+2n−2 cl+2n−1

znSl(z) · · · zSl+n−1(z) Sl+n(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cl · · · cl+n−1 cl+n

cl+1 · · · cl+n cl+n+1

...
...

cl+n−1 · · · cl+2n−2 cl+2n−1

zn · · · z 1

∣∣∣∣∣∣∣∣∣∣∣
.

(16)
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3. Extended epsilon algorithm

The Hankel determinants of order n ∈ N of the sequence (Sl(z))l∈Z are

Hn(Sl(z)) =

∣∣∣∣∣∣∣∣∣
Sl(z) Sl+1(z) . . . Sl+n−1(z)
Sl+1(z) Sl+2(z) . . . Sl+n(z)

...
...

...
...

Sl+n−1(z) Sl+n(z) . . . Sl+2n−2(z)

∣∣∣∣∣∣∣∣∣ , with H0(Sl(z)) = 1. (17)

The Shanks’s transformation which denoted by en(Sl(z)) is given by

en(Sl(z)) =
Hn+1(Sl(z))

Hn(∆2Sl(z))
. (18)

Where ∆ is the usual forward difference operator whose powers are defined by

∆i+1Sl(z) = ∆iSl+1(z)−∆iSl(z). (19)

The rule of extended epsilon algorithm is as follows

ε
(i)
j+1 = ε

(i+1)
j−1 +

1

ε
(i+1)
j − ε(i)

j

, i ∈ Z, j ∈ N, (20)

with

ε
(i)
−1 = 0 i = 0,±1,±2, . . . (21a)

ε
(i)
0 = Si(z) i = 0,±1,±2, . . . (21b)

The extended epsilon algorithm and Shanks’s transformation are related by

ε
(l)
2n = en(Sl(z)) and ε

(l)
2n+1 =

1

en(∆Sl(z))
, l ∈ Z, n ∈ N. (22)

Thus

ε
(l)
2n =

Hn+1(Sl(z))

Hn(∆2Sl(z))
and ε

(l)
2n+1 =

Hn(∆3Sl(z))

Hn+1(∆Sl(z))
, l ∈ Z, n ∈ N. (23)

The ε
(i)
j can be ordered in a table as

...
... ε

(−2)
1

... · · ·
... ε

(−1)
0 ε

(−2)
1

0 ε
(−1)
1 · · ·

ε
(0)
0 ε

(−1)
2

0 ε
(0)
1 · · ·

... ε
(1)
0

... ε
(0)
2

...
...

so the index j refers to a column while i refers to a diagonal.
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Theorem 3.1. For l such that −2n ≤ l ≤ 0 and n ∈ N, let us apply the extended
epsilon algorithm to the sequence (Sl(z))l∈Z defined in (14), it holds that

ε
(l)
2n = [l + 2n/n]f (z). (24)

Proof.

ε
(l)
2n =

∣∣∣∣∣∣∣∣∣
Sl(z) Sl+1(z) · · · Sl+n(z)

∆Sl(z) ∆Sl+1(z) · · · ∆Sl+n(z)
...

...
∆Sl+n−1(z) ∆Sl+n(z) · · · ∆Sl+2n−1(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆Sl(z) ∆Sl+1(z) · · · ∆Sl+n(z)
...

...
∆Sl+n−1(z) ∆Sl+n(z) · · · ∆Sl+2n−1(z)

∣∣∣∣∣∣∣∣∣

,

where

∆Sl(z) = Sl+1(z)− Sl(z) = cl z
l.

Then

ε
(l)
2n =

∣∣∣∣∣∣∣∣∣
Sl(z) Sl+1(z) · · · Sl+n(z)
clz

l cl+1z
l+1 · · · cl+nz

l+n

...
...

cl+n−1z
l+n−1 cl+nz

l+n · · · cl+2n−1z
l+2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
clz

l cl+1z
l+1 · · · cl+nz

l+n

...
...

cl+n−1z
l+n−1 cl+nz

l+n · · · cl+2n−1z
l+2n−1

∣∣∣∣∣∣∣∣∣

.

Multiply the first column of the numerator and denominator by zn, the second by
zn−1, etc. and the last ones by 1, and divide the second lines of the numerator and
the denominator by zl+n, the third by zl+n+1, and so on, and the last by zl+2n−1.
This proves the theorem. �

4. Numerical results

Let us apply the extended epsilon algorithm rules for the approximation of certain
functions. It should be noted that the extended epsilon algorithm cannot be used in
the case where the sequence (ci)i∈Z is not definite. So, some technicals to approximate
such functions are shown.

Example 4.1. Consider the following function

f(z) =
1

z
ln

(
1 +

z

1 + z

)
.
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The expansions in the neighborhood of zero and infinity respectively are given by

f0(z) =

+∞∑
i=0

(−1)i+1(1− 2i+1)

i+ 1
zi

f∞(z) =
ln(2)

z
+

+∞∑
i=0

(−1)i+1(1− 2−i−1)

i+ 1

1

zi+2
.

The use of (20) and (21) yields the following results.
For z = 0.01, the exact value is 0.98522964430116

ε
(−6)
6 = .98519594183238

ε
(−4)
4 = .98408544821482 ε

(−5)
6 = .98523013566874

ε
(−2)
2 = .94776718479701 ε

(−3)
4 = .98524634478430 ε

(−4)
6 = .98522963714019

ε
(0)
0 = 0 ε

(−1)
2 = .98577822641337 ε

(−2)
4 = .98522940083594 ε

(−3)
6 = .98522964440548

ε
(0)
2 = .98522167487684 ε

(−1)
4 = .98522964784664 ε

(−2)
6 = .98522964429964

ε
(0)
4 = .98522964424959 ε

(−1)
6 = .98522964430118

ε
(0)
6 = .98522964430116

For z = 100, the exact value is 0.00688184391217

ε
(−6)
6 = .00688184391217

ε
(−4)
4 = .00688184391215 ε

(−5)
6 = .00688184391217

ε
(−2)
2 = .00688182989628 ε

(−3)
4 = .00688184391533 ε

(−4)
6 = .00688184391217

ε
(0)
0 = 0 ε

(−1)
2 = .00688375723639 ε

(−2)
4 = .00688184347947 ε

(−3)
6 = .00688184391227

ε
(0)
2 = .00662251655629 ε

(−1)
4 = .00688190317753 ε

(−2)
6 = .00688184389926

ε
(0)
4 = .00687373867653 ε

(−1)
6 = .00688184568247

ε
(0)
6 = .00688160128456

Example 4.2. The Dawson function (see [6]) is defined as follows

F (z) = e−z
2

∫ z

0

et
2

dt,

which admits expansions in the neighborhood of zero and infinity

F0(z) =

∞∑
i=0

(−1)i2i

1 · 3 · · · (2i+ 1)
z2i+1,

F∞(z) =

∞∑
i=1

1 · 3 · · · (2i− 3)

2i
1

z2i−1
.

Hence F (z) = zf(z2), with

f0(z) =

∞∑
i=0

(−1)i2i

1 · 3 · · · (2i+ 1)
zi,

f∞(z) =
1

z
+

∞∑
i=2

1 · 3 · · · (2i− 3)

2i
1

zi
.

Thus, we apply the extended epsilon algorithm on function f in order to generate the

approximants of F denoted by ε̃
(i)
2j . For z = 0.01, the exact value of function F is

.00999933335999.
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ε̃
(−6)
6 = −.02201133928313

ε̃
(−4)
4 = −.01667266884524 ε̃

(−5)
6 = .00998867479374

ε̃
(−2)
2 = −.01000200040008 ε̃

(−3)
4 = .00999400279864 ε̃

(−4)
6 = .00999933293347

ε̃
(0)
0 = 0 ε̃

(−1)
2 = .00999800039992 ε̃

(−2)
4 = .00999933328890 ε̃

(−3)
6 = .00999933335999

ε̃
(0)
2 = .00999933337777 ε̃

(−1)
4 = .00999933335999 ε̃

(−2)
6 = .00999933335999

ε̃
(0)
4 = .00999933335999 ε̃

(−1)
6 = .00999933335999

ε̃
(0)
6 = .00999933335999

For z = 100, the exact value of function F is .00500025003751.

ε̃
(−6)
6 = .00500025003751

ε̃
(−4)
4 = .00500025003751 ε̃

(−5)
6 = .00500025003751

ε̃
(−2)
2 = .00500025001251 ε̃

(−3)
4 = .00500025003751 ε̃

(−4)
6 = .00500025003751

ε̃
(0)
0 = 0 ε̃

(−1)
2 = .00499975001250 ε̃

(−2)
4 = .00500024993751 ε̃

(−3)
6 = .00500025003748

ε̃
(0)
2 = .01499775033745 ε̃

(−1)
4 = .00500224913767 ε̃

(−2)
6 = .00500025063712

ε̃
(0)
4 = −.00832042239410 ε̃

(−1)
6 = .00499625543421

ε̃
(0)
6 = .02096748289651

Example 4.3. Consider the error function (see [1])

erfc(z) =
2√
π

∫ +∞

z

e−t
2

dt.

The following function

f(z) =
√
πez

2

erfc(z),

admits expansions in the neighborhood of zero and infinity

f0(z) =
√
π − 2z +

√
πz2 + ...

f∞(z) =
1

z
− 1

2z3
+

3

4z5
+ ...

Take

g(z) = f(z)
z + 1

z + 2
.

Since the coefficients of even power equal zeroes in the expansion in the neighbor-
hood of infinity of f , the extended epsilon algorithm is applied on the function g in
order to generate the approximations of f . The table below gives the errors between
approximations and values accurate for each k = 3, 4, 5 with m = 4 and for different
value of z.

z Error(k = 3,m = 4) Error(k = 4,m = 4) Error(k = 5,m = 4)

0.001 .162212× 10−9 .824462× 10−14 .566445× 10−18

0.01 .151036× 10−6 .788370× 10−10 .527860× 10−13

0.1 .780162× 10−4 .508519× 10−6 .256365× 10−8

1 .858429× 10−3 .132008× 10−3 .747088× 10−5

10 .322968× 10−6 .109271× 10−5 .257499× 10−5

100 .657059× 10−12 .258565× 10−10 .730461× 10−9

1000 .704689× 10−18 .281755× 10−15 .810789× 10−13
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Example 4.4. The transformation of Laplace (see [6, 8]) is defined as below

F (p) =

∫ +∞

0

e−pxf(x)dx.

Numerical inversion of Laplace transform by using continued fractions is studied by
Grundy in [8]. Here, by using extended epsilon algorithm, the computation of numer-
ical inversion is very easy. One of the examples given by Grundy is considered

F (p) =
1

√
p(
√
p+ a)

.

Take a = 1, the expansions in the neighborhood of zero and infinity

F (p) =

∞∑
i=0

(−1)ip
i−1
2 for

√
p < 1

F (p) =

∞∑
i=0

(−1)ip−
i+2
2 for

√
p > 1,

which gives, see [8]

f(x) =

∞∑
i=0

(−1)i

Γ(1 + i
2 )
x

i
2 for x small,

f(x) =

∞∑
i=0

(−1)i

Γ( 1−i
2 )

x−
i+1
2 for x large.

It is noted that 1/Γ( 1−i
2 ) = 0 if i is odd. For z =

√
x and g(z) = f(z2), the expansion

in the neighborhood of zero

g0(z) =

∞∑
i=0

(−1)i

Γ(1 + i
2 )
zi,

and the expansion in the neighborhood of infinity

g∞(z) =

∞∑
i=0

(−1)i

Γ( 1−i
2 )

z−i−1.

We take

h(z) = g(z) +
1

z + 2
.

Because there are coefficients equal zeroes in the expansions in the neighborhood of
infinity of g, the extended epsilon algorithm is used on the function h in the purpose
of generating the approximations of g and subsequently, it is resulted in those of the
function f . In this example, the error between the exact value and approximate value
is known because the inverse transform is

f(x) = exp(x)erfc(
√
x).

The following table presents the absolute errors for each k = 3, 4, 5 with m = 4 and
for different value of z.
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z Error(k = 3,m = 4) Error(k = 4,m = 4) Error(k = 5,m = 4)

0.001 .125338× 10−6 .390758× 10−8 .628374× 10−10

0.01 .300709× 10−5 .307151× 10−6 .141634× 10−7

0.1 .413014× 10−4 .150008× 10−4 .164935× 10−5

1 .131799× 10−3 .233521× 10−3 .376753× 10−4

10 .273863× 10−4 .968935× 10−3 .505376× 10−4

100 .338378× 10−6 .379039× 10−5 .440588× 10−5

1000 .864093× 10−9 .190817× 10−7 .938192× 10−7

5. Conclusion

This work has shown how the two-point Padé approximants can been computed
recursively in easier way. Some examples have been studied to illustrate our approach.
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[7] P. Gonzlez-Vera, L. Casasus, Two-point Padé type approximants for Stieljes functions, In:
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