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Multiple solutions for a (p, q)-Laplacian Steklov problem

A. Boukhsas, A. Zerouali, O. Chakrone, and B. Karim

Abstract. In this paper we study the existence of at least three nontrivial solutions for the

nonlinear (p, q)-Laplacian problem, with nonlinear boundary conditions. We establish that
there exist at least three non-zero solutions, under assumptions on the asymptotic behavior

of the quotients f(x, s)/|s|p−2s and pF (x, s)/|s|p which extends the classical results with

Dirichlet boundary conditions that for a.e. x ∈ ∂Ω.
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1. Introduction

Consider the following (p, q)-Laplacian Steklov eigenvalue problem:

(Sp,q)

{
∆pu+ µ∆qu = |u|p−2u+ µ|u|q−2u in Ω,

〈|∇u|p−2∇u+ µ|∇u|q−2∇u, ν〉 = f(x, u) on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, ν is the
outward unit normal vector on ∂Ω, 〈., .〉 is the scalar product of RN , 1 < q < p <∞
and ∆r, r > 1, denotes the r-Laplacian, namely ∆r := div(|∇u|r−2∇u) ∀u ∈W 1,r(Ω),
while the reaction term f : ∂Ω × R → R is a Carathéodory function satisfying the
growth condition.

Elliptic equations involving differential operators of the form

Au := div(D(u)∇u) = ∆pu+ ∆qu,

where D(u) = (|∇u|p−2 + |∇u|q−2), usually called (p, q)-Laplacian, occur in many
important concrete situations. For instance, this happens when one seeks stationary
solutions to the reaction-diffusion system

ut = Au+ c(x, u), (1)

This system has a wide range of applications in physics and related sciences like chem-
ical reaction design [7], biophysics [15] and plasma physics [24]. In such applications,
the function u describes a concentration, the first term on the right-hand side of (1)
corresponds to the diffusion with a diffusion coefficient D(u); whereas the second one
is the reaction and relates to source and loss processes. Typically, in chemical and bi-
ological applications, the reaction term c(x;u) has a polynomial form with respect to
the concentration. In the last few years, the (p, q)-Laplace attracts a lot of attention
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and has been studied by many authors (see [21, 11, 27, 30]). However, there are few
results one the eigenvalue problems for the (p, q)-Laplacian, we cite [8, 10, 18, 25].

In the case where µ = 0, our problem (Sp,q) becomes the problem driven by p-
Laplacian operator

(Sp)

{
∆pu = |u|p−2u in Ω,

〈|∇u|p−2∇u, ν〉 = f(x, u) on ∂Ω

In [3], the authors was studied the solvability of the Steklov problem (Sp), the ex-
istence of nontrivial solutions for this problem was also proved in [13], and the non
resonance of solutions under and between the two first eigenvalues for this problem
was studied in [4]. Under the zero Dirichlet boundary condition in Ω, the authors es-
tablished in [22] that the the existence of at least three nontrivial solutions of problem
(Sp,q), one greatest negative, another smallest positive, and the third nodal. In [23]
it was studied the existence of multiple solutions via variational methods, truncation-
comparison techniques, and Morse theory. We have studied in [28], the existence and
non-existence results of a positive solution for our problem (Sp,q) in the case that
f has the form f(x, u) = λ[mp(x)|u|p−2u + µmq(x)|u|q−2u], at non resonance cases
and in [29] at resonance cases. In [9], we have constructed a continuous curve in
plane, which becomes a threshold between the existence and non-existence of positive
solutions, in the case f(x, u) = α|u|p−2u + β|u|q−2u. Our purpose of this work is
to extend some of the known results with Dirichlet boundary conditions on bounded
domain, (see, [22, 23]). This paper is organized as follows. In Section 2, we give some
basic assumptions and preliminary results, that will be useful to prove the principal
results of this article. In Section 3, we state and prove our main results.

2. Basic assumptions and preliminary results

Let (X, ‖.‖) be real Banach space. Given a set V ⊆ X, write V for the closure of
V , ∂V for the boundary of V , and int(V ) for the interior of V . If x ∈ X and δ > 0
then Bδ(x) := {z ∈ X : ‖z − x‖ < δ}.
The symbol (X∗, ‖.‖X∗) denotes the dual space of X, 〈., .〉 indicates the duality pairing
between X and X∗, while xn → x (respectively, xn ⇀ x) in X means the sequence
{xn} converges strongly(respectively, weakly) in X. A function Φ : X → R fulfilling

lim
‖x‖→+∞

Φ(x) = +∞

is called coercive. Let Φ ∈ C1(X). We say that Φ satisfies the Palais-Smale condition
when
(PS)Φ Every sequence {xn} ⊆ X such that {Φ(xn)} is bounded and

lim
n→∞

‖Φ′(x)‖X∗ = 0

possesses a convergent subsequence.
If c ∈ R then, as usual, Φc = {x ∈ X : Φ(x) ≤ c}, while Kc(Φ) := K(Φ) ∩ Φ−1(c),
with K(Φ) being the critical set of Φ, i.e. K(Φ) := {x ∈ X : Φ′(x) = 0}. An operator
A : X → X∗ is called of type (S)+ provided

xn ⇀ x in X, lim sup
n→+∞

〈A(xn), xn − x〉 ≤ 0 ⇒ xn → x in X.

The next simple result is more or less known([21], Proposition 2.3).
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Proposition 2.1. Let X be reflexive and let Φ ∈ C1(X) be coercive. Assume that:
Φ′ = A+B, where A : X → X∗ is of type (S)+ while B : X → X∗ is compact. Then
Φ satisfies the Palais-Smale condition (PS).

In the analysis of problem (Sp,q) we will use the Sobolev space W 1,p(Ω) and the

Banach space C1(Ω) as well as the order cone

C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0 for every x ∈ Ω}.

This cone has a non-empty interior described as follows:

intC1(Ω)+ = {u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω}.

Let u, v : Ω → R be measurable functions and let t ∈ R. The symbol u ≤ v means
u(x) ≤ v(x) for almost every x ∈ Ω, t± := max{±t, 0}, u±(.) := u(.)±. If p ∈ [1,+∞)
then p′ := p/(p − 1) is the conjugate exponent of p and p∗ indicates the Sobolev
conjugate in dimension N , namely

p∗ =


Np
N−p when p < N,

any q > 1 for p = N,
+∞ otherwise.

We introduce, provided r ∈ [1,+∞[, the usual norm of W 1,r(Ω)

‖u‖1,r :=

(∫
Ω

(|∇u|r + |u|r)dx
)1/r

u ∈W 1,r(Ω),

W 1,r(Ω)∗ denotes the dual space of W 1,r(Ω) while Ar : W 1,r(Ω) → W 1,r(Ω)∗ is the
nonlinear operator defined by:

〈Ar(u), v〉 :=

∫
Ω

(|∇u|r−2∇u · ∇v + |u|r−2uv)dx ∀u, v ∈W 1,r(Ω). (2)

Denote by λ1,r(respectively, λ2,r) the first (respectively, second) eigenvalue of the op-
erator ∆r in W 1,r(Ω). The following properties of λ1,r, λ2,r and Ar can be found in
[2, 3, 5], see also [17],([16], Section 6.2).
(p1) 0 < λ1,r < λ2,r

(p2) ‖u‖rLr(∂Ω) ≤
1
λ1,r
‖u‖r1,r

(p3)There exists an eigenfunction φ1,r corresponding to λ1,r such that φ1,r ∈ int(C1(Ω)+)
as well as ‖φ1,r‖Lr(∂Ω) = 1.
(p4) The operator Ar is maximal monotone and of type (S)+.

Let f : ∂Ω × R → R be a Carathéodory function such that f(x, 0) = 0 for all
x ∈ ∂Ω and let

F (x, t) :=

∫ t

0

f(x, s)ds, (x, t) ∈ ∂Ω× R. (3)

The hypotheses below will be posited in the sequel. By convention, p = q whenever
µ = 0.
(f1) There exist c1 > 0, r ∈ [p, p∗) satisfying

|f(x, t)| ≤ c1(1 + |t|r−1) for all(x, t) ∈ ∂Ω× R.
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(f2) There exists θ ∈ L∞(∂Ω)\{λ1,p}, where 0 ≤ θ < λ1,p satisfying

lim sup
|t|→+∞

pF (x, t)

|t|p
≤ θ(x) uniformly with respect to a.e. x ∈ ∂Ω.

(f3) for suitable c3 ≥ c2 > c(µ), with

c(µ) =

{
λ2,q if µ = 0,
µλ2,q otherwise,

one has

c2 ≤ lim inf
t→0

f(x, t)

|t|q−2t
≤ lim sup

t→0

f(x, t)

|t|q−2t
≤ c3 uniformly with respect to a.e. x ∈ ∂Ω.

(f4) f is bounded on bounded sets.

Lemma 2.2. If θ ∈ L∞(∂Ω), θ ≤ λ1,r a.e. in Ω and θ 6= λ1,r then there exists a
constant c(θ) > 0 such that

‖u‖r1,r −
∫
∂Ω

θ|u|rdσ ≥ c(θ)‖u‖r1,r ∀u ∈W 1,r(Ω).

Proof. Let ψ(u) = ‖u‖r1,r −
∫
∂Ω
θ|u|rdσ. It is clear that ψ ≥ 0. Suppose that the

lemma is not true. Since ψ is r-homogeneous, we can find a sequence {un} ⊂W 1,r(Ω)
such that ‖un‖1,r = 1 and ψ(un) ↓ 0 as n→∞. By passing to a suitable subsequence
if necessary, we may assume that

un ⇀ u in W 1,r(Ω), un → u in Lr(∂Ω) (4)

(recall that W 1,r(Ω) is embedded compactly in Lr(∂Ω)) and |un(x)| ≤ k(x) a.e. on
Ω, for all n ≥ 1, with k ∈ Lr(∂Ω).
We have that ‖u‖r1,r ≤ lim infn→∞ ‖un‖r1,r while from the dominated convergence

theorem, it follows that
∫
∂Ω
θ|un|rdσ →

∫
∂Ω
θ|u|rdσ. So, ψ(u) ≤ lim infn→∞ ψ(un) =

0. Consequently,

‖u‖r1,r ≤
∫
∂Ω

θ|u|rdσ ≤ λ1,r‖u‖rLr(∂Ω). (5)

If u = 0, then from (5) applied to un, and (4), we see that un → 0 in W 1,r(Ω) a
contradiction to the fact that ‖un‖1,r = 1 for all n ≥ 1. Hence, u 6= 0. But from (5)
and by (6)

λ1,r := inf

{ ‖u‖r1,r
‖u‖rLr(∂Ω)

: ‖u‖rLr(∂Ω) = 1

}
, (6)

we have ‖u‖r1,r = λ1,r‖u‖rLr(∂Ω), and so u = ±tû1 for some t > 0. Recalling that

û1(x) > 0 for all x ∈ Ω. From (5) and hypothesis on θ we have ‖u‖r1,r < λ1,r‖u‖rLr(∂Ω),

again a contradiction. The lemma is thus proved. �

Lemma 2.3. If β > 0 and α > µλ1,q then the problem

(Pα,β) =

{
∆pu+ µ∆qu = µ|u|q−2u+ |u|p−2u in Ω
|∇u|p−2∇u∂u∂ν + |∇u|q−2∇u∂u∂ν = α|u|q−2u− β|u|p−2u on ∂Ω

possesses a unique nontrivial positive solution û ∈ int(C1(Ω)+). Further, −û is the
unique nontrivial negative solution of (Pα,β).
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Proof. Define, for every u ∈W 1,p(Ω),

ψ+(u) =
1

p
‖u‖p1,p +

µ

q
‖u‖q1,q −

α

q
‖u+‖qLq(∂Ω) +

β

p
‖u+‖pLp(∂Ω)

Evidently, the functional ψ+ belongs to C1(Ω) , is coercive, because p > q, and weakly
sequentially lower semi-continuous. So, there exists û ∈W 1,p(Ω) such that

ψ+(û) = min
u∈W 1,p(Ω)

ψ+(u). (7)

Through (p3), besides the conditions α > µλ1,q and p > q, one has

ψ+(tφ1,q) ≤
tp

p

(
‖φ1,q‖p1,p + β‖φ1,q‖pLp(∂Ω)

)
+
tq

q
(µλ1,q − α) < 0 (8)

for any t > 0 small enough. Hence ψ+(û) < 0, which implies û 6= 0. Now, from (7) it
follows

〈Ap(û) + µAq(û), v〉 =

∫
∂Ω

(α|û+|q−2û+ − β|û+|p−2û+)vdσ ∀v ∈W 1,p(Ω). (9)

Setting v := −û− in (9) we obtain û− = 0. Thus, û ≥ 0 and, a fortiori, the function
û solves (Pα,β). By the regularity proven in [1], û ∈ C1,α(Ω). From the first equation
of (Pα,β) we conclude

∆pû+ µ∆qû = |û|p−2û+ µ|û|q−2û

≤ ûp−1 + µûq−1 ≤ µ′ûq−1

Setting β(s) = µ′sq−1 for s > 0 allows us to apply Vázquez’s strong maximum
principle [26] shows that û > 0 for a.e. x ∈ Ω. if there exists x0 ∈ ∂Ω such that
û(x0) = 0, we obtain by applying again Vázquez’s strong maximum principle that
∂û
∂ν (x0) < 0, but the boundary condition impose ∂û

∂ν (x0) = 0 a condition. Hence,

û(x) > 0 in Ω and therefore, we get û ∈ int(C1(Ω)+).
Let us verify that û is unique. The functional η(u) : L1(Ω)→ [0,+∞] given by

η(u) :=

{
1
p‖u

1/q‖p1,p + µ
q ‖u

1/q‖q1,q if u ≥ 0, u1/q ∈W 1,p(Ω),

+∞ otherwise,

is convex. In fact, pick u1, u2 ∈ dom(η), θ ∈ [0, 1] and define w := (θu1 +(1−θ)u2)1/q.
The proof of [[11],Lemma 1] ensures that

|∇w|q + |w|q ≤ (θ|∇u1/q
1 |q + |u1/q

1 |q) + (1− θ)(|∇u1/q
2 |q + |u1/q

2 |q). (10)

η(θu1 + (1− θ)u2) =
1

p
‖w‖p1,p +

µ

q
‖w‖q1,q

=
1

p

∫
Ω

(|∇w|p + |w|p)dx+
µ

q

∫
Ω

(|∇w|q + |w|q)dx

≤ θ(1

p
‖u1/q

1 ‖
p
1,p +

µ

q
‖u1/q

1 ‖
q
1,q) + (1− θ)(1

p
‖u1/q

2 ‖
p
1,p +

µ

q
‖u1/q

2 ‖
q
1,q)

= θη(u1) + (1− θ)η(u2)

Through Fatou’s lemma we see that η is also lower semi-continuous. Now, suppose
u1, u2 are solutions of (Pα,β) lying in intC1(Ω)+ while v ∈ C1(Ω). Obviously, uq1 +
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tv, uq2 + tv ∈ C1(Ω)+

for any small t. Thus, by the chain rule,

〈η′(uq1), v〉 =

∫
Ω

(|∇u1|p−2∇u1∇v + |u1|p−2u1v)(
u1−q

1

q
)dx

+ µ

∫
Ω

(|∇u1|q−2∇u1∇v + |u1|q−2u1v)(
u1−q

1

q
)dx

=

∫
∂Ω

(|∇u1|p−2 + |∇u1|q−2)∇u1
∂u1

∂ν

u1−q
1

q
vdσ

=

∫
∂Ω

(α|u1|q−2u1 − β|u1|p−2u1)
u1−q

1

q
vdσ

〈η′(uq2), v〉 =

∫
Ω

(|∇u2|p−2∇u2∇v + |u2|p−2u2v)(
u1−q

2

q
)dx

+ µ

∫
Ω

(|∇u2|q−2∇u2∇v + |u2|q−2u2v)(
u1−q

2

q
)dx

=

∫
∂Ω

(α|u2|q−2u2 − β|u2|p−2u2)
u1−q

2

q
vdσ

exploiting the monotonicity of η′, this entails

0 ≤ 〈η′(uq1)− η′(uq2), u1 − u2〉

=

∫
∂Ω

(α|u1|q−2u1 − β|u1|p−2u1)
u1−q

1

q
(u1 − u2)dσ

−
∫
∂Ω

(α|u2|q−2u2 − β|u2|p−2u2)
u1−q

2

q
(u1 − u2)dσ

=

∫
∂Ω

(up−q2 − up−q1 )(u1 − u2)dσ ≤ 0.

Since t 7→ tp−q, t ≥ 0, is strictly increasing, u1 = u2, and the uniqueness of û
follows. �

To simplify notation, define X = W 1,p(Ω). Let F be as in(3) and let

ϕ(u) :=
1

p
‖u‖p1,p +

µ

p
‖u‖q1,q −

∫
∂Ω

F (x, x(u))dσ, x ∈ X. (11)

Obviously, ϕ ∈ C1(X). Moreover, critical points of ϕ are weak solutions to (Sp,q),
and vice-versa.

Lemma 2.4. Suppose (f1)-(f2) hold true. Then ϕ turns out to be weakly sequentially
lower semi-continuous and coercive.

Proof. Since X compactly embeds in Lp(∂Ω) while W 1,q(Ω)∗ ⊆ W 1,p(Ω)∗ the func-
tional ϕ is weakly sequentially lower semi-continuous. Pick ε ∈ (0, cθλ1,p), with cθ
coming from Lemma 2.2. By (f1)-(f2), there exists c4 > 0 such that

F (x, z) ≤ θ(x) + ε

p
|z|p + c4 ∀(x, z) ∈ ∂Ω× R.



MULTIPLE SOLUTIONS FOR A (p, q)-LAPLACIAN STEKLOV PROBLEM 363

Hence, on account of (p2),

ϕ(u) ≥ 1

p

(
‖u‖p1,p −

∫
∂Ω

θ(x)|u(x)|pdσ − ε

λ1,p
‖u‖p1,p

)
− c4m(∂Ω) inX.

Due to Lemma 2.2 this implies

ϕ(u) ≥ 1

p

(
cθ −

ε

λ1,p

)
‖u‖p1,p − c4m(∂Ω). u ∈ X.

and the conclusion follows. �

Gathering Proposition 2.1, (p4), and Lemma 2.4 together we easily infer the next
result.

Lemma 2.5. Under assumptions (f1)-(f2), the functional ϕ satisfies the Palais-Smale
condition (PS).

In fact, one has

〈ϕ′(u), v〉 = 〈Ap(u) + µAq(u), v〉+ 〈B(u), v〉 ∀u, v ∈ X,
where 〈B(u), v〉 = −

∫
∂Ω
f(x, u(x))v(x)dσ.

By (p5) the operator Ap + µAq turns out to be of type (S)+, while B : X → X∗

is compact. Indeed, let (un)n be a bounded sequence in X: Up to a subsequence
denoted also by (un)n, we have

un ⇀ u in X,

by the compact embedding X into Lp(∂Ω), we have

un → u a.e in ∂Ω.

Since f is Carathéodory function which also verifies the condition (f1),

f(x, un)un → f(x, u)u a.e in ∂Ω.

By using Hölder’s inequality and Sobolev’s embedding and according to Dominated
convergence theorem, we obtain

B(un)→ B(u).

3. Existence of multiple solutions

In this section, we can formulate our main results about the existence of three
non-trivial solutions of our problem (Sp,q) in the following theorem.

Theorem 3.1. Let (f1)-(f4) be fulfilled. Then, there exist three functions u1 ∈
int(C+), u2 ∈ −int(C+), and u3 ∈ C1(Ω) that solves Problem (Sp,q).

Proof. First, we prove the existence of u1 and u2 which are local minimizers of ϕ.
We define, for every x ∈ ∂Ω, t,∈ R,

f+(x, t) =

{
0 if t ≤ 0
f(x, t) if t > 0,

and f−(x, t) =

{
0 if t ≥ 0
f(x, t) if t < 0,

which are a Carathéodory functions. Setting

F∓(x, t) :=

∫ t

0

f∓(x, τ)dτ.
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as well as

ϕ∓(u) :=
1

p
‖u‖p1,p +

µ

q
‖u‖q1,q −

∫
∂Ω

F∓(x, u(x))dσ ∀u ∈ X. (12)

Remark 3.1. Obviously, both ϕ+ and ϕ− fulfill the properties stated in Lemmas 2.4
and 2.5 concerning ϕ.

By Remark 3.1 the functional ϕ+ turns out to be coercive. A simple argument,
based on the compact embedding X ⊂ Lp(∂Ω), shows that it is also weakly sequen-
tially lower semi-continuous. So, there exists u1 ∈ X satisfying

ϕ+(u1) = inf
u∈X

ϕ+(u). (13)

We claim that u1 6= 0. In fact, because of (f3) one has

c5
q
|z|q ≤ F (x, z) (x, z) ∈ ∂Ω× [−δ, δ], (14)

for suitable c5 ∈ (c(µ), c2) and δ > 0. If t > 0 is so small that

0 ≤ tφ1,q(x) ≤ δ ∀x ∈ Ω.

where φ1,q comes from (p3), then

ϕ+(tφ1,q) ≤
tp

p
‖φ1,q‖p1,p + µ

tq

q
λ1,q −

tq

q
c5 =

tq

q

(
tp−q‖φ1,q‖p1,p + µλ1,q − c5

)
. (15)

Since p > q while c5 > µλ1,q, by decreasing t when necessary, (15) furnishes ϕ+(tφ1,q) <
0. Hence,

ϕ+(u1) = inf
u∈X

ϕ+(u) = ϕ+(0), (16)

which clearly means u1 6= 0, as desired. Now, from (13) it follows, ϕ′+(u1) = 0,
namely

〈Ap(u1) + µAq(u1), v〉 =

∫
∂Ω

f+(x, u1(x))v(x)dσ ∀v ∈ X. (17)

Through (17) written for v := −u−1 we obtain ‖u−1 ‖
p
1,p + µ‖u−1 ‖

q
1,q = 0. Arguing

exactly as in the proof of lemma 2.3 yields u1 ∈ C+ \ {0}. Let ρ := ‖u1‖L∞(∂Ω). The
conditions (f3), (f4) imply the existence of constant cf > 0 such that

|f(x, s)| ≤ cfsp−1 for a.e. x ∈ ∂Ω and all − ρ ≤ s ≤ ρ. (18)

In order to prove that u1 is strictly positive in the closure of Ω, we suppose there exists
x0 ∈ ∂Ω such that u0(x0) = 0. By applying the maximum principle (see [26], Theorem
5), we obtain ∂u1

∂ν (x0) < 0. But taking into account f(x0, u1(x0)) = f(x0, 0) = 0 along

with the boundary condition in (Sp,q) yields ∂u1

∂ν (x0) = 0, which is a contradiction.

Thus, u1 > 0 in Ω which proves u1 ∈ int(C1(Ω)+).
The same reasoning, with ϕ− instead of ϕ+, gives a solution u2 ∈ −int(C1(Ω)+) to
(2). So, the proof is completed once we show that both u1 and u2 are local minimizers
for ϕ. If un → u1 in X then u+

n → u1 and u−n → 0 in X because u1 ∈ int(C1(Ω)+).
Let

∂Ωn := {x ∈ ∂Ω : un(x) < 0}, n ∈ N.
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For every ε > 0 there exists a compact set Kε ⊆ ∂Ω such that m(∂Ω\Kε) < ε.
Observe that

‖un − u1‖pLp(∂Ω) ≥
∫
∂Ωn∩Kε

|un(x)− u1(x)|pdσ

≥
∫
∂Ωn∩Kε

u1(x)pdσ ≥
(

min
x∈Kε

u1(x)

)p
m(∂Ωn ∩Kε) ∀ n ∈ N,

which evidently forces

lim
n→+∞

m(∂Ωn ∩Kε) = 0.

Consequently.

lim sup
n→+∞

m(∂Ωn) = lim sup
n→+∞

(m(∂Ωn ∩Kε) +m(∂Ωn\Kε)) ≤ m(∂Ω\Kε) < ε.

As ε was arbitrary, we actually have

lim
n→+∞

m(∂Ωn) = 0. (19)

Assumptions (f2)-(f3) provide a constant c6 > 0 satisfying

F (x, s) ≤ c6(|s|p + |s|q) (x, s) ∈ ∂Ω× R. (20)

Let us verify that
1

p
‖u−n ‖

p
1,p > c6‖u−n ‖

p
Lp(∂Ω) (21)

for any sufficiently large n. If this is not true then, passing to a subsequence when
necessary, ‖wn‖pLp(∂Ω) ≤ c8p ∀ n ∈ N, where wn := 1

‖u−n ‖pLp(∂Ω)

u−n .

Hence, we may assume that wn → w in Lp(∂Ω) for some w ∈ X. Since w ≥ 0 and
‖w‖Lp(∂Ω) = 1, there exists δ > 0 fulfilling

m(∂Ωδ) > 0, (22)

with m(∂Ωδ) := {x ∈ ∂Ω : w(x) ≥ δ}. On the other hand,

‖wn − w‖pLp(∂Ω) ≥
∫
∂Ωβ\∂Ωn

w(x)pdσ ≥ δp(m(∂Ωβ)−m(∂Ωβ ∩ ∂Ωn))

for all n ∈ N. On account of (19) this entails, as n → +∞. δp(m(∂Ωβ)) = 0, which
contradicts (22). Therefore, (21) holds true. A similar reasoning ensures that

µ

q
‖u−n ‖

q
1,q > c6‖u−n ‖

q
Lq(∂Ω) (23)

provided n is big enough. Gathering (20), (21) and (23) together yields

ϕ(un) ≥ ϕ(u+
n ) +

1

p
‖u−n ‖

p
1,p +

µ

q
‖u−n ‖

q
1,q − c6‖u−n ‖

q
Lq(∂Ω) − c6‖u

−
n ‖

p
Lp(∂Ω)

> ϕ(u+
n ) = ϕ+(u+

n ) ≥ ϕ+(u1).

namely ϕ(un) > ϕ(u1) for any sufficiently large n. Since {un} was arbitrary and
un → u1 in X, we deduce that u1 is a local minimizer of ϕ The same conclusion, with
a similar proof, holds for u2.

Finally, we prove the existence of a function u3 ∈ C1(Ω)\{0, u1, u2} that solves our
problem (Sp,q).
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From 3.1 we know that 0, u1, u2 are local minimizers of ϕ. Without any loss of gen-
erality, we may assume that each of them is an isolated critical point of ϕ. Moreover,
we may assume that ϕ(u2) ≤ ϕ(u1) (the analysis is similar if the opposite inequality
holds). Reasoning as [[19], Proposition 5.42], we can find a ρ ∈ (0, ‖u1 − u2‖) such
that

ϕ(u2) ≤ ϕ(u1) < inf{ϕ(u) : u ∈ ∂Bρ(u1)} := cρ. (24)

where ∂Bρ = {u ∈ X : ‖u − u2‖ = ρ}. Assertion (24) along with the fact that ϕ
satisfies the Palais-Smale condition (see Lemma 2.5) enable us to apply the Mountain-
Pass Theorem to ϕ (see [20]) which yields the existence of u3 ∈ X satisfying ϕ′(u3) = 0
and

cρ ≤ ϕ(u3) = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)), (25)

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = u2, γ(1) = u1}.
We see at once that (24) and (25) show that u3 6= u1 and u3 6= u2. The proof is thus
completed once one achieves u3 6= 0. In order to prove u3 6= 0 we are going to show
that

ϕ(u3) < 0, (26)

which is satisfied if there exists a path γ̃ ∈ Γ such that

ϕ(γ̃(t)) < 0, ∀ t ∈ [0, 1]. (27)

Let S = X ∩ ∂BL
p(∂Ω)

1 , where ∂B
Lp(∂Ω)
1 = {u ∈ Lp(∂Ω) : ‖u‖Lp(∂Ω) = 1}, and

Sc = S∩C1(Ω) be equipped with the topologies induced byX and C1(Ω), respectively.
Furthermore, we set

Γ0 = {γ ∈ C([−1, 1], Sc) : γ(−1) = −φ1,q, γ(1) = φ1,q},
then we have the following variational characterization of λ2,q can be represented as
follows:

λ2,q =: inf
γ∈Γ0

max
u∈γ([0,1])

‖u‖q1,q. (28)

Suppose that µ > 0 ( the reasoning is simpler if µ = 0). Since (28) there exists a
γ ∈ Γ0 to every η > 0 such that

max
t∈[−1,1]

‖γ(t)‖q1,q < λ2,q +
η

2µ

It is well known that Sc is dense in S. Therefore, we can find γ0 ∈ Γ0 and

max
t∈[−1,1]

‖γ(t)− γ0(t)‖q1,q <
(
λ2,q +

η

µ

)1/q

−
(
λ2,q +

η

2µ

)1/q

This evidently forces

max
t∈[−1,1]

‖γ0(t)‖q1,q < λ2,q +
η

µ
. (29)

Owing to the compactness of γ0([−1, 1]) in C1(Ω) we obtain c7 satisfying

‖γ0(t)‖q1,q ≤ c7, t ∈ [−1, 1], (30)

as well as ε0 > 0 such that

ε0 max
x∈Ω
|u(x)| ≤ δ, for all x ∈ Ω and all u ∈ γ0([−1, 1]). (31)
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Pick η < c5 − µλ2,q, with c5 given by (14). Since q < p, there exists ε1 > 0 fulfilling

εp−qc7 + µλ2,q + η − c5 < 0 ∀ ε ∈ (0, ε1). (32)

The function t 7→ γ0(t), t ∈ [−1, 1], is a continuous path in Sc, which joins −φ1,q and
φ1,q. Moreover, if 0 < ε < min{ε0, ε1} then (29), (30), (31) and (14) entail

ϕ(εγ0(t)) =
εp

p
‖γ0(t)‖p1,p + µ

εq

q
‖γ0(t)‖q1,q −

∫
∂Ω

F (x, εγ0(t)(x))dσ

≤ εp

p
c7 + µ

εq

q

(
λ2,q +

η

µ

)
− εq

q
c5

=
εq

q
(εp−qc7 + µλ2,q + η − c5) < 0 ∀t ∈ [−1, 1]. (33)

Now, write a := ϕ+(u1). Because (16) on has a < 0. we may suppose K(ϕ+) =
{0, u1}, otherwise the conclusion follows. Hence, no critical value of ϕ+ lies in (a, 0)
while Ka(ϕ+) = {u1}.
Thanks to the second deformation lemma [ [16], Theorem 5.1.33], there exists a con-
tinuous function h : [0, 1]× (ϕ0

+\{0})→ ϕ0
+ satisfying

h(0, u) = u, h(1, u) = u0, and ϕ+(h(t, u)) ≤ ϕ+(u)

for all (t, u) ∈ [0, 1] × (ϕ0
+\{0}). Let γ+(t) := h(t, εφ1,q)

+, t ∈ [0, 1]. then γ+(0) =
εφ1,q, γ+(0) = u1, as well as

ϕ(γ+(t)) = ϕ+(γ+(t)) ≤ ϕ+(h(t, εφ1,q)) < 0 in[0, 1]. (34)

In a similar way, but with ϕ− in place of ϕ+, we can construct a continuous function
γ− : [0, 1]→ X such that γ−(0) = u1, γ−(1) = −φ1,q, and

ϕ(γ−(t)) < 0 ∀t ∈ [0, 1]. (35)

Concatenating γ−, εγ0, and γ+ one obtains a path γ̂ ∈ Γ which, in view of (33)-(35),
fulfils (27). This shows (26), whence u3 6= 0. �

References

[1] A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem

with indefinite weight, Bol. Soc. Paran. Mat. V. 29 (2011), no. 1, 17–23.
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