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On certain applications of the two-point Padé approximants
by using extended epsilon algorithm
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ABSTRACT. The epsilon algorithm is closely related to the table of Padé approximants. In this
paper, we extend this algorithm to compute the two-point Padé approximants recursively and
generate the table of these approximants. The connection between this extended algorithm
and two-point Padé approximants is established. Some examples in numerical analysis are
treated.
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1. Introduction

The so-called two-point Padé approximants studied by several authors [5, 7, 10] arise
as a natural generalization of the classical (one-point) Padé approximants. These
approximants are rational functions whose expansions in ascending and descending
powers coincide with Taylor and Laurent series as far as possible. The epsilon al-
gorithm discovered by Wynn [11] has been studied extensively by himself and many
other authors as Brezinski [2, 3, 4]. The epsilon algorithm was also studied in the
vector case in [9]. This algorithm can be used to compute the half table of the clas-
sical Padé approximants. To generate the table of two-point Padé approximants, an
algorithm as epsilon algorithm in two-point case, is needed. This paper is organized
as follows. In section 2, two-point Padé approximants have been defined by means of
orthogonal polynomials. Two-point Padé approximants have been written as a report
of ratio of determinant. In section 3, the extended epsilon algorithm has been defined
and has been established the link between two-point Padé approximants and this al-
gorithm. In section 4, this algorithm has been applied to some examples, treated in
[1, 6, 8], in order to illustrate the results.
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2. Two-point Padé approximants

Let f(z) be a function which admits the following Taylor and Laurent expansions
—+oo
= Z ¢, (1)
i=0
—+oo
- Z c_iz b (2)
i=1

Let | € Z, the linear functional ¢(!) is defined as follows, with c(®) will be denoted by
¢

DAY = ¢y, i € Z. (3)
f(2) can formally be rewritten as

o =c(=2)- (@)

Let m be an integer and 0 < k < m, and let V} ,,, be a polynomial of the form

Vi (2 Zb’“’”) g (5)

The associated polynomial of degree m — 1 is defined by

m—Fk m—k
_ (k—m) z Vk,m(t) —t Vk’m(z)
Wim(z) =c ( — ) (6)
It is defined as,
Vi (2) = 2™ Vi (z71) = 3 0™ (7)
=0
and
Wi (2) = 2™ Wi (7). (8)
Theorem 2.1.
~ —~ Viem (t
F)Vim(2) = Wi (2) = 2Fei=m) (’“()> : (9)
’ ’ 1—tz
Proof. For Vkm(z) and ka(z) defined as above, we have
~ tm=k\ -
_ (k=m)
FTin(z) = (1) T )
= yMelk—m) (thkam(Zl)>
1—tz
m—k -1 —(m—k
— =1 o(k=m) ('5 Viem (2 )1—2 ( )Vk,m(t)) 4 ok elkom) (Vkm(t))
z7t—1t 1—-tz
= Wi m(2) + Fet=m) (‘;k:ng)) .
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ka(z)

The rational approximant —
Vk,m z
denoted by (k/m)s. When k = m, then the standard Padé-type approximants [3] has
been dealt with.
If we do not choose V}, ,, randomly, but impose the conditions

c(k—2m) (tin,m(t)) =0, 0<i<m-—1. (10)

, called two-point Padé-type approximant and

then Vi, (t) is called the orthogonal polynomial of degree m with respect to the
functional ¢(F=2m),
For Vi (t) satisfying (10) the two-point Padé approximation condition

. kam(z) _ Zk (k—2m) ( mvk,m(t)>
fO(Z) Vk,m(«z) - vk’m(z)c t 1— ¢tz )
and
. Wk,m(z) _ i (k—m) (Vkﬂn(t))
foo(z) ‘7k7m(2) - I7k7m(z)c 71 i
_ jkfm ((h—2m) <Vk,m(t)>
Vien (2) 1—tz )’

Wi z
hold. The rational approximant called two-point Padé approximants f/km() called
k,m\%
two-point Padé approximant and denoted [k/m]s. The case k = 2m correspond to
Padé approximants [3]. These two-point Padé approximants can be ordered in a table
as

[0/2]¢
[0/1]f  [1/2]
0/0]f =0 [1/1]f [2/2]f - (11)
2/1]y 13/2)s
[4/2]

As it is well known there is a close relationship between orthogonal polynomials and
Hankel determinants. The Hankel determinants of order n € N of the sequence (¢;);ez
are

Cl Cl+1 -+ Cl4n—1

Cl+1 Cl+2 N Cl+
. o ", with HY =1. (12)

Cl4n—1 Cl4n .- Cl42n-2
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We also call the functional ¢ definite if
HY #£0, n>0.

In the sequel of the text we shall assume that c(l)Nis definite VI € Z .
Also we shall assume that Vj, ., (2) satisfies (10), Vi m(2) is given by

Ck—2m Ck—2m+1 cee Ck—m
Ck—2m+1 Clk—2m+2 o Ck—m+1
Viem (2) =
Ck—m—1 Ck—m e Ck—1
Zm Zmil “ e ]_
It denotes
-1
E ;2 ifl>1
=0
Si(z)=4¢ 0 ifi=0

—1
—Zc,iz*i ifl < —1.
i=1

The polynomial ka(z) can be expressed explicitly by

Ck—2m e Ck—m—1 Ck—m
Ck—2m+1 tee Ck—m Ck—m—+1
Wim(2) =
Ck—m—1 e Ck—2 Ck—1
2MSk_om(2) o+ 2Sk—m-1(2) Sk—m(2)
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(13)

(14)

So, for [ with —2n <1 < 0 and n € N, the two-point Padé approximant [l 4 2n/n|¢ ()

can be written as

Cl et Cl4n—1 Cl4+n
Cl+1 T Cl4+n Cl+n+1
Cl4n—1 et Cl4+2n—2 Cl4+2n—1
2"Si(z) -0 2S14n-1(2)  Sipa(2)
[+ 2n/nlf(2) =
@] o Clyn—1 Cltn
Cl+1 te Clyn Cl4n+1
Clyn—1 = Cl42n—2 Ci42n—1

z 1

(16)
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3. Extended epsilon algorithm

The Hankel determinants of order n € N of the sequence (S;(2));ez are

SZ(Z) Sl+1(z) . Sl+n—1(z)
Sl 1(2) Sl Q(Z) N Sl n(Z)
Ho(S(z)=| - , i , with Ho(Si(2)) =1. (17)
Stin—1(2) Sign(z) ... Siyon—2(2)
The Shanks’s transformation which denoted by e, (S;(z)) is given by
Hpn11(5i(2))
n(S = . 18
en(Si(2)) H,(AZ5,(2)) (18)
Where A is the usual forward difference operator whose powers are defined by
ATIS(2) = ATS11(2) — ALS)(2). (19)

The rule of extended epsilon algorithm is as follows

i+1) 1

85':)»1 = 55-71 + m, 1€ Z, _j S N, (20)
£; —€;
with
e =0  i=0+1,42, ... (21a)
el =8i(2)  i=0,41,42, ... (21b)
The extended epsilon algorithm and Shanks’s transformation are related by
O —e,(9 4 D —— 1 ez nen 22
€2n en( l(Z)) an 52n+1 en(AS’l(z))’ € ) ne . ( )
Thus
o _ Hny1(Si(2)) 0 H,(A%S)(2))
el = 2t apd e = 22 PR e 7 neN. 23
T Hu(A25(2)) T Hya (ASy(2)) 29)

The 65” can be ordered in a table as

e :
8871) ngz)

0 55_1)
séo) sg—l)

0 Ego)
(1) : (0)

so the index j refers to a column while ¢ refers to a diagonal.
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Theorem 3.1. For [ such that —2n <1 < 0 and n € N, let us apply the extended
epsilon algorithm to the sequence (Si(z))icz defined in (14), it holds that

0 _

€3 = [l +2n/n]f(2).
Proof.
Si(z) Si+1(2) St4n(2)
ASl(Z) ASH_l(Z) ASH_n(Z)
RO ASiin-1(2) ASin(2) ASiian-1(2)
n 1 1 1
AS[(Z) AS[_H(Z) ASl+n(Z)
ASH—n—l(Z) ASI+7L(Z) ASH—Zn—l(Z)
where
AS)(2) = Si1(2) — Si(2) = ¢ 2
Then
Si(=) Si41(z) St4n(2)
ozt crp1 2t Clyn2 T
E(l) B Cl+n—1zl+n71 CH_nZlJrn Cl+2n—1zl+2n71
n 1 1 1
¢zt crp1 2t Clpn 2T
Clpn—12T"70 o2 gy q 2T

Multiply the first column of the numerator and denominator by z", the second by
2”71 etc. and the last ones by 1, and divide the second lines of the numerator and
the denominator by z/t", the third by z!*"*! and so on, and the last by z/t27—1.

This proves the theorem. 0

4. Numerical results

Let us apply the extended epsilon algorithm rules for the approximation of certain
functions. It should be noted that the extended epsilon algorithm cannot be used in
the case where the sequence (¢;);ez is not definite. So, some technicals to approximate
such functions are shown.

Example 4.1. Consider the following function

f(z)zlln(l—i— z )

z 1+2
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The expansions in the neighborhood of zero and infinity respectively are given by

+ . .
= (-2

fo(2) = £ i+1
_ (@) XD -2h 1
Jool2) = z * pard 141 2i+2’

The use of (20) and (21) yields the following results.
For z = 0.01, the exact value is 0.98522964430116

{79 = 98519594183238
e\ = .98408544821482 | {7 = .98523013566874
el = 04776718479701 | (7% = .98524634478430 | Y = .98522963714019
e =0 i = 98577822641337 | {2 = .98522940083594 | £\ ¥ = .98522064440548
el = 08522167487684 | £\ = .98522964784664 | ¢\ = .98522964429964
£? = .98522964424959 | £\ = 98522964430118
e” = 98522964430116
For z = 100, the exact value is 0.00688184391217

5% = .00688184391217
e\ = .00688184391215 | £, °) = .00688184391217
57 = .00688182989628 | £{*) = .00688184391533 | e\~ = .00688184391217
e =0 | el = .00688375723639 | {2 = .00688184347947 | £{~* = .00688184391227
e = .00662251655629 | ¢\ = .00688190317753 | £, 2 = .00688184389926
£?) = .00687373867653 | e\ " = .00688184568247
e = .00688160128456

Example 4.2. The Dawson function (see [6]) is defined as follows

F(z)= efz2/ et dt,
0

which admits expansions in the neighborhood of zero and infinity

_ = ( ) 2141
Fo(Z) ;mz + )
o (

2i—3) 1
Foolz) = Z 9i 221
i=1

Hence F(z) = zf(2?), with

:013 22—1—1)

fwu_;z_ls BN

% 2
1=2

<.

Thus, we apply the extended epsilon algorithm on function f in order to generate the

approximants of F' denoted by 5( Y
.00999933335999.

For z = 0.01, the exact value of function F' is



&V =0 ~<

~(0)
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072 = —.01000200040008

Y = .00999800039992

=.00999933337777

~( N _

For z = 100, the exact value of function F' is .00500025003751.

& =

e =0|&M=
&0
Example 4.3.

.00500025001251
=.00499975001250
= .01499775033745

& = —.01667266884524
7% = .00999400279864
&7 = .00999933328890

407

g% = —.02201133928313
£07") = .00998867479374
g7 = .00999933293347
£07%) = .00999933335999

=.00999933335999 | &7 = .00999933335999

*“” = .00999933335999 ”( Y = 00999933335999

5g°> = .00999933335999
79 = 00500025003751
7% = 00500025003751 | £ = .00500025003751
~< ) = .00500025003751 | &% = .00500025003751
~< ) = 00500024993751 | £5%) = .00500025003748
~< D = 00500224913767 | £{"? = .00500025063712
*fj” = —.00832042239410 | £\ = .00499625543421
&9 = 02096748289651

Consider the error function (see [1])

erfe(z

The following function

f(2)

RE AR

= Ve  erfe(2),

admits expansions in the neighborhood of zero and infinity

Take

fo(2) =
fOO(Z> =

9(2)

VT — 22+ T2+ .
1 1 3 n
z 223 4z5 T
z4+1

£

Since the coefficients of even power equal zeroes in the expansion in the neighbor-
hood of infinity of f, the extended epsilon algorithm is applied on the function g in
order to generate the approximations of f. The table below gives the errors between
approximations and values accurate for each k = 3,4,5 with m = 4 and for different

value of z.
z Error(k=3,m=4) | Error(k=4,m=4) | Error(k=5,m =4)
0.001 162212 x 1077 824462 x 10712 566445 x 1078
0.01 151036 x 107° 788370 x 10710 527860 x 10713
0.1 780162 x 10~ 71 508519 x 10~° 256365 x 10~
1 .858429 x 10~3 132008 x 1073 747088 x 10~°
10 .322968 x 107° 109271 x 10~° 257499 x 10~°
100 657059 x 10~ 12 1258565 x 10~ 1° 730461 x 107°
1000 704689 x 10~ '8 281755 x 10~ 810789 x 10~ 13
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Example 4.4. The transformation of Laplace (see [6, 8]) is defined as below

+oo
F(p) = /0 e P* f(x)de.

Numerical inversion of Laplace transform by using continued fractions is studied by
Grundy in [8]. Here, by using extended epsilon algorithm, the computation of numer-
ical inversion is very easy. One of the examples given by Grundy is considered
1
Flp) = ——F———-
VP(\/P + a)

Take a = 1, the expansions in the neighborhood of zero and infinity

Fp) = (-1)'p'F  foryp<1

=0
which gives, see [8]

%

f(z) = i((l_j—)lg“ for x small,

[
~—

f(z) = ZF(_ll_):)tz‘l for x large.

It is noted that 1/T'(35%) = 0if i is odd. For z = /z and g(z) = f(z?), the expansion
in the neighborhood of zero

- (71)7‘ —i—1
Joo(2) = —~z
z:OF(12 )
We take
1
h(z) = .
() = 9(2) + —

Because there are coefficients equal zeroes in the expansions in the neighborhood of
infinity of g, the extended epsilon algorithm is used on the function h in the purpose
of generating the approximations of g and subsequently, it is resulted in those of the
function f. In this example, the error between the exact value and approximate value
is known because the inverse transform is

f(2) = expla)er fe(v/a).

The following table presents the absolute errors for each k = 3,4,5 with m = 4 and
for different value of z.
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z Error(k=3,m=4) | Error(k=4,m =4) | Error(k=5,m =4)
0.001 125338 x 107° .390758 x 1078 628374 x 10710
0.01 300709 x 10~° 307151 x 10°° 141634 x 10~ 7

0.1 413014 x 1072 .150008 x 10~ % 164935 x 10~°

1 131799 x 1073 .233521 x 1073 376753 x 10771

10 273863 x 10771 .968935 x 1073 505376 x 10~ 71
100 .338378 x 10~ © .379039 x 10~° 440588 x 10~°
1000 .864093 x 107° 190817 x 1077 .938192 x 10~7

5. Conclusion

409

This work has shown how the two-point Padé approximants can been computed
recursively in easier way. Some examples have been studied to illustrate our approach.

Acknowledgements. We thank the anonymous reviewers for their careful reading
of our manuscript.
The work of the first author is supported by a CNRST Scientific Scholarship.

References

[1]
2]

3]
(4]

[5]

[9]
(10]

(11]

L. Berg, Asymptotic Two-Point Approximations by Rational Function, Result. Math. 32 (1997),
37-46.

C. Brezinski, M. Redivo-Zaglia, The genesis and early developments of Aitken’s process, Shanks’
transformation, the e-algorithm, and related fixed point methods, Numer. Algorithms 80 (2019),
no. 1, 11-133.

C. Brezinski, Padé-Type Approzimants and General Orthogonal Polynomials, International Se-
ries of Numerical Mathematics 50 Birkhauser Verlag, Basel, 1980.

C. Brezinski, Convergence acceleration of some sequences by the e—algorithm, Numer. Math.
29 (1978), 173-177.

A. Draux, On two-point Padé-type and two-point Padé approximant, Annali di Matematica
Pura ed Applicata CLVIII (1991), no. 4, 99-150.

P. Gonzlez-Vera, On certain applications of the two-point Padé-type approximants with a single
pole, J. Comput. Appl. Math. 19 (1987), 151-160.

P. Gonzlez-Vera, L. Casasus, Two-point Padé type approximants for Stieljes functions, In:
Brezinski C et al (eds) Polynémes Orthogonauz et Applications, Proceedings, Bar-le-Duc 1984,
Springer, Berlin, Lecture notes in mathematics 1171 (1985), 408-418.

R.E. Grundy, Laplace transform inversion using two-point rational approximants, J. Inst.
Maths. Applics. 20 (1975), 299-306.

P.R. Graves-Morris, D.E. Roberts, A. Salam, The epsilon algorithm and related topics, J. Com-
put. Appl. Math. 122 (2000), 51-80.

J.H. McCabe, J.A. Murphy, Continued fractions which correspond to power series expansions
at two points, J. Inst. Maths. Applics. 17 (1976), 233-247.

P. Wynn, The epsilon algorithm and operational formulas of numerical analysis, Math. Comp.
15 (1961), 151-158.

(Y. Chakir, J. Abouir, B. Benouahmane) UNIVERSITY HASSAN IT OF CASABLANCA, FACULTY OF
SCIENCES AND TECHNOLOGY, LABORATORY LMCMAN, BP 146 MOHAMMEDIA 20650 MOROCCO
E-mail address: yachakir@gmail.com, abouir@hotmail.com, benouah@hotmail.com



